
M2P CCI : examen Langage Machine, Décembre 2019

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Avant de répondre aux questions, vous devez impérativement lire la convention d'appel des
fonctions et les contraintes de stockage à respecter.

Table des matières

1 Convention d'appel et contraintes de stockage (sans question, 5mn) 1

2 Présentation (sans question) du programme de gestion de tableaux (5mn) 2

3 Déclaration des variables (15mn) 2

4 Traiter_element : indiçage de tableau, pointeur de pointeur (40mn) 2

5 Parcours : appel de fonction, pointeurs (30mn) 2

6 Questions diverses et base 2 (25mn) 5
6.1 Gestion de variables locales . 5
6.2 Base 2 . 5

7 Annexe : procédure parcours et variables globales 6

8 Annexe : procédure traiter_element 7

1 Convention d'appel et contraintes de stockage (sans ques-
tion, 5mn)

La convention d'appel applicable à toutes les fonctions à traduire est inspirée de celle de gcc :
� Les quatre premiers paramètres explicites sont stockés dans les registres r0 à r3.
� Les paramètres suivant sont empilés (paramètre de gauche en sommet de pile)
� Le paramètre implicite adresse de retour dans l'appelante est passé dans le registre lr (r14).
� Pour les fonctions, le résultat est retourné à la place du premier argument dans le registre r0.
� L'exécution de la routine appelée préserve les contenus des registres : au retour de la fonction,

tous les registres 1 autres que le compteur ordinal pc (et, dans le cas d'une fonction, r0 qui
contiendra le résultat) ont un contenu identique à celui d'avant l'appel.

Variables ou paramètres seront stockés en mémoire excepté si :
� l'attribut register est présent dans leur déclaration ou
� la convention d'appel stipule que le paramètre est passé dans un registre.

Chaque accès à'une variable en mémoire devrait générer une lecture ou une écriture en mémoire.
La lecture peut être omise (de préférence avec un commentaire approprié) si un registre contient une
copie à jour (datant de l'a�ectation la plus récente) du contenu de la variable, mais pas l'écriture en
mémoire, à réaliser pour chaque a�ectation.

1. fp/r11, ip/r12 et sp/r13 inclus

1

La mémoire pour les informations locales à la procédure sera allouée dynamiquement dans la
pile : vous ne pouvez pas utiliser le schéma d'allocation statique dans la section bss présenté dans le
chapitre "procédures simples, sans récursion".

Vous pouvez gérer la pile au choix avec sp seul ou avec le couple (fp,sp)

2 Présentation (sans question) du programme de gestion de
tableaux (5mn)

Le programme a traduire
� recopie un tableau dans un autre
� détermine au pssage la vakeur du plus grand élément du tableau
� détermine au passage l'adresse du petit élément du tableau

La recopie d'une valeur, avec mise à jour de maximum et pointeur de minimum est réalisée par
la procédure traiter_element (�chier traiter_element.c en annexe 8).

Le �chier parcours.c (annexe 7) contient les déclarations des variables globables et tableaux et la
routine de parcours des tableaux.

Parcours doit être traduite sans connaître le code de traiter_element et traiter_element pourrait
être appelée (dans un autre programme) par une ou plusieurs fonctions autres que parcours. La
seule source d'information exploitable sur la fonction appelée ou appelante est la convention d'appel
rappelée en début de sujet.

3 Déclaration des variables (15mn)

Traduire les déclarations des variables globales (maximum, ptrmin, orig et dest) de parcours.c.

4 Traiter_element : indiçage de tableau, pointeur de pointeur
(40mn)

Traduire en langage d'assemblage ARM la fonction traiter_element.

5 Parcours : appel de fonction, pointeurs (30mn)

Traduire en langage d'assemblage ARM la fonction parcours.

