
M2P CCI : Corrigé Langage Machine, Novembre 2008

Représenter octet par octet et en hexadécimal le contenu de la section data.

Contenu de la mémoire pour une machine little endian
Adresses octets (hexa) 10000 10001 10002 10003
Contenus octets (hexa) LE 61 62 63 64

←−−−−−−−−−−−−−−−−−−−−−−
chaı̂

Adresses octets (hexa) 10004 10005 10006 10007
Contenus octets (hexa) LE 65 66 67 68

−−−−−−−−−−−−−−−−−−−−−−→ne
Adresses octets (hexa) 10008 10009 1000a 1000b
Contenus octets (hexa) LE 50 30 70 20

←−−−−−−−−−→x ←−−−−−−−−−→y
Adresses octets (hexa) 1000c 1000d 1000e 1000f
Contenus octets (hexa) LE 71 00 00 00

←−−−−−−−−−−−−−−−−−−−−−−−→z

Contenu de la mémoire pour une machine big endian
Adresses octets (hexa) 10000 10001 10002 10003
Contenus octets (hexa) BE 61 62 63 64

←−−−−−−−−−−−−−−−−−−−−−−
chaı̂

Adresses octets (hexa) 10004 10005 10006 10007
Contenus octets (hexa) BE 65 66 67 68

−−−−−−−−−−−−−−−−−−−−−−→ne
Adresses octets (hexa) 10008 10009 1000a 1000b
Contenus octets (hexa) BE 30 50 20 70

←−−−−−−−−−→x ←−−−−−−−−−→y
Adresses octets (hexa) 1000c 1000d 1000e 1000f
Contenus octets (hexa) BE 00 00 00 71

←−−−−−−−−−−−−−−−−−−−−−−−→z

Expliquer pourquoi strchr ne retourne pas NULL lors de la recherche des ca-
ractères zéro, p majuscule et espace. Quelles adresses seraient retournées par
strchr pour ces caractères sur une machine de type big endian ?

Dans la réservation de place, le marqueur de �n de chaîne (octet à 0) a été oublié.
Pour strchr, la chaîne se termine donc au premier octet nul après le caractère h, soit
le deuxième (little endian) ou le premier (big endian) octet de z. Les octets non nuls
de x et y sont donc considérés comme des codes ASCII de caractères faisant partie de
la chaîne : 'P' (0x50), '0' (0x30), 'p' (0x70), espace (0x20) et 'q' (0x71).

1

Strchr recherche les caractères dans la chaîne "abcdefgP0p q" (little endian) ou
"bcdefg0P p" (big endian) et trouve donc les caractères '0','P' et ' '.

Pour une machine big endian, les adresses trouvées seraient 0x10009 (P), 0x10008
(0) et 0x1000a (espace).

Contenu de la mémoire pour une machine little endian
Adresses octets (hexa) 10000 10001 10002 10003
Contenus octets (hexa) LE 61 62 63 64

←−−−−−−−−−−−−−−−−−−−−−
ch

Adresses octets (hexa) 10004 10005 10006 10007
Contenus octets (hexa) LE 65 66 67 68

aı̂
Adresses octets (hexa) 10008 10009 1000a 1000b
Contenus octets (hexa) LE 00 00 50 30

−−−−→ne
←−→
align ←−−−−−−−−−→x

Adresses octets (hexa) 1000c 1000d 1000e 1000f
Contenus octets (hexa) LE 70 20 00 00

←−−−−−−−−−→y
←−−−−−−−−→

align
Adresses octets (hexa) 10010 10011 10012 10013
Contenus octets (hexa) LE 71 00 00 00

←−−−−−−−−−−−−−−−−−−−−−−−→z

Corriger cette traduction en langage d'assemblage de ces déclarations. A quelle
adresse (après correction) est stockée la variable z ?

Il su�t de rajouter la marque de �n de chaîne manquante, soit un octet à 0, sans
oublier de maintenir l'alignement correct pour les variables qui suivent (adresses paires
pour x et y, et multiple de 4 pour z). On rajouter une directive .byte ou utiliser la
directive asciz. La variable z est alors stockée à l'adresse 0x10010.

chaine: .byte 'a'

...

