DESS CCI : examen Langage Machine, Décembre 2006

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

On rappelle que le format %s dans printf sert a afficher une chaine de caractéres

1 Appel de procédures (environ 6 points)

On considére 'extrait de programme C suivant. L’algorithme utilisé dans ce pro-
gramme est incorrect : il n'y a pas de test pour arréter la recherche lorsque 'on a
parcouru tout le tableau sans trouver la valeur recherchée.

#include <stdio.h>
##define TAILLE_TAB 4

/Ko ok ok ok ok ok sk sk ok ok ok ok o ok sk ok ok ok ok o ok ok ok ok ok ok ok ok o ok ok ok ok ok ok sk ok ok ok ok o k /
/* rechercher la valeur wanted dans le tableau */
/* a partir de 1’indice debut */
/* retourne 1’indice de wanted dans le tableau */
/oot ok ok koo ook ok ok ook ko koot ok ok ok Kk ok sk sk kR sk ok sk ok ok ok ok /

int chercher (char *f1, char *f2, char *f3, char *f4, int wanted, int debut)
{

int indice;

int tab [TAILLE_TAB] = { 63, -6, 0, 8};

printf ("%s%s%08x,%s%s%08x\n",
f1, £f2, (unsigned int) &wanted, f3, f4, (unsigned int) &indice);
if (wanted == tab[debut])
/* trouve dans debut : on ne cherche pas plus loin */
indice = debut;
else
/* pas dans le dernier element : chercher a partir de tab[debut+1] */
indice = chercher (f1,f2,f3,f4,wanted, debut+l);
return (indice);

}
void tester (int v)
{
printf ("valeur %d : indice = %d\n",v,
chercher("&wanted ="," 0x"," &indice ="," 0x", v,0));
}

void main ()
{

tester (63);
tester (8);
tester (-1);
tester (-6);
tester (5);
}

L’exécution de ce programme (compilé avec armgee) génére affichage suivant :

&wanted = 0x007fffcc, &indice
valeur 63 : indice = 0

0x007fffa8

&wanted = 0x007fffcc, &indice = 0x007fffa8
&wanted = 0x007fff8c, &indice = 0x007fff68
&wanted = 0x007fff4c, &indice = 0x007fff28
&wanted = 0x007fff0c, &indice = 0x007ffee8

valeur 8 : indice = 3

&wanted = 0x007fffcc, &indice = 0x007fffa8
&wanted = 0x007fff8c, &indice = 0x007fff68
&wanted = 0x007fff4c, &indice = 0x007fff28
&wanted = 0x007fff0Oc, &indice = 0x007ffee8
&wanted = 0x007ffecc, &indice = 0x007ffea8
&wanted = 0x007ffe8c, &indice = 0x007ffe68
&wanted = 0x007ffed4c, &indice = 0x007ffe28
&wanted = 0x007ffelOc, &indice = 0x007ffde8
&wanted = 0x007ffdcc, &indice = 0x007ffda8
&wanted = 0x007ffd8c, &indice = 0x007ffd68
&wanted = 0x007ffd4c, &indice = 0x007ffd28
&wanted = 0x007ffdOc, &indice = 0x007ffce8
&wanted = 0x007ffccc, &indice = 0x007ffca8
&wanted = 0x007ffc8c, &indice = 0x007ffc68
valeur -1 indice = 13

&wanted = 0x007fffcc, &indice = 0x007fffa8

&wanted = 0x007fff8c, &indice = 0x007fff68
valeur -6 indice =1

&wanted = 0x007fffcc, &indice = 0x007fffa8
&wanted = 0x007fff8c, &indice = 0x007fff68
&wanted = 0x007fff4c, &indice = 0x007fff28
&wanted = 0x007fffOc, &indice = 0x007ffee8
&wanted = 0x007ffecc, &indice = 0x007ffea8
&wanted = 0x007ffe8c, &indice = 0x007ffe68
&wanted = 0x007ffed4c, &indice = 0x007ffe28
&wanted = 0x007ffeOc, &indice = 0x007ffde8
&wanted = 0x007ffdcc, &indice = 0x007ffda8

&wanted = 0x007ffd8c, &indice = 0x007ffd68

&wanted = 0x007ffd4c, &indice = 0x007ffd28

&wanted = 0x007ffd0c, &indice = 0x007ffce8

&wanted = 0x007ffccc, &indice = 0x007ffca8

&wanted = 0x007ffc8c, &indice = 0x007ffc68

valeur 5 : indice = 13

Question a : Expliquer pourquoi les adresses de wanted et indice varient.
Question b : A combien de mots de 32 bits correspond la différence entre les

adresses de wanted et indice. A quoi servent ces mots ?

