M2P CCI : examen Langage Machine, Décembre 2019

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Avant de répondre aux questions, vous devez impérativement lire la convention d’appel des
fonctions et les contraintes de stockage a respecter.

Table des matiéres

1 Convention d’appel et contraintes de stockage (sans question, 5mn) 1
2 Présentation (sans question) du programme de gestion de tableaux (5mn) 2
3 Déclaration des variables (15mn) 2
4 Traiter element : indicage de tableau, pointeur de pointeur (40mn) 2
5 Parcours : appel de fonction, pointeurs (30mn) 2
6 Questions diverses et base 2 (25mn) 5

6.1 Gestion de variables locales . . . . . . .. ... o o 5

6.2 Base 2 . . .. e 5)
7 Annexe : procédure parcours et variables globales 6
8 Annexe : procédure traiter element 7

1 Convention d’appel et contraintes de stockage (sans ques-
tion, 5mn)

La convention d’appel applicable & toutes les fonctions a traduire est inspirée de celle de gcce :

— Les quatre premiers parameétres explicites sont stockés dans les registres r0 a r3.

— Les paramétres suivant sont empilés (paramétre de gauche en sommet de pile)

— Le paramétre implicite adresse de retour dans appelante est passé dans le registre Ir (r14).

— Pour les fonctions, le résultat est retourné a la place du premier argument dans le registre r0.

— L’exécution de la routine appelée préserve les contenus des registres : au retour de la fonction,
tous les registres! autres que le compteur ordinal pc (et, dans le cas d’une fonction, r0 qui
contiendra le résultat) ont un contenu identique a celui d’avant I’appel.

Variables ou paramétres seront stockés en mémoire excepté si :
— lattribut register est présent dans leur déclaration ou
— la convention d’appel stipule que le paramétre est passé dans un registre.

Chaque accés a’une variable en mémoire devrait générer une lecture ou une écriture en mémoire.
La lecture peut étre omise (de préférence avec un commentaire approprié) si un registre contient une
copie a jour (datant de 'affectation la plus récente) du contenu de la variable, mais pas I'écriture en
mémoire, & réaliser pour chaque affectation.

1. fp/rll, ip/r12 et sp/r13 inclus



La mémoire pour les informations locales & la procédure sera allouée dynamiquement dans la
pile : vous ne pouvez pas utiliser le schéma d’allocation statique dans la section bss présenté dans le
chapitre "procédures simples, sans récursion".

Vous pouvez gérer la pile au choix avec sp seul ou avec le couple (fp,sp)

2 Présentation (sans question) du programme de gestion de
tableaux (5mn)

Le programme a traduire

— recopie un tableau dans un autre

— détermine au pssage la vakeur du plus grand élément du tableau
— détermine au passage 'adresse du petit élément du tableau

La recopie d’une valeur, avec mise a jour de maximum et pointeur de minimum est réalisée par
la procédure traiter _element (fichier traiter element.c en annexe 8).

Le fichier parcours.c (annexe 7) contient les déclarations des variables globables et tableaux et la
routine de parcours des tableaux.

Parcours doit étre traduite sans connaitre le code de traiter element et traiter element pourrait
étre appelée (dans un autre programme) par une ou plusieurs fonctions autres que parcours. La
seule source d’information exploitable sur la fonction appelée ou appelante est la convention d’appel
rappelée en début de sujet.

3 Déclaration des variables (15mn)

Traduire les déclarations des variables globales (maximum, ptrmin, orig et dest) de parcours.c.

4 Traiter element : indicage de tableau, pointeur de pointeur
(40mn)

Traduire en langage d’assemblage ARM la fonction traiter element.