.byte 'h'

.byte 0

.balign 2

x: .half 0x3050

y: .half 0x2070

.balign 4

z: .word 0x71

chaine: .asciz "abcdefgh"

.balign 2

x: .half 0x3050

y: .half 0x2070

.balign 4

z: .word 0x71

2

Contenu de la mémoire pour une machine big endian
Adresses octets (hexa) 10000 10001 10002 10003
Contenus octets (hexa) BE 61 62 63 64

←−−−−−−−−−−−−−−−−−−−−−
ch

Adresses octets (hexa) 10004 10005 10006 10007
Contenus octets (hexa) BE 65 66 67 68

aı̂
Adresses octets (hexa) 10008 10009 1000a 1000b
Contenus octets (hexa) BE 00 00 30 50

−−−−→ne
←−→
align ←−−−−−−−−−→x

Adresses octets (hexa) 1000c 1000d 1000e 1000f
Contenus octets (hexa) BE 20 70 00 00

←−−−−−−−−−→y
←−−−−−−−−→

align
Adresses octets (hexa) 10010 10011 10012 10013
Contenus octets (hexa) BE 00 00 00 71

←−−−−−−−−−−−−−−−−−−−−−−−→z

1 Question : constructeurs algorithmiques (35mn)

Traduire en langage d'assemblage la boucle while de la fonction mon_strchr.

/* code C expansé équivalent */

char tmp;

goto test_w;

corps_w: if (tmp != c) goto finsi;

resultat = p;

goto suite;

fin_si: p++;

test_w: tmp = *p;

if (tmp != 0) goto corps_w

suite: return resultat;

D'après la convention d'appel spéci�ée dans l'introduction, les paramètres s et c
sont passés par les registres r0 et r1. De même, le résultat est supposé retourné dans
r0.

.text

@ s : r0 c: r1 p : r5 resultat : r6 tmp : r8

bal test_w

corps_w: cmp r8,r1 @ if (tmp != c) goto finsi

bne fin_si

mov r6, r5 @ resultat = p

bal suite @ goto suite

3

fin_si: add r5, r5, #1 @ p++

test_w: ldrsb r8, [r5] @ tmp = *p

cmp r8, #0 @ if (tmp != 0) goto corps_w

bne corps_w

suite: mov r0, r6 @ return resultat

2 Question : procédures et pointeurs (35 mn)

Traduire en langage d'assemblage l'instruction wadr ++ ?
La variable wadr est stockée en mémoire et sizeof (wchar_t) = 2 puisque wchar_t

est synonyme de short

@ r9, r10 :temporaires

.text

ldr r10,= wadr

ldr r9, [r10] @ le pointeur contient une adresse : 32 bits

add r9, r9, #2 @ + 1 * sizeof(wchar_t = 2)

str r9, [r10]

Traduire en langage d'assemblage l'instruction res = wadr - chaine.

Réciproquement, pour que la di�érence entre deux pointeurs corresponde à une
di�érence d'indices entre éléments de tableau, elle doit être implicitement divisée par
la taille d'un élément.

.bss

.skip 2

adr: .skip 4

.text

@ res : r8 chaine : r1 car : r0 tmp1 : r9 tmp2 : r10

ldr r10,=adr

ldr r9, [r10] @ r9 = *&adr (r9 = adr)

sub r8, r9, r1

mov r8, r8, LSR #1 @ LSR 1 correspond à /2 (/sizeof(wchar_t)

Traduire en langage d'assemblage l'appel de procédurewadr = wcsstr (ch,car).

.text

@ on peut detruire le contenu de car, mais

@ la valeur de chaine doit être sauvegardee pour l'instruction

@ suivante

4

mv r9, r1 @ sauver chaine

mv r1, r0 @ c = car

mv r0, r1 @ s = chaine

bl wcsstr @ resultat dans r0

ldr r10,= adr

str r0, [r10] @ adr = wsstr(...)

mv r1, r9 @ restaurer le contenu de ch pour la suite

Ecrire en C une procédure retournant à la fois l'adresse et l'indice d'un carac-
tère dans une chaîne et un exemple d'appel de cette procédure.

Pour modi�er une variable, on passe en paramètre un pointeur sur cette variable.
Pour modi�er un pointeur, on passe en paramètre un pointeur sur ce pointeur.

void proc (const char *chaine, char c,

char **adresse, int *position)

{

const char *adr;

adr = wcsstr (chaine,c);

*adresse = adr;

*position = adr - chaine;

}

void main (void)

{

const char *pt;

int indice;

proc ("bonjour", 'j', &pt,&indice);

}

5

