
DESS CCI : examen Langage Ma
hine, Dé
embre 20061 pro
éduresLa pro
édure
her
her est ré
ursive. Il existe autant d'exemplaires de wanted etindi
e que d'appels de
her
her en
ours. A
haque appel de
her
her, un nouveau blo
de paramètres (
ontenant un exemplaire de wanted) et un nouveau blo
 lo
al (
onte-nant un exemplaire de indi
e) sont empilés,
e qui explique que les adresses a�
héesdé
roissent. La taille mémoire totale allouée dans la pile à
haque appel est
onstante :i
i 64 o
tets (0x40).La di�éren
e entre les adresses de wanted et indi
e est
onstante : 0x7�f

 - 0x7�fa8= 0x7�e0
 - 0x7�de8 = 0x24 = 36, soit 9 mots de 32 bits. Quatre de
es mots
or-respondent au sto
kage des an
iennes valeurs de fp, sp, lr et à l'adresse du
orps de
her
her. Quatre autres
orrespondent aux sauvegardes des registres r0 à r3 qui serontmodi�és par la pro
édure lorsqu'elle s'appelera à nouveau elle-même. On peut suppo-ser que la pro
édure utilise aussi un autre registre (pour sto
ker les valeurs lues enmémoire) qu'il faut sauvegarder également.Lorsque la valeur n'a pas été trouvée dans le tableau, le programme va par
ourirdans la pile les mots qui suivent le dernier élément du tableau, à savoir les dernièresvariables lo
ales, puis les sauvegardes de registres, puis le tableau des paramètres reçusde l'appelante (sauf les 3 premiers).Indi
e est sto
ké à l'adresse qu'aurait o

upé l'élément tab[4℄ s'il avait existé. Wan-ted est sto
ké à l'adresse qu'aurait o

upé l'élément tab[13℄ s'il avait existé. Wanted
ontenant la valeur re
her
hée, l'exé
ution du programme se termine sur l'indi
e 13. S'ily avait eu un paramètre supplémentaire avant wanted, la re
her
he se serait terminéeà l'indi
e 14.2 VariablesLes variables sont toutes dé
larées ave
 une valeur initiale et seront don
 sto
kéesdans la se
tion data, en faisant attention à respe
ter les
ontraintes d'alignement lors-qu'on passe d'une variable à une variable de plus grand format. Message o

upe 9o
tets : 8
ara
tères de la
haîne plus la marque de �n (un o
tet à 0)..dataus: .half 0x1234 � ou .short 0x1234.balign 4 � ou .skip 2 pour aller à 4Xl: .word 0x12345678
1: .byte 0x61
2: .byte 0x62
3: .byte 0x63 1

.balign 2 � ou .skip 1 pour aller à 2Xs: .half 0x6100message: .as
iz "bonjour!".balign 4p: .word
1Le programme va essayer d'a�
her
ara
tère par
ara
tère le
ontenu des o
tets
1 et suivant, jusqu'à ren
ontrer une marque de �n de
haîne, à savoir un o
tet à 0.C1
ontient le
ode ASCII de 'a',
2,
elui de 'b' et
3
elui de '
'.Ave
 une ma
hine big endian, l'o
tet o

upant l'adresse de s en
ontient les bitsde poids forts, en l'o

uren
e 0x61 (
ode de 'a') et l'o
tet d'adresse s+1
ontient alors00. Ave
 une ma
hine little endian, l'o
tet d'adresse s
ontiendra 0 et
elui d'adresses+1
ontiendra 'a'. Dans les deux
as, la suite d'o
tets forme une
haîne de
ara
tèresterminée par un 0. Le programme a�
hera don
 "ab
a" en big endian et "ab
" enlittle endian.i1: ldr r1,=
2 � r1 = &
2i2: ldrsb r0, [r1℄ � r0 =
2 = *&
2i3: ldr r1,= p � r1 = &pi4: ldr r1, [r1℄ � r1 = p = *&pi5: strb r0, [r1℄ � **&p = *&
2.ltorg� rappel :ldr r1, =C2� equivaut ai
i: ldr r1, [p
, #((relais -i
i)/4-2)℄...relais: .word
2L'a�e
tation se traduit par
inq instru
tions load ou store, dont
ha
une représentedeux a

ès mémoire : l'un pour lire le
ode opération de l'instru
tion dans la se
tiontext, et l'autre pour transférer le
ontenu du mot a

édé de ou vers le registre. Au to-tal : 7 le
tures dans text (5 fois
ode-op plus 2 a

ès aux .word dans ltorg), 2 le
tureset 1 é
riture dans data. Au
un a

ès à bss (pas de variable dé
larée sans initialisation).Instru
tions i1 et i3 : le
ontenu lu dans le registre vient de la zone .ltorg in
lusedans la se
tion text. Instru
tions i2, i4 : le
ontenu est lu dans une variable sto
kéedans la se
tion data. Instru
tion i5 : le
ontenu est é
rit dans une variable sto
kée dansla se
tion data.
2

