
M2P CCI : examen Langage Machine, Décembre 2019

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Avant de répondre aux questions, vous devez impérativement lire la convention d'appel des
fonctions et les contraintes de stockage à respecter.

Table des matières

1 Convention d'appel et contraintes de stockage (sans question, 5mn) 1

2 Présentation (sans question) du programme de gestion de tableaux (5mn) 2

3 Déclaration des variables (15mn) 2

4 Traiter_element : indiçage de tableau, pointeur de pointeur (40mn) 2

5 Parcours : appel de fonction, pointeurs (30mn) 2

6 Questions diverses et base 2 (25mn) 2
6.1 Gestion de variables locales . 2
6.2 Base 2 . 3

7 Annexe : procédure parcours et variables globales 3

8 Annexe : procédure traiter_element 4

1 Convention d'appel et contraintes de stockage (sans ques-
tion, 5mn)

La convention d'appel applicable à toutes les fonctions à traduire est inspirée de celle de gcc :
� Les quatre premiers paramètres explicites sont stockés dans les registres r0 à r3.
� Les paramètres suivant sont empilés (paramètre de gauche en sommet de pile)
� Le paramètre implicite adresse de retour dans l'appelante est passé dans le registre lr (r14).
� Pour les fonctions, le résultat est retourné à la place du premier argument dans le registre r0.
� L'exécution de la routine appelée préserve les contenus des registres : au retour de la fonction,

tous les registres 1 autres que le compteur ordinal pc (et, dans le cas d'une fonction, r0 qui
contiendra le résultat) ont un contenu identique à celui d'avant l'appel.

Variables ou paramètres seront stockés en mémoire excepté si :
� l'attribut register est présent dans leur déclaration ou
� la convention d'appel stipule que le paramètre est passé dans un registre.

Chaque accès à'une variable en mémoire devrait générer une lecture ou une écriture en mémoire.
La lecture peut être omise (de préférence avec un commentaire approprié) si un registre contient une
copie à jour (datant de l'a�ectation la plus récente) du contenu de la variable, mais pas l'écriture en
mémoire, à réaliser pour chaque a�ectation.

1. fp/r11, ip/r12 et sp/r13 inclus

1

La mémoire pour les informations locales à la procédure sera allouée dynamiquement dans la
pile : vous ne pouvez pas utiliser le schéma d'allocation statique dans la section bss présenté dans le
chapitre "procédures simples, sans récursion".

Vous pouvez gérer la pile au choix avec sp seul ou avec le couple (fp,sp)

2 Présentation (sans question) du programme de gestion de
tableaux (5mn)

Le programme a traduire
� recopie un tableau dans un autre
� détermine au pssage la vakeur du plus grand élément du tableau
� détermine au passage l'adresse du petit élément du tableau

La recopie d'une valeur, avec mise à jour de maximum et pointeur de minimum est réalisée par
la procédure traiter_element (�chier traiter_element.c en annexe 8).

Le �chier parcours.c (annexe 7) contient les déclarations des variables globables et tableaux et la
routine de parcours des tableaux.

Parcours doit être traduite sans connaître le code de traiter_element et traiter_element pourrait
être appelée (dans un autre programme) par une ou plusieurs fonctions autres que parcours. La
seule source d'information exploitable sur la fonction appelée ou appelante est la convention d'appel
rappelée en début de sujet.

3 Déclaration des variables (15mn)

Traduire les déclarations des variables globales (maximum, ptrmin, orig et dest) de parcours.c.

4 Traiter_element : indiçage de tableau, pointeur de pointeur
(40mn)

Traduire en langage d'assemblage ARM la fonction traiter_element.

5 Parcours : appel de fonction, pointeurs (30mn)

Traduire en langage d'assemblage ARM la fonction parcours.

6 Questions diverses et base 2 (25mn)

6.1 Gestion de variables locales

Expliquer la di�érence entre l'allocation de mémoire aux variables locales des fonctions est plus
simple que l'allocation de mémoire dans le cas général (par exemple pour des éléments de liste chaî-
née) et pourquoi la première est plus simple à gérer.

2

Dans quelle section de la mémoire sera alloué le doublet retourné par la fonction creer_doublet
ci-dessous ?

Expliquer pourquoi retourner à l'appelante l'adresse d'une variable locale constitue une erreur
grave de programmation.

// détail des champs de la structure omis

typedef struct _doublet { ... } doublet_t ;

doublet_t *creer_doublet () {

struct doublet nouveau;

return &nouveau;

}

6.2 Base 2

Expliquer brièvement ce que calcule la fonction mystère ci-dessous et comment.

\\ fichier mystere.h

int mystere(int x);

\\fichier mystere.s

.global mystere @ exporter mystere vers les autres fichiers

mystere: @ sauvegarde de r5 et r6 dans la pile omise

movS r5,r0,LSR #31 @ décalage logique à droite (recopie de 0)

mvnne r0,r0 @ move not si equal

add r0,r0,r5

mov pc,lr @ restauration de r5 et r6 omise

7 Annexe : procédure parcours et variables globales

#include "parcours.h"

#include "traiter.h"

int16_t maximum;

int16_t *ptrmini;

// Dans parcours.h : #define TAILLE_DEST 20 et #define TAILLE_ORIG 10

int16_t orig[TAILLE_ORIG]= {3,-4,0,7,-20,10,12,-25,8,2};

int16_t dest [TAILLE_DEST];

void parcours () {

register int32_t i; // utiliser r6

register int16_t *ptr; // utiliser r7

// traiter element orig[0] : maximum = dest[0] = orig[0], ptrmini = &(dest[0])

ptr = orig;

3

dest[0] = *ptr;

maximum = *ptr;

ptrmini = dest;

i = 1;

ptr = ptr+1;

// Boucle de parcours

while (i < TAILLE_ORIG) {

traiter_element(&maximum, &ptrmini, dest, i, *ptr);

i=i+1;

ptr=ptr+1;

}

}

.text

@ r6 : i

@ r7 : ptr

@ r8,r9,r10 : tmp1, tmp2, tmp3

parcours: @ à compléter

8 Annexe : procédure traiter_element

#include "traiter.h"

void traiter_element (int16_t *max, int16_t **ptradrmin, int16_t *tableau,

int32_t indice, int16_t valeur) {

register int16_t v; // utiliser r9

v = valeur;

if (v > *max) {

*max = v;

}

tableau [indice] = v;

if (v < **ptradrmin) {

*ptradrmin = &(tableau[indice]);

}

}

@ Convention d'appel :

@ r0 : max r1 : ptradrmin r2 : tableau r3 : indice

@ sommet de pile : valeur

@ Locaux :

@ v : r9

@ temporaires : r6, r7, r8

traiter_element: @ à compléter

4

