
M2P CCI : Corrigé Langage Machine, Novembre 2007

1 Déclarations des variables

Les variables initialisées sont déclarées dans data, les autres dans bss. Un short
occupe deux octets, un long en occupe 4.

LONGUEUR_MAX = 51

.global v2

.global somme

.global valeurs

.bss

.balign 2 @ facultatif : premier objet déclaré dans bss

v2: .skip 2

valeurs: .skip 2*LONGUEUR_MAX

.data

somme: .word 0

La convention d'appel stipule que y est passé dans r1. On suppose que r est stocké
dans le registre r5.

@ r0 : x, r1 : y, r5 : r

strh r5, [r1] @ *y = r

2 Base 2 et asm vers C

Sur 32 bits :

0x0000000a & 0x00000001 donne 0x00000000

0x0000000b & 0x00000001 donne 0x00000001

0x0000000c & 0x00000001 donne 0x00000000

0x0000000d & 0x00000001 donne 0x00000001

1010 1011 1100 1101

& 0001 & 0001 & 0001 & 0001

---- ---- ---- ----

0000 0001 0000 0001

La propriété commune de tous les entiers tels que le Et bit à bit avec l'entier 1 est
non nul est d'avoir 1 en bit de poids faible. Autrement dit, il s'agit de tous les entiers

1

impairs (entier modulo 2 non nul).

Le décalage d'un bit à droite (respectivement à gauche) d'un entier naturel est une
opération de division entière (respectivement multiplication) par deux.

Les deux premières instructions e�ectuent un branchement à pas_nul si l'entier
est impair. L'instruction mov e�ectue une division par deux et l'addition une multi-
plication par trois.

Voici un code if . . . goto équivalent :

if ((x%2) != 0) goto pas_nul; @ andS

nul: x = x >> 1; @ mov : calcule /2

goto sortie;

pas_nul: x = x + x << 1 ; @ add : calcule *3

x = x+1; @ add

sortie:

On reconnait une structure classique si . . . alors . . . sinon et la dé�nition d'une
suite connue : la suite de Syracuse.

si x impair @ en C : if ((x%2) != 0)

alors

x = 3x+1 x = 3*x+1;

sinon else

x = x/2 x = x/2;

3 Traduction de la boucle

Traduction de la boucle : code en if . . . goto.
D'après la convention d'appel + le paramètre est stocké dans un registre : r0 + les

variables locales sont stockées dans des registres
Variante avec un autre type de convention : voir à la �n

pval = valeurs; v1 = initial;

goto test

corps: di2_p__mult3pl1_imp (v1,&v2);

*pval = *&v2;

*&somme += *&v2;

pval++;

v1 = *&v2;

test: if (pval >= (valeurs + LONGUEUR_MAX)) goto fin;

if (v1 != 1) goto corps;

Traduction en langage d'assemblage.

2

@ r0 : initial r5 : pval r6 : v1 r7,r8,r9 : temporaires

.global calculer

.text

calculer: @ sauvegardes de r5 à r9 + lr omises

ldr r5,= valeurs @ pval = valeurs

mov r6, r0 @ v1 = initial

@ pas besoin de sauvegarder r0 parce que

@ initial n'est pas utilise dans la suite

corps: mov r0, r6 @ x = v1

ldr r1,= v2 @ y = &v2

bl di2_p__mu3p1_imp $ di2_p__mu3p1_imp(v1,&v2)

ldr r9,= v2 @ r9 = & v2

ldrh r9, [r9] @ r9 = *&v2

strh r9, [r5] @ *pval = *&v2

ldr r7,= somme @ r7 = &somme

ldr r8, [r7] @ r8 = *&somme

@ *&v2 deja dans r9

add r8, r8, r9 @ r8 += *&v2

str r8, [r7] @ *&somme += *&v2

add r5, r5, #2 @ pval++

ldr r7,= v2 @ r7 = &v2

ldrh r6, [r7] @ v1 = *&v2

test: ldr r7,= valeurs @ r7 = valeurs

add r7, r7, #2*LONGUEUR_MAX @ r7 = valeurs+ LONGUEUR_MAX

cmp r5, r7

bhs fin @ if (... >= ...) goto fin

cmp r6, #1

bne corps @ if (v1 != 1) goto corps

fin: @ restauration de r5 à r9 + lr omise

mov pc,lr

.ltorg

Ecriture de la boucle avec une variable de type indice.

int i;

for (i=0; i < LONGUEUR_MAX; i++)

{

3

di2__mult3p11_imp (v1, &v2);

valeurs[i] = v2;

somme += v2;

v1=v2;

}

En supposant maintenant une convention dans laquelle les variables locales sont
stockées dans un bloc mémoire associé à la procédure, le code doit ressembler en gros
à ceci :

*&pval = valeurs; *&v1 = initial;

goto test

corps: di2_p__mult3pl1_imp (*&v1,&v2);

**&pval = *&v2;

*&somme += *&v2;

(*&pval) ++;

*&v1 = *&v2;

test: if (*&pval >= (valeurs + LONGUEUR_MAX)) goto fin;

if (*&v1 != 1) goto corps;

@ r0 : initial r5 : *&pval r6 : *&v1 r7,r8,r9 : temporaires

.global calculer

.bss

privee_f: .skip 2 @ variable locale pval

.skip 2 @ variable locale v1

.skip 24 @sauvegarde registres r5 a r9 + lr

param_f: @ neant

@ le premier parametre est dans le registre r0

DELTA_CALCULER_PVAl = -30

DELTA_CALCULER_V1 = -28

.text

calculer: @ sauvegardes de r5 à r9 + lr omis

ldr ip,=param_calculer

ldr r5,= valeurs @ *&pval = valeurs

str r5, [ip, ##DELTA_CALCULER_PVAl]

mov r6, r0 @ *&v1 = initial

strh r6, [ip, ##DELTA_CALCULER_V1]

corps: ldr r0, [ip, ##DELTA_CALCULER_V1] @ x = *&v1

ldr r1,= v2 @ y = &v2

bl di2_p__mu3p1_imp $ di2_p__mu3p1_imp(v1,&v2)

4

ldr r9,= v2 @ r9 = & v2

ldrh r9, [r9] @ r9 = *&v2

ldr r5, [ip, ##DELTA_CALCULER_PVAl] @ r5 = *&pval

strh r9, [r5] @ **&pval = *&v2

ldr r7,= somme @ r7 = &somme

ldr r8, [r7] @ r8 = *&somme

@ *&v2 deja dans r9

add r8, r8, r9 @ r8 += *&v2

str r8, [r7] @ *&somme += *&v2

ldr r5, [ip, ##DELTA_CALCULER_PVAl] @ (*&pval) ++

add r5, r5, #2

str r5, [ip, ##DELTA_CALCULER_PVAl] @

ldr r7,= v2 @ r7 = &v2

ldrh r6, [r7] @ r6 = *&v2

strh r6, [ip, ##DELTA_CALCULER_V1] @ *&v1 = *&v2

test: ldr r7,= valeurs @ r7 = valeurs

add r7, r7, #2*LONGUEUR_MAX @ r7 = valeurs+ LONGUEUR_MAX

ldr r5, [ip, ##DELTA_CALCULER_PVAl] @ r5 = *&pval

cmp r5, r7

bhs fin @ if (... >= ...) goto fin

cmp r6, #1

bne corps @ if (v1 != 1) goto corps

fin: @ restauration de r5 à r9 + lr omise

mov pc,lr

.ltorg

5