5 Parcours : appel de fonction, pointeurs (30mn)
Traduire en langage d’assemblage ARM la fonction parcours.

.global maximum
.global ptrmini
.global orig
.global dest
.global parcours

TAILLE_DEST=20
TAILLE_ORIG=10



maximum:

ptrmini:
dest:

orig:

parcours:

COrpsw:

.bss

.skip 2

.balign 4

.skip 4

.skip 2*TAILLE_DEST

.data
.hword 3
.hword -4
.hword O
hword 7
.hword -20
.hword 10
.hword 12
.hword -25
.hword 8
.hword 2

.text

@r6 : 1

@ r7 : ptr

@ r8,r9,r10 : tmpl, tmp2, tmp3

stmnfd sp!,{r6-r10,1r}

ldr r7,=orig @ ptr=orig
ldrsh 19, [r7] Q@ tmp2 = *ptr
1ldr r8,=dest @ tmpl = dest
strh 19, [r8] @ dest[0] = *ptr
ldr r10,= maximum @ tmp3 = &maximum
strh 19, [r10] @ maximum = *ptr
ldr r9,= ptrmini @ tmp3 = &ptrmini
str r8, [r9] @ ptrmini = dest
mov r6,#1 @ i=1
add r7,r7,#2 @ ptr = ptr + 1 (*sizeof (int16_t))
b condw
@ traiter_element (maximum,&ptrmini,dest,i,*ptr)
ldr r0,=maximum @ max_de_traiter... = &maximum
ldr rl,=ptrmini @ ptradrmin_de_traiter...=&ptrmini
1dr r2,=dest @ tableau_de_traiter...=dest
mov r3,r6 @ indice_de_traiter...=1i
ldrsh 18, [r7] Q@ val_de_traiter...=*ptr (empile)
sub Sp,sp,#4
strh 8, [sp]
bl traiter_element
add sp,sp,#4 @ liberer bloc parametre empile



add r6,r6,#1 @ i=i+1
add r7,r7 ,#2 @ ptr = ptr+l

condw: cmp r6,4#TAILLE_ORIG @ while (i<TAILLES8ORIG) {
blt corpsw

ldmfd sp!,{r6-r10,1r}
bx 1r

.global traiter_element
TRAITER_TO_VALEUR = 0

@ Convention d’appel :

@ r0 : max rl : ptradrmin 12 : tableau r3 : indice
© sommet de pile : valeur
@ Locaux :
¢ v :r9
@ temporaires : r6, r7, r8
.text
traiter_element: sub sp,sp,#4 @ empiler fp
str fp, [sp]
add fp,sp,#4 @ fp = ancien sommet de pile
stmfd sp!,{r6-r9} @ empiler temporaires modifiés

corps_traiter: ldrsh 19, [fp,#TRAITER_TO_VALEUR] @ tmp2 = *&valeur

condsil: ldrsh 16, [r0] @ tmpl = *max
cmp 19,16 @ if (v > *max) {
ble finsil
alorsil: strh r9, [r0] @ *Mmax=v
Q }
finsil: add r6,r2,r3,LSL #1 @ tmpl = &(tableaul[indice])
strh r9, [r6] @ tableaulindice] = v
condsi2: ldr r7, [r1] @ tmp2 = *ptradrmin
ldrsh 18, [r7] @ tmp3 = **ptradrmin
cmp r9, r8 @ if (v < x*ptradrmin) {
bge finsi2
alors2: str 16, [r1] @ *ptradrmin = tableau+indice
finsi2: Q }

ldmfd sp!,{r6-r9,fp}



bx 1r

6 Questions diverses et base 2 (25mn)

6.1 Gestion de variables locales

Expliquer la différence entre ’allocation de mémoire aux variables locales des fonctions est plus
simple que l'allocation de mémoire dans le cas général (par exemple pour des éléments de liste chai-
née) et pourquoi la premiére est plus simple & gérer.

Dans quelle section de la mémoire sera alloué le doublet retourné par la fonction creer doublet
ci-dessous 7

Expliquer pourquoi retourner a I'appelante ’adresse d’une variable locale constitue une erreur
grave de programmation.

