DESS CCI : Corrigé Langage Machine, Décembre 2005

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Les deux premiéres des quatre questions de la deuxiéme partie peuvent étre traitées
dans n’importe quel ordre.

La premiére partie est une petite question indépendante simple sur les constructeurs
algorithmiques qui ne devrait pas prendre plus d’un quart du temps.
1 Constructions algorithmiques

Traduire en langage d’assemblage les déclarations de variables et les instructions
C de I'extrait de programme C suivant :

/* Declarations */
short int t[7] = {2, 4, 5, 7, -1};

int 1 = 2;
int j = 3;
Jx ... %/

/* instructions x/
if ((t[i] >= 2) && (t[j] < 4))

{
J=J+ L
}
i=1 % 8;
.data
t: .hword 2
.hword 4
.hword 5
.hword 7
.hword -1
.skip 4
i: .word 2
.word 3
¢ if (t[i]l < 2) goto finsi
¢ if (t[i]l >= 4) goto finsi
0 j=g+1

Ofinsi: i = 1 << 3

@r0 : t
@ r1 : valeur de i
@ r2 : valeur de t[i]
@ r3 : valeur de j
@ r4 : temporaire adresse
.text
1ldr r0, =t
1dr r3, =i
ldr ri, [r3]
ldrsh r2, [r0,r1]
cmp r2, #2
blt finsi
cmp r2, #4
bge finsi
ldr r3, =]
ldr r3, [r3]
add r3, r3, #1
str r3, [r3]
finsi: mov rl, r1, LSL #3
str ri, [r3]

2 Pointeurs et procédures

2.1 Présentation du programme C

unsigned short int x5py (unsigned short int x, unsigned short int y)
{
return (...); /* Retrouvez 1’expression C */

/* utilisée dans ce return */

unsigned short int xplusy (unsigned short int x, unsigned short int y)

{
return (x+y);

3

void test_x5py()

void main ()
{
test_x5py();
appeler (O);

/* On ne vous donne pas le corps de test_xbpy */
/* Retrouvez-le a partir de test_x5py.s */

printf ("%d <-- %d %d \n", c, a, b);

3

Dans le fichier ptr.c, 'une des fonctions est appelée directement, et I’autre via un

pointeur de fonction (type fonc *)

/***/

/* Extrait du fichier ptr.c */

/***/

include "xb5py.h"

extern unsigned short int d;

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short

int
int
int
int
int

X;
*ps = &d;
d=4;

e=5;

f;

fonc *pointe_fonc = &xplusy;

void appel_via_pointeur ()

{

d ++;

f = (*pointe_fonc) (d, 9%e);

e--;

}

void appel ()
{

appel_via_pointeur();
pointe_fonc = &x5py;
appel_via_pointeur();

/* précise a 1l’avance le type de d */
/* pour la déclaration de ps x/

/* pointeur initialisé */
/* vraie déclaration de d */

/* pointeur pour le stockage d’une adresse */

/* initialisé & 1’étiquette d’une fonction */

/* A traduire */
/* appelle la fonction pointée */

/* --> exécutera xplusy */

/* --> exécutera x5py */

2.2 Pointeurs

de

On rappelle que traduction en langage d’assemblage de la déclaration d’un poin-
teur est indépendante du type d’objet pointé. L’unique spécificité des pointeurs de
fonctions est que 'étiquette utilisée comme valeur initiale est définie dans text au lieu

data ou bss.

Question a :

pointe fonc.

ps:

po

1002, 2000, 2008).

Traduire en langage d’assemblage les déclarations de a, ps, b, ¢ et

Variante avec data et bss

.data
.short
.short

.balign
.word
.short
.short

.bss
.skip
.skip
.skip
.balign

NN

N NN

4

1000
1002

1004
1008
100A

2000
2002
2004
2006

.data
a: .short 4
: .short 5
c: .skip 2
x: .skip 2
f: .skip 2

inte_fonc: .word xplusy 2008

Variante moins correcte
en mettant tout dans data

1004

1006

1008
100A
100C

100D
1010
1010

Question b : Donner I'adresse (a la laquelle sera stocké le premier des octets) de
chacune des variables (a, b, ... pointe_ fonc). (a,ps,b,c,pointe fonc) — (1000, 1004,

Question c :

Traduire en langage d’assemblage l'instruction f = *ps ;.