Question ¢ : Expliquer pourquoi la recherche d’une valeur absente du tableau se
termine et pourquoi avec un indice a 13.
2 Déclarations de variables (environ 6 points)

On considére 'extrait de programme C suivant (qui affiche bonjour!). Ce pro-
gramme est exécuté sur une machine 32 bits L.

unsigned short int us = 0x1234;
long int 1 = 0x12345678;

char c1 = 0x61;

char c2 = 0x62;

char c3 = 0x63;

short int s = 0x6100;

char message [] = "bonjour!"

char *p = &cl;
void main ()

{

printf ("%s\n",message); /* Qu’afficherait printf ("¥%s\n",&cl); 7 */

*p = Cc2;

}

Question d : Traduire en langage d’assemblage ARM les déclarations des variables.

L’ordre de stockage en mémoire devra respecter celui des déclarations dans le pro-
gramme. Combien d’octets occupe message 7.

Question e : Que fera le programme si 'on remplace message par &cl dans
I'appel de printf, selon que le processeur est Little ou Big Endian®?

lsizeof(char) — 1, sizeof(short) — 2, sizeof(int) — sizeof(long) — 4
%big endian : I'octet a I'adresse d’un entier 16 ou 32 bits contient les bits de poids fort (faibles si
little endian)

Question f : Combien d’accés a la mémoire 'exécution de *p=c2 génére-t-elle
dans chacune des sections (text, data, et bss) 7 .

3 Représentation des entiers en binaire (environ 8
points

On rappelle que Iaffectation x =x « n effectue un décalage logique a gauche :
elle élimine les n bits de poids forts de x et ajoute n chiffres a zéro en poids faible. De
méme, (appliquée a un entier naturel), 'opération C x » n est un décalage logique
a droite : élimination des n bits de poids faible et ajout de n chiffres & zéro en poids
forts.

3.1 Exemples sur quatre bits

Soit des processeurs fictifs travaillant respectivement sur 4, 8 ou 12 bits.

Question g : Donner les quatre paires de valeurs d’entier (naturel et relatif) dont
les représentations en binaire sont les suivantes : 0110, 0101, 1101 et 1110 7.

Question h : Si on suppose maintenant que ces entiers sont stockés dans une ma-
chine travaillant sur 12 bits. Quelle est la représentation en hexadécimal de ces quatre
paires de valeurs?

Question i : Quelle est la particularité commune des représentations en binaire de
tous les entiers négatifs 7.

Question j : Quelle est la particularité commune des représentations en binaire de
tous les entiers divisibles par 4 7.

Question k : Soit x un entier naturel stocké dans une machine travaillant sur 8 bits.
Que peut-on dire de x si 'expression C (((x >> 3) << 3) — x) est égale 2 07

3.2 Manipulation de binaire en C

Voici une procédure C qui génére dans une chaine de caractéres la représentation
en binaire (par paquets de 4 chiffres) d’un entier codé sur 32 bits.

void sprintbin (int x, char *ecriture)

{
register char *p; /* stocker p dans r4 */
register unsigned int i; /* stocker i dans rb5 */

p = ecriture;

i=0;

while (i < 32)
{
if (x < 0)
xpt+ = 217; /% equivaut a *p = ’1’; p++ */
else
*p++ = 207;
x = x << 1;
i++;
if ((i%4) == 0) *p++ = > ?; /x iJ4 : module : reste de la division par 4 */
b
*p = 0;
}

L’appelante de sprintbin passe deux parameétres : I'entier a convertir et ’adresse
de stockage de la chaine de caractéres a générer.

#include <stdio.h>
#tdefine MAX 40 /* 32 chiffres, 7 espaces */

char chaine [MAX];
char msgerr [] = "ce message ne devrait jamais etre affiche";

int main()

{

/* Ce programme affiche : 1010 1011 1100 1101 1110 1111 1001 0101 * /
sprintbin (Oxabcdef95,chaine);

printf ("%s\n", chaine);

}

Question 1 : Expliquer en quelques lignes le pincipe de fonctionnement de cet algo-
rithme. Justifier en particulier le test de la condition x < 0.

Question m : L’affichage généré par ce programme est-il modifié si la derniére
affectation (xp = 0) dans sprintbin est supprimée ? Si non, expliquer pourquoi. Si oui,
comment faut-il modifier le fichier main.c de telle sorte que le message affiché ne soit
correct que si Iaffectation xp = 0 est présente dans sprintbin ?

Question n : En utilisant la convention d’appel standard (premiers paramétres dans
r0 a r3), traduire le corps de la procédure printbin en langage d’assemblage, ainsi que
I'instruction sprintbin (x,chaine) ; de la procédure main.

Question o : On décide de ne plus insérer d’espace entre les paquets de 4 chiffres
et de supprimer purement et simplement la variable 2. Donner maintenant la nouvelle
condition de boucle du programme C et sa traduction en langage d’assemblage.