// détail des champs de la structure omis
typedef struct _doublet { ... } doublet_t ;

doublet_t *creer_doublet () {
struct doublet nouveau;
return &nouveau;

}

La mémoire pour les variables locales est allouée lors de I’entrée dans la fonction et libérée dés le
retour de la fonction. La durée de vie est donc celle de I'exécution du corps de la fonction et 'ordre
des allocations et libération respecte la propriété LIFO des appels et retours de fonction. On utilise
donc la pile dont le sommet est décalé a chaque allocation et ramené & sa position précédente lors
de chaque retour.

La mémoire pour les variables non locales allouées dynamiquement est allouée et libérée explici-
tement, et sans ordre LIFO entre les allocations et libération.

Dans ce code, creer _doublet retourne I'adresse de sa vraiable locale sotckée dans la pile. Retourner
I’adresse d’une variable locale & ’apellante est une erreur grossiére parce que le bloc de mémoire
dans la pile alloué pour la variable locale sera libéré et réutilisé lors d’un appel de fonction suivant,
détruisant le contenu de la variable locale. L’erreur consiste a retourner une adresse de variable dont
la durée de vie est limitée a 1'exécution du corps de la fonction.

6.2 DBase 2

Expliquer briévement ce que calcule la fonction mystére ci-dessous et comment.

\\ fichier mystere.h
int mystere(int x);

\\fichier mystere.s
.global mystere Q@ exporter mystere vers les autres fichiers



mystere:
movS r5,r0,LSR #31
mvnne r0,r0
add r0,r0,r5
mov pc,lr

@ sauvegarde de rb5 et r6 dans la pile omise
@ décalage logique & droite (recopie de 0)
@ move not si equal

@ restauration de r5 et r6 omise

Le décalage met a zéro tous les bits du contenu initial, excepté le bit de poids fort, ramené en
position 0. Le résultat est donc 1 si I'entier de départ est négatif, et 0 dans le cas contraire.

Si le parameétre x est négatif, I'instruction move not sera exécutée et mystere retournera le com-
plément & 1 de x (calculé par mvn) plus 1 (r), soit —z : T + 1.

Si x est positif ou nul, 'instruction mvn est ignorée et on ajouter 0 (r5) a x, donc le paraamétre

x d’origine.

La fonction qui retourne -x si x < 0 et x si x > 0 calcule la vakeur absolue de x.

7 Annexe : procédure parcours et variables globales

#include "parcours.h"
#include "traiter.h"

int16_t maximum;
intl6_t *ptrmini;

// Dans parcours.h : #define TAILLE_DEST 20 et #define TAILLE_ORIG 10

int16_t orig[TAILLE_ORIG]= {3,-4,0,7,-20,10,12,-25,8,2};

int16_t dest [TAILLE_DEST];
void parcours () {
register int32_t i,

register intl6_t *ptr;

// traiter element origl[0]

ptr = orig;
dest[0] = #*ptr;
maximum = *ptr;
ptrmini = dest;
i=1;

ptr = ptr+i;

// Boucle de parcours
while (i < TAILLE_ORIG) {

// utiliser r6
// utiliser r7

: maximum = dest[0] = orig[0], ptrmini = &(dest[0])

traiter_element (&maximum, &ptrmini, dest, i, *ptr);

i=i+1;
ptr=ptr+i;



.text
@r6 : 1
@ r7 : ptr

@ r8,r9,r10 : tmpl, tmp2, tmp3

parcours: @ & compléter

8 Annexe : procédure traiter element

#include "traiter.h"

void traiter_element (intl6_t #*max, intl6_t **ptradrmin, intl6_t *tableau,
int32_t indice, intl16_t valeur) {
register intl6_t v; // utiliser r9
v = valeur;
if (v > *max) {
*max = v;
+
tableau [indice] = v;
if (v < *xptradrmin) {
*ptradrmin = &(tableaul[indice]);

h
}
@ Convention d’appel :
© r0 : max rl : ptradrmin 12 : tableau r3 : indice
© sommet de pile : valeur
@ Locaux :
Q v :r9
6] temporaires : r6, r7, r8

traiter_element: @ & compléter