.global maximum

.global ptrmini

.global orig

.global dest

.global parcours

TAILLE_DEST=20

TAILLE_ORIG=10

2

.bss

maximum: .skip 2

.balign 4

ptrmini: .skip 4

dest: .skip 2*TAILLE_DEST

.data

orig: .hword 3

.hword -4

.hword 0

.hword 7

.hword -20

.hword 10

.hword 12

.hword -25

.hword 8

.hword 2

.text

@ r6 : i

@ r7 : ptr

@ r8,r9,r10 : tmp1, tmp2, tmp3

parcours: stmfd sp!,{r6-r10,lr}

ldr r7,=orig @ ptr=orig

ldrsh r9,[r7] @ tmp2 = *ptr

ldr r8,=dest @ tmp1 = dest

strh r9,[r8] @ dest[0] = *ptr

ldr r10,= maximum @ tmp3 = &maximum

strh r9,[r10] @ maximum = *ptr

ldr r9,= ptrmini @ tmp3 = &ptrmini

str r8,[r9] @ ptrmini = dest

mov r6,#1 @ i=1

add r7,r7,#2 @ ptr = ptr + 1 (*sizeof(int16_t))

b condw

corpsw: @ traiter_element(maximum,&ptrmini,dest,i,*ptr)

ldr r0,=maximum @ max_de_traiter... = &maximum

ldr r1,=ptrmini @ ptradrmin_de_traiter...=&ptrmini

ldr r2,=dest @ tableau_de_traiter...=dest

mov r3,r6 @ indice_de_traiter...=i

ldrsh r8,[r7] @ val_de_traiter...=*ptr (empile)

sub sp,sp,#4

strh r8,[sp]

bl traiter_element

add sp,sp,#4 @ liberer bloc parametre empile

3

add r6,r6,#1 @ i=i+1

add r7,r7,#2 @ ptr = ptr+1

condw: cmp r6,#TAILLE_ORIG @ while (i<TAILLE8ORIG) {

blt corpsw

ldmfd sp!,{r6-r10,lr}

bx lr

.global traiter_element

TRAITER_TO_VALEUR = 0

@ Convention d'appel :

@ r0 : max r1 : ptradrmin r2 : tableau r3 : indice

@ sommet de pile : valeur

@ Locaux :

@ v : r9

@ temporaires : r6, r7, r8

.text

traiter_element: sub sp,sp,#4 @ empiler fp

str fp,[sp]

add fp,sp,#4 @ fp = ancien sommet de pile

stmfd sp!,{r6-r9} @ empiler temporaires modifiés

corps_traiter: ldrsh r9,[fp,#TRAITER_TO_VALEUR] @ tmp2 = *&valeur

condsi1: ldrsh r6,[r0] @ tmp1 = *max

cmp r9,r6 @ if (v > *max) {

ble finsi1

alors1: strh r9,[r0] @ *max=v

@ }

finsi1: add r6,r2,r3,LSL #1 @ tmp1 = &(tableau[indice])

strh r9,[r6] @ tableau[indice] = v

condsi2: ldr r7,[r1] @ tmp2 = *ptradrmin

ldrsh r8,[r7] @ tmp3 = **ptradrmin

cmp r9, r8 @ if (v < **ptradrmin) {

bge finsi2

alors2: str r6,[r1] @ *ptradrmin = tableau+indice

finsi2: @ }

ldmfd sp!,{r6-r9,fp}

4

bx lr

6 Questions diverses et base 2 (25mn)

6.1 Gestion de variables locales

Expliquer la di�érence entre l'allocation de mémoire aux variables locales des fonctions est plus
simple que l'allocation de mémoire dans le cas général (par exemple pour des éléments de liste chaî-
née) et pourquoi la première est plus simple à gérer.

Dans quelle section de la mémoire sera alloué le doublet retourné par la fonction creer_doublet
ci-dessous ?

Expliquer pourquoi retourner à l'appelante l'adresse d'une variable locale constitue une erreur
grave de programmation.