@ a mettre dans la section text qui devra inclure un .ltorg

Q

ldr rO0, =ps

ldr ri1, [rO0] @
ldrh r2, [ri]
1ldr r3, =f

strh r2, [r3] @

@ adresse de ps
contenu de ps

: &ps
*&ps

@ contenu de d pointé par ps

@ adresse de f
valeur de f

Question d : Supposons maintenant que ps pointe sur un élément d’un tableau
de fonctions. Traduire en langage d’assemblage I'instruction

ps++ ;.
@ a mettre dans la section text qui devra inclure un .ltorg
1dr r0, =ps @ adresse de ps (&ps)
1dr r1, [r0] @ contenu de ps (*&ps)
add rl, ri, #4 @ contenu modifié
str rl, [ro0] @

3 Questions sur les procédures

3.1 Appel ordinaire

Le programmeur a traduit manuellement le fichier x5py.c en langage d’assemblage
dans le fichier x5py.s.

/***/

/* Extraits du fichier x5py.s */
[KKk ok ok ok ok sk K ok ok ok ook ok ok ok K ok K ok ok o ok ok K ok K ok ok ok kK ook K ok Kok kK ok sk Kok Kok Kok /

.global test_xbpy
test_xbpy: @ prologue de la fonction et sauvegarde des registres sont omis

@ debut du corps de test_xbpy

1dr r0,=a @ instr 1
ldrh r0, [ro0] @ instr 2
add r0,r0, #1

1dr rl,=b

ldrh rl, [ri]

add rl, ri, #2

mov 1r, pc

ldr pc, =xbpy

1dr rl, =c

strh r0, [ri] @ instr 10

@ fin du corps de test_xbpy

@ epilogue de la fonction et restauration des registres sont omis
mov pc, 1r

.global xbpy

x5py: @ prologue de la fonction et sauvegarde des registres sont omis

@ debut du corps de xbpy

add r4, rO, rO, LSL #2 @ parametres x et y dans r0 et ril
add r0, r4, ri @ résultat dans r0

@ fin du corps de test_xbpy

@ epilogue de la fonction et restauration des registres sont omis
mov pc, 1r
.1torg

Question a : Retrouver comment s’écrit en C le corps de test x5py.
c = x5py (a+1, b+2);

Question b : Existe-t-il une instruction ARM qui pourrait remplacer la séquence
mov Ir, pc; Idr pc,=x5py 7 b x5py (ou bal x5py)

Question c : Expliquer en quelques mots la différence entre un branchement re-
latif et un branchement absolu. relatif : PC + deplac absolu : PC <- nouvelle adresse

Question d : Quel calcul réalise 'instruction add r4,r0,r0, LSL #2 7. Retrouver
comment s’écrivait en C la fonction x5py. r4 = r0 * 5 return (5*x+y);

Question e : Quelle est la valeur de r0 aprés I'exécution des instructions 1, 2 et
10 du corps de test x5py? 1 adresse de a (1000), 2 contenu de a (4) et 10 valeur
de a (5)

3.2 Transformation de x5py en procédure

Suite & un malentendu lors de la phase de spécification, xbpy a été programmeée
comme une fonction a deux arguments retournant un entier court de type
unsigned short int x5py (...), alors qu’elle devait étre programmée comme une
procédure de type void x5py (...).

Question : Reéécrire en C xbpy comme une procédure, ainsi que l'instruction
d’appel de x5py dans test x5py. Comment est modifié le corps de x5py dans x5py.s?

void x5py (unsigned short int x, unsigned short int vy,
unsigned short int *resultat)

{

* resultat =xxb + y;

}

x6py (a+l, b+2, &c);

add r4d,r0,r0, LSL #2
add r4, r4, ri
strh r4, [r2]

3.3 Appel via un pointeur

Question

Traduire en

langage d’assemblage

f = (*pointe fonc) (d, 9%e);

1dr
1ldrh
1ldr
1drh
add
1dr
1dr
mov
mov
1dr
strh

r0, =d
r0, [ro0]
rl, =e
rl, [ri]
rl, r1, r1, LSL #3
rb, = ppinte_fonc
r5, [r5]
1r, pc
pc, rb
r5, =f
r0, [r5]

l’instruction

