
M2P CCI : examen Langage Machine, Novembre 2007

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matières

1 Introduction (15mn) 1

2 Questions 2
2.1 Traduction des déclarations des variables (15mn) 2
2.2 Base 2 et traduction inverse asm → C (40 mn) 2
2.3 Traduction d'une boucle (50mn) . 3

3 Code de la procédure di2_p__mu3pl1_imp 3

4 Code de la procédure calculer 4

5 Annexe : code du programme principal 5

1 Introduction (15mn)

On considère un programme qui calcule une suite de nombres à partir d'une valeur
initiale, la range dans un tableau nommé valeurs, et en calcule la somme.

La procedure di2_p__mu3pl1_imp calcule la prochaine valeur de la suite à partir
de la valeur courante :

/* fichier di2_p__mu3pl1_imp.h */

void di2_p__mu3pl1_imp (unsigned short x, unsigned short *y);

Les �chiers di2_p__mu3pl1_imp.c et di2_p__mu3pl1_imp.s (�chier source et
traduction manuelle) sont données section 3. Ils sont incomplets : une partie de code
détaillée dans l'un est omise dans l'autre.

La procedure calculer contient la boucle qui appelle di2_p__mu3pl1_imp et rem-
plit le tableau. Le �chier calculer.c est détaillé section 4.

Le �chier main.c contenant le programme principal est donné en annexe.

/* fichier calculer.h */

#define LONGUEUR_MAX 51

extern unsigned short v2;

1

extern unsigned long somme;

extern unsigned short valeurs [LONGUEUR_MAX];

void calculer (unsigned short initial);

Voici d'autre part un petit rappel sur le jeu d'instructions ARM : un décalage
à gauche (LSL1) ou à droite (LSR2) peut être appliqué à l'opérande droit d'une
instruction et le su�xe S indique que l'instruction modi�e les indicateurs (NZCV).

1. mov r1, r2, LSL #3 prend une copie du contenu de r2, la décale de trois bits
à gauche, la stocke dans r1 et ne change pas les indicateurs.

2. addS r1, r2, r3, LSR #2 prend une copie du contenu de r3, la décale de deux
bits à droite, l'ajoute au contenu de r2, stocke la somme dans r1 et met à jour
les indicateurs.

2 Questions

Indication de barême : selon l'estimation approximative de la durée des questions.

La convention d'appel de procédure utilisée est la suivante : passage des 4 premiers
paramètres dans les registres r0 à r3, les autres dans la pile. Dans la traduction en
langage d'assemblage, vous pouvez omettre le détail des sauvegardes de registres dans
le prologue et l'épilogue (un commentaire su�t). Les registres à utiliser pour stocker
les variables locales sont les registres r5 et suivants.

2.1 Traduction des déclarations des variables (15mn)

Traduire en langage d'assemblage les déclarations des variables v2, valeurs et
somme.

Traduire en langage d'assemblage l'a�ectation *y = r.

2.2 Base 2 et traduction inverse asm → C (40 mn)

Les instructions and r2,r1,r0 en langage d'assemblage et r2 = r1 & r0 en C
a�ectent à r2 le ET bit à bit 3 entre r1 et r0. Chaque chi�re de la représentation
des entiers en base deux est considéré comme un booléen (0 pour Faux et 1 pour Vrai).

Le bit de rang i de r2 est 1 si et seulement si le bit de rang i de r1 est 1 et le bit de
rang i de r0 est 1. Si le bit de rang i de (au moins) un opérande est 0, le bit de rang i
du résultat est aussi 0. Pour un ou bit à bit, le bit du résultat est 1 si (au moins un)
des bits des opérandes est 1. En voici un exemple :

1LSL correspond à � en langage C.
2LSR correspond à � en langage C.
3Le OU bit à bit s'écrirait or r2,r1,r0 et r2 = r1 | r0.

