DESS CCI : examen Langage Machine, Décembre 2006

1 procédures

La procédure chercher est récursive. Il existe autant d’exemplaires de wanted et
indice que d’appels de chercher en cours. A chaque appel de chercher, un nouveau bloc
de paramétres (contenant un exemplaire de wanted) et un nouveau bloc local (conte-
nant un exemplaire de indice) sont empilés, ce qui explique que les adresses affichées
décroissent. La taille mémoire totale allouée dans la pile a chaque appel est constante :
ici 64 octets (0x40).

La différence entre les adresses de wanted et indice est constante : Ox7fffcc - Ox7fffa8
— OxT7ffeOc - Ox7ffde8 — 0x24 — 36, soit 9 mots de 32 bits. Quatre de ces mots cor-
respondent au stockage des anciennes valeurs de fp, sp, Ir et a ’adresse du corps de
chercher. Quatre autres correspondent aux sauvegardes des registres r0 a r3 qui seront
modifiés par la procédure lorsqu’elle s’appelera & nouveau elle-méme. On peut suppo-
ser que la procédure utilise aussi un autre registre (pour stocker les valeurs lues en
mémoire ) qu’il faut sauvegarder également.

Lorsque la valeur n’a pas été trouvée dans le tableau, le programme va parcourir
dans la pile les mots qui suivent le dernier élément du tableau, a savoir les derniéres
variables locales, puis les sauvegardes de registres, puis le tableau des paramétres regus
de I'appelante (sauf les 3 premiers).

Indice est stocké a I'adresse qu’aurait occupé 1’élément tab|4| s'il avait existé. Wan-
ted est stocké a l'adresse qu’aurait occupé I’élément tab|13| §'il avait existé. Wanted
contenant la valeur recherchée, 'exécution du programme se termine sur 'indice 13. S’il
y avait eu un paramétre supplémentaire avant wanted, la recherche se serait terminée
a 'indice 14.

2 Variables

Les variables sont toutes déclarées avec une valeur initiale et seront donc stockées
dans la section data, en faisant attention a respecter les contraintes d’alignement lors-
qu'on passe d'une variable a une variable de plus grand format. Message occupe 9
octets : 8 caractéres de la chaine plus la marque de fin (un octet a 0).

.data
us: .half 0x1234 @ ou .short 0x1234
.balign 4 @ ou .skip 2 pour aller & 4X
1: .word 0x12345678
cl: .byte 0x61
c2: .byte 0x62
c3: .byte 0x63



.balign 2 @ ou .skip 1 pour aller a 2X

s: .half 0x6100

message: .asciz "bonjour!"
.balign 4

p: .word cl

Le programme va essayer d’afficher caractére par caractére le contenu des octets
cl et suivant, jusqu’a rencontrer une marque de fin de chaine, & savoir un octet a 0.
C1 contient le code ASCII de ’a’, ¢2, celui de 'b’ et ¢3 celui de ’¢’.

Avec une machine big endian, 'octet occupant ’adresse de s en contient les bits
de poids forts, en I'occurence 0x61 (code de 'a’) et I'octet d’adresse s+1 contient alors
00. Avec une machine little endian, 'octet d’adresse s contiendra 0 et celui d’adresse
s+1 contiendra ’a’. Dans les deux cas, la suite d’octets forme une chaine de caractéres
terminée par un 0. Le programme affichera donc "abca" en big endian et "abc" en
little endian.

il: 1dr rl,= c2 Q@ r1 = &c2
i2: ldrsb 1r0, [ri1] @ r0 = c2 = *&c2
i3: ldr rl,=p @ rl =2&p
i4: ldr r1, [ri] Q@rl =p = *x&p
ib: strb r0, [ri] Q@ **&p = *&c2
.1ltorg
0@ rappel
1dr rl, =C2
@ equivaut a
ici: ldr ri1, [pc, #((relais -ici)/4-2)]

relais: .word c2

L’affectation se traduit par cinq instructions load ou store, dont chacune représente
deux accés mémoire : I'un pour lire le code opération de I'instruction dans la section
text, et I'autre pour transférer le contenu du mot accédé de ou vers le registre. Au to-
tal : 7 lectures dans text (5 fois code-op plus 2 accés aux .word dans ltorg), 2 lectures
et 1 écriture dans data. Aucun accés a bss (pas de variable déclarée sans initialisation).

Instructions il et i3 : le contenu lu dans le registre vient de la zone .ltorg incluse
dans la section text. Instructions i2, i4 : le contenu est lu dans une variable stockée
dans la section data. Instruction i5 : le contenu est écrit dans une variable stockée dans
la section data.



