M2P CCI : Corrigé Langage Machine, Novembre 2007

1 Deéclarations des variables

Les variables initialisées sont déclarées dans data, les autres dans bss. Un short
occupe deux octets, un long en occupe 4.

LONGUEUR_MAX = 51

.global v2
.global somme
.global valeurs

.bss

.balign 2 @ facultatif : premier objet déclaré dans bss
v2: .skip 2
valeurs: .skip 2*LONGUEUR_MAX

.data
somme : .word O

La convention d’appel stipule que y est passé dans rl. On suppose que r est stocké
dans le registre r5.

@r0 : x, rl :y, rb: :r

strh r5, [r1] @ *xy =1

2 Base 2 et asm vers C

Sur 32 bits :

0x0000000a & 0x00000001 donne 0x00000000
0x0000000b & 0x00000001 donne 0x00000001
0x0000000c & 0x00000001 donne 0x00000000
0x0000000d & 0x00000001 donne 0x00000001

1010 1011 1100 1101
& 0001 & 0001 & 0001 & 0001

0000 0001 0000 0001

La propriété commune de tous les entiers tels que le Et bit a bit avec I'entier 1 est
non nul est d’avoir 1 en bit de poids faible. Autrement dit, il s’agit de tous les entiers

impairs (entier modulo 2 non nul).

Le décalage d’un bit & droite (respectivement & gauche) d’un entier naturel est une
opération de division entiére (respectivement multiplication) par deux.

Les deux premiéres instructions effectuent un branchement & pas nul si 'entier
est impair. L’instruction mov effectue une division par deux et I’addition une multi-

plication par trois.

Voici un code if ... goto équivalent :

if ((x%2) !'= 0) goto pas_nul; @ andS
nul: X =x > 1; @ mov : calcule /2
goto sortie;
pas_nul: x =x + x << 1 ; @ add : calcule %3
X = x+1; @ add
sortie:
On reconnait une structure classique si ... alors ... sinon et la définition d’'une

suite connue : la suite de Syracuse.

si x impair Q@ en C : if ((x%2) '= 0)
alors
x = 3x+1 X = 3*x+1;
sinon else
x = x/2 X = x/2;

3 Traduction de la boucle

Traduction de la boucle : code en if ... goto.

D’apres la convention d’appel + le paramétre est stocké dans un registre : r0 + les
variables locales sont stockées dans des registres

Variante avec un autre type de convention : voir a la fin

pval = valeurs; vl = initial;
goto test
corps: di2_p__mult3pli_imp (v1,&v2);
xpval = *&v2;
*gsomme += *x&v2;
pval++;
vl = *&v2;
test: 1if (pval >= (valeurs + LONGUEUR_MAX)) goto fin;
if (vl !'= 1) goto corps;

Traduction en langage d’assemblage.

@ rO : initial rb : pval r6 : vl r7,r8,r9 : temporaires
.global calculer

.text

calculer: @ sauvegardes de r5 & r9 + lr omises
ldr rb,= valeurs @ pval = valeurs
mov 16, r0 @ vl = initial

@ pas besoin de sauvegarder r0 parce que
@ initial n’est pas utilise dans la suite

corps: mov 10, r6 @ x=vl
ldr ri1,= v2 0y = &v2
bl di2_p__mu3pl_imp $ di2_p__mu3pl_imp(vl,&v2)
ldr r9,= v2 Qr9 =& v2
ldrh r9, [r9] Q@ r9 = *&v2
strh r9, [r5] Q@ *pval = *&v2
ldr r7,= somme @ r7 = &somme
ldr 8, [r7] @ r8 = *&somme
@ *&v2 deja dans r9
add r8, r8, r9 Q@ r8 += *&v2
str r8, [r7] @ *&somme += *&v2
add rb5, rb5, #2 @ pval++
1dr r7,= v2 Q@ r7 = &v2
ldrh r6, [r7] @ vl = *&v2
test: 1dr r7,= valeurs @ r7 = valeurs
add r7, r7, #2*LONGUEUR_MAX @ r7 = valeurs+ LONGUEUR_MAX
cmp b, r7
bhs fin @if (... >= ...) goto fin
cmp r6, #1
bne corps @ if (vl != 1) goto corps
fin: @ restauration de r5 4 r9 + 1lr omise

mov pc,lr

.1torg
Ecriture de la boucle avec une variable de type indice.
int i;

for (i=0; i < LONGUEUR_MAX; i++)
{

di2__mult3pil_imp (v1, &v2);
valeurs[i] = v2;

somme += v2;

vi=v2;

by

En supposant maintenant une convention dans laquelle les variables locales sont

stockées dans un bloc mémoire associé a la procédure, le code
a ceci :

xgpval = valeurs; *&vl = initial;
goto test
corps: di2_p__mult3pli_imp (*&v1,&v2);
xxkgpval = *&v2;
*gsomme += *&v2;
(x&pval) ++;
*gvl = *%&v2;
test: 1if (x&pval >= (valeurs + LONGUEUR_MAX)) goto
if (x&vl !'= 1) goto corps;

@ rO : initial rb : *&pval r6 : *&vl
.global calculer

.bss
privee_f: .skip 2 @ variable locale pval
.skip 2 @ variable locale vl
.skip 24 @sauvegarde registres rb5 a r9 + 1r
param_f£: @ neant

@ le premier parametre est dans le

doit ressembler en gros

fin;

r7,r8,r9 : temporaires

registre r0

DELTA_CALCULER_PVAl = -30
DELTA_CALCULER_V1 = -28
.text
calculer: @ sauvegardes de r5 a r9 + 1lr omis
ldr ip,=param_calculer
1dr 1r5,= valeurs @ *&pval = valeurs
str r5, [ip, ##DELTA_CALCULER_PVA1l]
mov 16, 10 @ *&v1l = initial
strh r6, [ip, ##DELTA_CALCULER_V1]
corps: ldr rO, [ip, ##DELTA_CALCULER_V1] € x = *&vil
ldr ri1,= v2 Qy = &v2
bl di2_p__mu3pl_imp $ di2_p__mu3pl_imp(vl,&v2)

4

ldr r9,= v2 @Qr9 =& v2

1drh r9, [r9] @ r9 = *&v2
ldr r5, [ip, ##DELTA_CALCULER_PVAl] @ r5 = x&pval
strh r9, [r5] Q@ **&pval = *&v2
1dr r7,= somme Q@ r7 = &somme
ldr 8, [r7] @ r8 = *&somme
@ *&v2 deja dans r9
add r8, r8, r9 Q@ r8 += *&v2
str r8, [r7] @ *&somme += *&v2

ldr 5, [ip, ##DELTA_CALCULER_PVAl1l] @ (*&pval) ++
add rb5, rb, #2
str r5, [ip, ##DELTA_CALCULER_PVAl] @

1dr r7,= v2 @ r7 = &v2
1ldrh r6, [r7] Q@ r6 = *&v2
strh r6, [ip, ##DELTA_CALCULER_V1] @ *&vl = *&v2

test: 1dr r7,= valeurs @ r7 = valeurs
add r7, r7, #2xLONGUEUR_MAX @ r7 = valeurs+ LONGUEUR_MAX
ldr 5, [ip, ##DELTA_CALCULER_PVAl1l] @ 15 = *&pval

cmp 15, r7

bhs fin @if (... >= ...) goto fin

cmp r6, #1

bne corps @ if (vl != 1) goto corps
fin: @ restauration de r5 a r9 + 1lr omise

mov pc,lr

.1ltorg