// détail des champs de la structure omis

typedef struct _doublet { ... } doublet_t ;

doublet_t *creer_doublet () {

struct doublet nouveau;

return &nouveau;

}

La mémoire pour les variables locales est allouée lors de l'entrée dans la fonction et libérée dès le
retour de la fonction. La durée de vie est donc celle de l'exécution du corps de la fonction et l'ordre
des allocations et libération respecte la propriété LIFO des appels et retours de fonction. On utilise
donc la pile dont le sommet est décalé à chaque allocation et ramené à sa position précédente lors
de chaque retour.

La mémoire pour les variables non locales allouées dynamiquement est allouée et libérée explici-
tement, et sans ordre LIFO entre les allocations et libération.

Dans ce code, creer_doublet retourne l'adresse de sa vraiable locale sotckée dans la pile. Retourner
l'adresse d'une variable locale à l'apellante est une erreur grossière parce que le bloc de mémoire
dans la pile alloué pour la variable locale sera libéré et réutilisé lors d'un appel de fonction suivant,
détruisant le contenu de la variable locale. L'erreur consiste à retourner une adresse de variable dont
la durée de vie est limitée à l'exécution du corps de la fonction.

6.2 Base 2

Expliquer brièvement ce que calcule la fonction mystère ci-dessous et comment.

\\ fichier mystere.h

int mystere(int x);

\\fichier mystere.s

.global mystere @ exporter mystere vers les autres fichiers

5

mystere: @ sauvegarde de r5 et r6 dans la pile omise

movS r5,r0,LSR #31 @ décalage logique à droite (recopie de 0)

mvnne r0,r0 @ move not si equal

add r0,r0,r5

mov pc,lr @ restauration de r5 et r6 omise

Le décalage met à zéro tous les bits du contenu initial, excepté le bit de poids fort, ramené en
position 0. Le résultat est donc 1 si l'entier de départ est négatif, et 0 dans le cas contraire.

Si le paramètre x est négatif, l'instruction move not sera exécutée et mystere retournera le com-
plément à 1 de x (calculé par mvn) plus 1 (r5), soit −x : x+ 1.

Si x est positif ou nul, l'instruction mvn est ignorée et on ajouter 0 (r5) à x, donc le paraamètre
x d'origine.

La fonction qui retourne -x si x < 0 et x si x ≥ 0 calcule la vakeur absolue de x.

7 Annexe : procédure parcours et variables globales

#include "parcours.h"

#include "traiter.h"

int16_t maximum;

int16_t *ptrmini;

// Dans parcours.h : #define TAILLE_DEST 20 et #define TAILLE_ORIG 10

int16_t orig[TAILLE_ORIG]= {3,-4,0,7,-20,10,12,-25,8,2};

int16_t dest [TAILLE_DEST];

void parcours () {

register int32_t i; // utiliser r6

register int16_t *ptr; // utiliser r7

// traiter element orig[0] : maximum = dest[0] = orig[0], ptrmini = &(dest[0])

ptr = orig;

dest[0] = *ptr;

maximum = *ptr;

ptrmini = dest;

i = 1;

ptr = ptr+1;

// Boucle de parcours

while (i < TAILLE_ORIG) {

traiter_element(&maximum, &ptrmini, dest, i, *ptr);

i=i+1;

ptr=ptr+1;

}

6

}

.text

@ r6 : i

@ r7 : ptr

@ r8,r9,r10 : tmp1, tmp2, tmp3

parcours: @ à compléter

8 Annexe : procédure traiter_element

#include "traiter.h"

void traiter_element (int16_t *max, int16_t **ptradrmin, int16_t *tableau,

int32_t indice, int16_t valeur) {

register int16_t v; // utiliser r9

v = valeur;

if (v > *max) {

*max = v;

}

tableau [indice] = v;

if (v < **ptradrmin) {

*ptradrmin = &(tableau[indice]);

}

}

@ Convention d'appel :

@ r0 : max r1 : ptradrmin r2 : tableau r3 : indice

@ sommet de pile : valeur

@ Locaux :

@ v : r9

@ temporaires : r6, r7, r8

traiter_element: @ à compléter

7