2

@ Exemple de OU bit a bit 0xb7 est égal à 0xb3 | 0x16

@ 1011 0011 r1 r1 = 0xb3

@ | 0001 0110 r0 r0 = 0x16

@ ----------

@ 1011 0111 r2 r2 = 0xb7

@ colonnes avec r1_i == 1 ou r0_i == 1

Calculer et écrire en hexadécimal les expressions ET bit à bit suivantes : 0xa ETbb 0x1,
0xb ETbb 0x1, 0xc ETbb 0x1, 0xd ETbb 0x1.

Quelle est la propriété commune des entiers naturels tels que leur ET bit à
bit avec l'entier 1 est non nul ?

A quelles opérations arithmétiques sur un entier naturel correspondent le
décalage d'un bit à droite et d'un bit à gauche ?

Vous disposez dans la section 3 de la traduction en langage d'assemblage du calcul
de la valeur de r en fonction de celle de x. Ecrivez la séquence de code C dont elle
est la traduction.

Le calcul est décrit à l'aide de constructeur(s) algorithmique(s) classique(s) (if,
while, do . . . while) et d'opérations arithmétiques usuelles sur les entiers naturels :
addition (+), soustraction (-), multiplication (*) , division (/) et modulo (%)4.

La séquence C d'origine ne contient ni goto ni opérateur de décalage (� ou �) 5

2.3 Traduction d'une boucle (50mn)

Traduire en langage d'assemblage la procédure calculer.

Réécrire en C la boucle en remplaçant le parcours du tableau par pointeur par
un parcours du tableau par indice (en utilisant une seule variable de boucle).

3 Code de la procédure di2_p__mu3pl1_imp

Le calcul de r à partir de x a été omis dans le �chier di2_p__mu3pl1_imp.c.

/* fichier di2_p__mu3pl1_imp.c (incomplet) */

#include <stdio.h>

#include "di2_p__mu3pl1_imp.h"

void di2_p__mu3pl1_imp (unsigned short x, unsigned short *y)

4Rappel : modulo signi�e reste de la division entière.
5Vous pouvez écrire l'équivalent en if . . . goto, puis retrouver les constructions algorithmiques dont

ils sont la traduction.

3

{

unsigned short r;

... /* calcul de r a partir de x omis */

*y = r;

}

La traduction de l'a�ectation *y = r a été omise dans le �chier di2_p__mu3pl1_imp.s

@ fichier di2_p__mu3pl1_imp.s

.global di2_p__mu3pl1_imp

.text

@ convention d'appel : x dans r0 et y dans r1

@

@ La convention d'appel stipule que les contenus des registres

@ r0 a r3 peuvent etre detruit par la procedure appelee

@ -----> on peut omettre la sauvegarde de r2

di2_p__mu3pl1_imp: andS r2, r0, #1 @ calcul r = f(x) : debut

bne pas_nul

nul: mov r2, r0, LSR #1

b sortie

pas_nul: add r2, r0, r0, LSL #1

add r2, r2, #1 @ calcul r = f(x) : fin

sortie: ... @ traduction de *y = r omise

4 Code de la procédure calculer

/* fichier calculer.c */

#include <stdio.h>

#include "di2_p__mu3pl1_imp.h"

#include "calculer.h"

unsigned short v2;

unsigned long somme = 0;

unsigned short valeurs [LONGUEUR_MAX];

void calculer (unsigned short initial)

{

register unsigned short *pval;

register unsigned short v1;

4

pval = valeurs;

v1 = initial;

while ((pval < (valeurs + LONGUEUR_MAX)) && (v1 != 1))

{

di2_p__mu3pl1_imp (v1,&v2);

*pval = v2;

somme += v2;

pval++;

v1 = v2;

}

}

5 Annexe : code du programme principal

#include <stdio.h>

#include "calculer.h"

unsigned short a;

void afficher (void)

{

int i;

for (i=0; i<LONGUEUR_MAX; i++)

{

printf ("Valeur [%d] = %u\n",i,valeurs[i]);

if (valeurs [i] == 1) break;

}

printf ("sigma = %lu\n",somme);

}

int main (int argc, char *argv[], char *envp[])

{

unsigned int l;

sscanf (argv[1], "%u", &l);

a = l;

calculer (a);

afficher ();

return 0;

}

5