3 Entiers en binaire

3.1 exemples

On peut consulter avec profit le diagramme circulaire des entiers sur 4 bits a la fin
de la documentation décrivant le jeu d’instructions ARM.

Contenu Valeur entiére représentée

binaire | si entier naturel | si entier relatif | naturel 12 | relatif 12
0110 6 +6 0x006 0x006
0101 5 +5 0x005 0x005
1101 13 -3 0x00d 0xftd
1110 14 -2 0x00e Oxffe

Le bit de poids fort de la représentation en binaire d'un entier relatif est son bit
de signe. Il est a un pour tous les entiers négatifs.

Tous les entiers multiples de 4 ont les deux bits de poids faible a 0.

Cette expression correspond a 8 * (x/8) soit le reste de la division entiére de x par
8 (i%8). Elle est nulle si et seulement si x est multiple de 8 (les trois bits de poids
faible de x sont a 0).

3.2 Binaire en C

L’algorithme examine chacun des bits de x du poids fort au poids faible. A chaque
tour de boucle,
— la condition x < 0 est vraie si et seulement si le bit de poids fort de x est a 1 :
on écrit le caractére '0’ ou "1’ correspondant,
le bit de poids fort de x est remplacé par le bit de rang immédiatement inférieur
par le décalage d'un bit a gauche.

Comme toute variable ou tableau déclaré statiquement et sans initialisateur, le
tableau chaine sera stocké dans bss et tous ses éléments seront intialisés a 0 au char-
gement du programme en mémoire.

La derniére affectation dans printbin a pour but de terminer la chaine de caractéres
par un zéro, qui la marque de fin de chaine en C. Sa suppression n’a pas d’impact ici
puisque I’élément du tableau chaine qui suit le dernier caractére écrit par printbin est
déja a 0.

Il suffit d’initialiser les éléments du tableau chaine a autre chose que 0 avant I'appel
de sprintbin pour que la supression de *p = 0 donne un affichage erroné (incluant le
contenu de msgerr). .

/* declaration avec initialisation statique */



char chaine [MAX] = "1234567890123456789012345678901234567890";

char chaine [MAX];

/* ou initialisation dynamique dans le corps de main */
strcpy (chaine,'"1234567890123456789012345678901234567890") ;

/* avant appel de sprintbin */

@ affectation des registres
@ r0 : x

@ r1 : ecriture

@rd : p

@rb : 1

@ r6 : temporaire valeur

.text
.global main
@ Comme printbin n’appelle pas d’autre procédure on peut
@ omettre la gestion de sauvegarde de fp,sp, etc

printbin: Q@ empiler registres modifiés : r4,r5,r6
sub sp, sp, #4
str r4, [sp]
sub sp, sp, #4
str 15, [sp]
sub sp, sp, #4
str 16, [sp]

p = ecriture
i=0
goto test

mov r4, rl @
mov rb5, #0 @
bal test @
corps: cmp 15, #0 @ if (x >= 0) goto sinonil
bge sinonl @ x signé : test bge pour >=
alorsi: mov 16, #’1° @ ’1’ ou 0x31 ou 49
strb r6, [r4d] @ *p = ’1°
@ Le add qui suit pourrait etre factorise dans le finsil
add r4, r4, #10 p++
bal finsil @ goto fimnsil
sinonl: mov 16, #°0° @ ’0’ ou 0x30 ou 48
strb r6, [r4d] @ *p = °0’
add 1r4, r4, #10 p++
finsil: mov r0, rO, LSL #1 @ x << 1
add rb5, r5, #1 Q i++



mov r6, r5, LSR #2 @ r6 = i/4
cmp 15, r6, LSL #2 @ comparer i et 4x(i/4)
bne finsi2 @ if ((i%4) ==0) goto sinon2
alors2: mov 16, #’ ° @ xp = 7
strb r6, [r5]
add r6, r6, #1 Q pt++
finsi2:
test: cmp r5, #32 @ if i<32 goto corps
bcc corps @ i unsigned : bcc pour <
mov r6, #0
strb r6, [r4] @ xp = 0
Q@ désempiler registres
ldr r6, [sp]
add sp, sp, #4
ldr r5, [sp]
add sp, sp, #4
ldr r4, [sp]
add sp, sp, #4
mov pc, 1r
main : e ...
@ appel de sprintbin
ldr 1r6, =x @ x dans r0O = entier
ldr 10, [r6]
1dr r1, =chaine @ ecriture dans rl = chaine
bl sprintbin

Nous avons l'invariant de boucle p = ecriture + i. La condition devient donc
while (p - ecriture) < 32). D’autre part, utiliser la nullité de x comme critére d’ar-
rét est incorrect : les chiffres & zéro en poids faible ne seraient pas affichés.

sub

subS

bcc

r6, r4, ri
r6, #32
corps



