M2P CCI : examen Langage Machine, Novembre 2007

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matiéres

1 Introduction (15mn) 1
2 Questions 2
2.1 Traduction des déclarations des variables (1bmn) 2
2.2 Base 2 et traduction inverse asm — C (40mn) L. 2
2.3 Traduction d’'une boucle (50mn) 3
3 Code de la procédure di2 p mu3pll imp 3
4 Code de la procédure calculer 4
5 Annexe : code du programme principal 5

e

Introduction (15mn)

On considére un programme qui calcule une suite de nombres a partir d’une valeur
initiale, la range dans un tableau nommé valeurs, et en calcule la somme.

La procedure di2_p mu3pll imp calcule la prochaine valeur de la suite a partir
de la valeur courante :

/* fichier di2_p__mu3pll_imp.h */
void di2_p__mu3pli_imp (unsigned short x, unsigned short *y);

Les fichiers di2_p mu3pll imp.c et di2_p_ mu3pll imp.s (fichier source et
traduction manuelle) sont données section 3. Ils sont incomplets : une partie de code
détaillée dans I'un est omise dans 'autre.

La procedure calculer contient la boucle qui appelle di2_p mu3pll imp et rem-
plit le tableau. Le fichier calculer.c est détaillé section 4.

Le fichier main.c contenant le programme principal est donné en annexe.

/* fichier calculer.h */
#tdefine LONGUEUR_MAX 51

extern unsigned short v2;

extern unsigned long somme;
extern unsigned short valeurs [LONGUEUR_MAX];

void calculer (unsigned short initial);

Voici d’autre part un petit rappel sur le jeu d’instructions ARM : un décalage
a gauche (LSL') ou a droite (LSR?) peut étre appliqué a lopérande droit d’une
instruction et le suffixe S indique que l'instruction modifie les indicateurs (NZCV).
1. mov rl, r2, LSL #3 prend une copie du contenu de r2, la décale de trois bits
a gauche, la stocke dans rl et ne change pas les indicateurs.

2. addS r1, r2, r3, LSR #2 prend une copie du contenu de r3, la décale de deux
bits & droite, ’ajoute au contenu de r2, stocke la somme dans rl et met a jour
les indicateurs.

2 Questions

Indication de baréme : selon ’estimation approximative de la durée des questions.

La convention d’appel de procédure utilisée est la suivante : passage des 4 premiers
parametres dans les registres r0 a r3, les autres dans la pile. Dans la traduction en
langage d’assemblage, vous pouvez omettre le détail des sauvegardes de registres dans
le prologue et 1'épilogue (un commentaire suffit). Les registres a utiliser pour stocker
les variables locales sont les registres r5 et suivants.

2.1 Traduction des déclarations des variables (15mn)

Traduire en langage d’assemblage les déclarations des variables v2, valeurs et
somime.

Traduire en langage d’assemblage 'affectation *y — r.

2.2 Base 2 et traduction inverse asm — C (40 mn)

Les instructions and r2,r1,r0 en langage d’assemblage et r2 = rl & r0 en C
affectent & 12 le ET bit a bit 3 entre rl et r0. Chaque chiffre de la représentation
des entiers en base deux est considéré comme un booléen (0 pour Faux et 1 pour Vrai).

Le bit de rang ¢ de r2 est 1 si et seulement si le bit de rang ¢ de r1 est 1 et le bit de
rang i de 10 est 1. Si le bit de rang ¢ de (au moins) un opérande est 0, le bit de rang i
du résultat est aussi 0. Pour un ou bit & bit, le bit du résultat est 1 si (au moins un)
des bits des opérandes est 1. En voici un exemple :

'LSL correspond & « en langage C.
2LSR correspond & » en langage C.
3Le OU bit a bit s’écrirait or r2,r1,r0 et r2 = rl | r0.