3 Entiers en binaire3.1 exemplesOn peut
onsulter ave
 pro�t le diagramme
ir
ulaire des entiers sur 4 bits à la �nde la do
umentation dé
rivant le jeu d'instru
tions ARM.Contenu Valeur entière représentéebinaire si entier naturel si entier relatif naturel 12 relatif 120110 6 +6 0x006 0x0060101 5 +5 0x005 0x0051101 13 -3 0x00d 0x�d1110 14 -2 0x00e 0x�eLe bit de poids fort de la représentation en binaire d'un entier relatif est son bitde signe. Il est à un pour tous les entiers négatifs.Tous les entiers multiples de 4 ont les deux bits de poids faible à 0.Cette expression
orrespond à 8 * (x/8) soit le reste de la division entière de x par8 (i%8). Elle est nulle si et seulement si x est multiple de 8 (les trois bits de poidsfaible de x sont à 0).3.2 Binaire en CL'algorithme examine
ha
un des bits de x du poids fort au poids faible. A
haquetour de bou
le,� la
ondition x < 0 est vraie si et seulement si le bit de poids fort de x est à 1 :on é
rit le
ara
tère '0' ou '1'
orrespondant,� le bit de poids fort de x est rempla
é par le bit de rang immédiatement inférieurpar le dé
alage d'un bit à gau
he.Comme toute variable ou tableau dé
laré statiquement et sans initialisateur, letableau
haîne sera sto
ké dans bss et tous ses éléments seront intialisés à 0 au
har-gement du programme en mémoire.La dernière a�e
tation dans printbin a pour but de terminer la
haîne de
ara
tèrespar un zéro, qui la marque de �n de
haîne en C. Sa suppression n'a pas d'impa
t i
ipuisque l'élément du tableau
haine qui suit le dernier
ara
tère é
rit par printbin estdéjà à 0.Il su�t d'initialiser les éléments du tableau
haîne à autre
hose que 0 avant l'appelde sprintbin pour que la supression de ∗p = 0 donne un a�
hage erroné (in
luant le
ontenu de msgerr). ./* de
laration ave
 initialisation statique */3

har
haine [MAX℄ = "1234567890123456789012345678901234567890";
har
haine [MAX℄;.../* ou initialisation dynamique dans le
orps de main */str
py (
haine,"1234567890123456789012345678901234567890");/* avant appel de sprintbin */� affe
tation des registres� r0 : x� r1 : e
riture� r4 : p� r5 : i� r6 : temporaire valeur.text.global main� Comme printbin n'appelle pas d'autre pro
édure on peut� omettre la gestion de sauvegarde de fp,sp, et
printbin: � empiler registres modifiés : r4,r5,r6sub sp, sp, #4str r4, [sp℄sub sp, sp, #4str r5, [sp℄sub sp, sp, #4str r6, [sp℄mov r4, r1 � p = e
rituremov r5, #0 � i = 0bal test � goto test
orps:
mp r5, #0 � if (x >= 0) goto sinon1bge sinon1 � x signé : test bge pour >=alors1: mov r6, #'1' � '1' ou 0x31 ou 49strb r6, [r4℄ � *p = '1'� Le add qui suit pourrait etre fa
torise dans le finsi1add r4, r4, #1� p++bal finsi1 � goto finsi1sinon1: mov r6, #'0' � '0' ou 0x30 ou 48strb r6, [r4℄ � *p = '0'add r4, r4, #1� p++finsi1: mov r0, r0, LSL #1 � x << 1add r5, r5, #1 � i++4

mov r6, r5, LSR #2 � r6 = i/4
mp r5, r6, LSL #2 �
omparer i et 4*(i/4)bne finsi2 � if ((i%4) ==0) goto sinon2alors2: mov r6, #' ' � *p = ' 'strb r6, [r5℄add r6, r6, #1 � p++finsi2:test:
mp r5, #32 � if i<32 goto
orpsb

orps � i unsigned : b

 pour <mov r6, #0strb r6, [r4℄ � *p = 0� désempiler registresldr r6, [sp℄add sp, sp, #4ldr r5, [sp℄add sp, sp, #4ldr r4, [sp℄add sp, sp, #4mov p
, lrmain : � ...� appel de sprintbinldr r6, =x � x dans r0 = entierldr r0, [r6℄ldr r1, =
haine � e
riture dans r1 =
hainebl sprintbinNous avons l'invariant de bou
le p = e
riture + i. La
ondition devient don
while (p - e
riture) < 32). D'autre part, utiliser la nullité de x
omme
ritère d'ar-rêt est in
orre
t : les
hi�res à zéro en poids faible ne seraient pas a�
hés.sub r6, r4, r1subS r6, #32b

orps
5

