DESS CCI : corrigé examen Langage Machine, Dé-
cembre 2004

1 Entiers, décalages et boucles

Question a : Donner une séquence C équivalente a la boucle de nb__uns du pro-
gramme ci-dessous, sans instruction for (en utilisant if et goto).

init_for: i=0;

test_for: if (! (i<16)) goto fin_for; /* ou if (i>= 16) goto ... */
corps_for: moins_un_si_bit = ...
/* corps du for inchange */
it++;

b

goto test_for;
fin_for: return (-res);

Ou variante avec 1 seul branchement conditionnel :

init_for: i=0;
goto test_for; /* on peut se passer de ce goto */
/* parce que i=0 implique <16 */
/* et au moins un passage dans la */
/* boucle */

corps_for: moins_un_si_bit = ...
/* corps du for inchange */
i++;

test_for: if (<16) goto corps_for;
fin_for: return (-res);

Question b : Traduire en langage d’assemblage ARM la boucle for de nb__uns. On
ne vous demand pas le prologue et ni ’épilogue (sauvegarde, restauration de registres,
allocation de mémoire dans la pile) de la fonction.

La convention d’appel standard dit que le premier paramétre (ici x) est stocké dans
le registre r0. Au moment ou I’appelante copie x de la mémoire vers r0 (par un ldrsh)
avant appel, la représentation de x est étendue a 32 bits par recopie du bit de signe
(16 fois) en poids forts.

.text

init_for: mov r2,#0 @i=0

@ test de i<16

test_for: cmp r2,#16 @ ou rsbS r0,r2,#16
bge fin_for @ blt fin_for

corps_for: add r4, r2, #16 @r4d =16 + i
mov r3, r0, LSL r4 @ moins_un_si_bit = x << r4
mov r3, r3, LSR #31 @ moins_un_si_bit >>= 31
add rl, rl1, r3 @ res += moins_un_si_bit
add r2,r2,#1 Q@ it++
b test_for

fin_for: rsb r0,rl,#0 @ return (-res) : resultat dans r0
/* epilogue */ @ par convention d’appel
mov pc,1r

Question b : Comment représente-t-on -1 en binaire sur 32 bits?
32 bits a1: =231+ 330 2,21) = —231 4 (231 — 1) = —1

Question c : Expliquer en quelques lignes le principe de la méthode de comptage
du nombre de uns utilisée ici.

On décale & gauche chaque bit a tester, pour 'amener en poids fort. Il jouera donc
le role de bit de signe de ’entier décalé. Le décalage arithmétique & droite recopie en
poids fort le bit de signe. Si le bit de départ était a 0, on obtient que des bits a zéros,
donc 0. Si le bit de départ était & 1, on obtient que des uns, donc -1.

Au signe prés, le cumul donne le nombre de bits a 1.

Question d : Traduire en langage d’assemblage ARM les deux appels a la procé-
dure nb_uns présents dans le corps de main.

L’extension et la réduction de format entre 16 et 32 bits se fait automatiquement
lors des ldr et str.

@ passage du paramétre dans r0
@ r0 = *&a
ldr r1,= a
ldrh r0, [ri]
@ appel de la procédure
bl nb_uns
@ résultat stocké dans r0 par convention
ldr r1,= Db
strh r0, [ri]

ldr r1,= Db
ldrh r0, [ri]
@ appel de la procédure
bl nb_uns
@ résultat stocké dans r0 par convention
ldr r1,= ¢
strh r0, [ri]

Question e : Quel est 'effet de la séquence de code ARM suivante ? Ecrire une
instruction C correspond & cette séquence.

mov r(Q, #5
mov lr, pc
ldr pc, =nb_uns
mov r5,r0

Toute affection au compteur ordinal est un branchement. L’instruction ldr pc,= nb_uns
fonctionne l'instruction de branchement b, a ceci prés que ’adresse est donnée de ma-
niére absolue dans un registre, au lieu d’étrev calculée par addition d’un déplacement
relatif au compteur ordinal.

L’instruction move qui précéde permet de sauvegarder dans Ir I’adresse de I'instruction
move, ce qui reconstitue I’équivalent d’une instruction bl (& la méthode de codage de
l’adresse de destination preés).

La séquence réalise donc un appel a la procédure nb_uns, avec 5 comme paramétre,
et stockage du résultat de 'appel dans r5 : r5=nb_uns(5) ;.

Questione e : Expliquer en quelques lignes comment traduire en langage d’as-
semblage ARM la derniére instruction de main. Cette derniére instruction rend-elle le
programme récursif 7.

Il suffit d’appeler nb__uns avec le contenu de ¢ comme paramétre. Il suffit d’utiliser
le résultat de ce premier appel comme paramétre du deuxiéme appel et le résultat du

3

deuxiéme appel comme paramétre du troisiéme appel.

Coup de chance pour les fainéants : la convention d’appel fait que le résultat est déposé
dans r0 a la place du premier argument. Il se trouve donc déja a la bonne place pour
I’appel suivant.

1dr ri,=c
ldrh r0, [ri]
bl nb_uns
bl nb_uns
bl nb_uns
1dr r1,=b
strh ro0, [r1]

Le appels a nb_uns ne sont pas emboités les uns dans les autres et le programme
n’est pas récursif. On aurait pu écrire :

void main()

{

register unsigned int r5, t;
b = nb_uns(a);

¢ = nb_uns(b);

t = nb_uns(c);

t = nb_uns(t);

t = nb_uns(t);

2 Pointeurs et tableaux

2.1 Déclarations

Question : traduire en langage d’assemblage ARM la procédure xplusplus (inutile
de détailler le prologue et I’épilogue de la procédure) ainsi que la déclaration des deux
tableaux.

.bss
y: .skip 4
z: .skip 4
.data
X: .short 4
u: .short 32
tab_ptrshort .word x
.word vy
.word bA
.word u

tab_proc: .word xpluspplus
.word yplusplus
.word zplusplus
.word uplusplus

.text
.global uplusplus

uplusplus: .. @ prologue
1dr r0, = u @ r0 = &u

ldrsh r1, [r0]

add rl, ri, #1

strh r0, [r0]

.. @ epilogue
mov pc, 1r
.1torg

2.2 Tableau de fonctions

Question : traduire en langage d’assemblage ARM l'instruction ptr _proc = tab_proc]i| ;.

@ stockage de ptr_proc dans r4
@ stockage de i dans rb

ldr r0,= tab_proc

ldrsh r4, [r0, r5]

@ ajouter un .ltorg plus loin

2.3 Pointeur de fonction

Question : traduire en langage d’assemblage ARM l'instruction ptr _proc = &xplusplus;.

@ stockage de ptr_proc dans r4
@ stockage de i dans rb

ldr r4, = xplusplus
@ ajouter un .ltorg plus loin

2.4 Appel de fonction pointée

Question : traduire en langage d’assemblage ARM D'instruction (*ptr_proc) () ;.
La relecture de la question le peut vous étre utile.

@ stockage de ptr_proc dans r4
mov 1r,pc
mov pc, r4d

2.5 Indice versus pointeur

Question : écrire une boucle C while équivalente a la premiére boucle, n’utilisant
que ps (et pas i) comme variable de boucle.

ps = tab_ptrshort;

while (ps < (tab_ptrshort + 4))
{
*ps = *ps + 1;
ps ++;

}