@ Exemple de OU bit a bit 0xb7 est égal & 0xb3 | 0x16

@ 1011 0011 r1 rl = 0xb3

@ | 0001 0110 rO r0 = 0x16

@ @ ———mmm

@ 1011 0111 12 r2 = 0xb7

@ colonnes avec r1_i == 1 ou 1r0_1i ==

Calculer et écrire en hexadécimal les expressions ET bit a bit suivantes : Oxa ETy, 0x1,
Oxb ETy, 0x1, Oxc BTy, Oxl, Oxd ET, 0x1.

Quelle est la propriété commune des entiers naturels tels que leur ET bit a
bit avec I’entier 1 est non nul 7

A quelles opérations arithmétiques sur un entier naturel correspondent le
décalage d’un bit a droite et d’un bit & gauche?

Vous disposez dans la section 3 de la traduction en langage d’assemblage du calcul
de la valeur de r en fonction de celle de x. Ecrivez la séquence de code C dont elle
est la traduction.

Le calcul est décrit & I'aide de constructeur(s) algorithmique(s) classique(s) (if,
while, do ... while) et d’opérations arithmétiques usuelles sur les entiers naturels :
addition (+), soustraction (-), multiplication (*) , division (/) et modulo (%)*.

La séquence C d’origine ne contient ni goto ni opérateur de décalage (« ou ») °
2.3 Traduction d’une boucle (50mn)

Traduire en langage d’assemblage la procédure calculer.

Réécrire en C la boucle en remplacant le parcours du tableau par pointeur par
un parcours du tableau par indice (en utilisant une seule variable de boucle).
3 Code de la procédure di2 p mu3pll imp
Le calcul de r a partir de x a été omis dans le fichier di2_p _mu3pll _imp.c.
/* fichier di2_p__mu3pll_imp.c (incomplet) */
#include <stdio.h>

#include "di2_p__mu3pll_imp.h"

void di2_p__mu3pll_imp (unsigned short x, unsigned short x*y)

4Rappel : modulo signifie reste de la division entiére.
®Vous pouvez écrire ’équivalent en if . . . goto, puis retrouver les constructions algorithmiques dont
ils sont la traduction.

{
unsigned short r;

/* calcul de r a partir de x omis */
*y = r;

+
La traduction de laffectation *y = r a été omise dans le fichier di2_p__mu3pll _imp.s

@ fichier di2_p__mu3pll_imp.s

.global di2_p__mu3pll_imp

.text
@ convention d’appel : x dans r0 et y dans rl
Q
@ La convention d’appel stipule que les contenus des registres
@ rO a r3 peuvent etre detruit par la procedure appelee
e ----—- > on peut omettre la sauvegarde de r2
di2_p__mu3pll_imp: andS r2, r0, #1 @ calcul r = £(x) : debut
bne pas_nul
nul: mov r2, r0, LSR #1
b sortie
pas_nul: add r2, rO, rO, LSL #1
add r2, r2, #1 @ calcul r = f(x) : fin
sortie: ce. @ traduction de *y = r omise

4 Code de la procédure calculer

/* fichier calculer.c */
#include <stdio.h>

#include "di2_p__mu3pll_imp.h"
#include "calculer.h"

unsigned short v2;

unsigned long somme = 0;
unsigned short valeurs [LONGUEUR_MAX];

void calculer (unsigned short initial)
{

register unsigned short *pval;
register unsigned short vi;

pval = valeurs;
vl = initial;

while ((pval < (valeurs + LONGUEUR_MAX)) && (v1 !'= 1))

{
di2_p__mu3pll_imp (v1,&v2);

xpval = v2;
somme += v2;
pval++;

vl = v2;

}

5 Annexe : code du programme principal

#include <stdio.h>
#include "calculer.h"

unsigned short a;

void afficher (void)

{

int 1i;

for (i=0; i<LONGUEUR_MAX; i++)
{
printf ("Valeur [)d] = %u\n",i,valeurs[i]);
if (valeurs [i] == 1) break;
+

printf ("sigma = %lu\n",somme);

+

int main (int argc, char *argv[], char *envp[])
{

unsigned int 1;

sscanf (argv[1], "%u", &1);
a=1;

calculer (a);

afficher ();

return O;

