M2P CCI : Corrigé Langage Machine, Novembre 2008

Représenter octet par octet et en hexadécimal le contenu de la section data.

Contenu de la mémoire pour une machine little endian

Adresses octets (hexa) 10000 | 10001 | 10002 | 10003
Contenus octets (hexa) LE | 61 62 63 64
chai
Adresses octets (hexa) 10004 | 10005 | 10006 | 10007
Contenus octets (hexa) LE | 65 66 67 68
ne
Adresses octets (hexa) 10008 | 10009 | 1000a | 1000b
Contenus octets (hexa) LE || 50 30 70 20
Adresses octets (hexa) 1000c | 1000d | 1000e | 1000f
Contenus octets (hexa) LE || 71 00 00 00
z

Contenu de la mémoire

pour une machine big endian

Adresses octets (hexa) 10000 | 10001 | 10002 | 10003
Contenus octets (hexa) BE || 61 62 63 64
chai
Adresses octets (hexa) 10004 | 10005 | 10006 | 10007
Contenus octets (hexa) BE || 65 66 67 68
ne
Adresses octets (hexa) 10008 | 10009 | 1000a | 1000b
Contenus octets (hexa) BE || 30 50 20 70
Adresses octets (hexa) 1000c | 1000d | 1000e | 1000f
Contenus octets (hexa) BE || 00 00 00 71

z

Expliquer pourquoi strchr ne retourne pas NULL lors de la recherche des ca-
ractéres zéro, p majuscule et espace. Quelles adresses seraient retournées par
strchr pour ces caractéres sur une machine de type big endian ?

Dans la réservation de place, le marqueur de fin de chaine (octet a 0) a été oublié.
Pour strchr, la chaine se termine donc au premier octet nul aprés le caractére h, soit
le deuxiéme (little endian) ou le premier (big endian) octet de z. Les octets non nuls
de x et y sont donc considérés comme des codes ASCII de caractéres faisant partie de
la chaine : 'P’ (0x50), ’0’ (0x30), 'p’ (0x70), espace (0x20) et ’q’ (0x71).

Strchr recherche les caractéres dans la chaine "abedefgPOp " (little endian) ou
"bedefgOP p" (big endian) et trouve donc les caractéres ’0°,’P’ et ” .

Pour une machine big endian, les adresses trouvées seraient 0x10009 (P), 0x10008
(0) et 0x1000a (espace).

Contenu de la mémoire pour une machine little endian
Adresses octets (hexa) 10000 | 10001 | 10002 | 10003
Contenus octets (hexa) LE 61 62 63 64

ch
Adresses octets (hexa) 10004 | 10005 | 10006 | 10007
Contenus octets (hexa) LE 65 66 67 68
ai
Adresses octets (hexa) 10008 | 10009 | 1000a | 1000b
Contenus octets (hexa) LE 00 00 50 30
ne align x
Adresses octets (hexa) 1000c | 1000d | 1000e | 1000f
Contenus octets (hexa) LE 70 20 00 00
Y align
Adresses octets (hexa) 10010 | 10011 | 10012 | 10013
Contenus octets (hexa) LE 71 00 00 00
z

Corriger cette traduction en langage d’assemblage de ces déclarations. A quelle
adresse (aprés correction) est stockée la variable z 7

Il suffit de rajouter la marque de fin de chaine manquante, soit un octet a 0, sans
oublier de maintenir ’alignement correct pour les variables qui suivent (adresses paires
pour x et y, et multiple de 4 pour z). On rajouter une directive .byte ou utiliser la
directive asciz. La variable z est alors stockée a 1’adresse 0x10010.

chaine: .byte ’a’ chaine: .asciz "abcdefgh"
.byte ’h’
.byte 0
.balign 2 .balign 2

X: .half 0x3050 .half 0x3050

y: .half 0x2070 .half 0x2070
.balign 4 .balign 4

Z: .word 0x71 .word 0x71

Contenu de la mémoire pour une machine big endian
Adresses octets (hexa) 10000 | 10001 | 10002 | 10003
Contenus octets (hexa) BE 61 62 63 64

ch
Adresses octets (hexa) 10004 | 10005 | 10006 | 10007
Contenus octets (hexa) BE 65 66 67 68
ai
Adresses octets (hexa) 10008 | 10009 | 1000a | 1000b
Contenus octets (hexa) BE 00 00 30 50
ne align x
Adresses octets (hexa) 1000c | 1000d | 1000e | 1000f
Contenus octets (hexa) BE 20 70 00 00
—
Y align
Adresses octets (hexa) 10010 | 10011 | 10012 | 10013
Contenus octets (hexa) BE 00 00 00 71
z

1 Question : constructeurs algorithmiques (35mn)

Traduire en langage d’assemblage la boucle while de la fonction mon __strchr.

/* code C expansé équivalent */

char tmp;
COrpsS_w:
fin_si:
test_w:

suite:

goto test_w;

if (tmp != c) goto fimsi;
resultat = p;

goto suite;

pt+;

tmp = *p;

if (tmp != 0) goto corps_w
return resultat;

D’aprés la convention d’appel spécifiée dans l'introduction, les parameétres s et ¢
sont passés par les registres r0 et rl. De méme, le résultat est supposé retourné dans

r0.

COrpS_W:

.text
@s :r0 c¢c:rl p:rb resultat : r6 tmp : r8

bal test_w

cmp r8,rl @ if (tmp != c) goto finsi
bne fin_si

mov r6, rb @ resultat = p

bal suite @ goto suite

fin_si: add rb, rb, #1 @ p++
test_w: 1ldrsb r8, [r6] @ tmp = *p

cmp r8, #0 @ if (tmp !'= 0) goto corps_w
bne corps_w
suite: mov 10, 16 @ return resultat

2 Question : procédures et pointeurs (35 mn)
Traduire en langage d’assemblage l'instruction wadr +-+ 7
La variable wadr est stockée en mémoire et sizeof (wchar t) = 2 puisque wchar_t

est synonyme de short

@ r9, r10 :temporaires

.text
1dr r10,= wadr
ldr r9, [r10] @ le pointeur contient une adresse : 32 bits

add r9, r9, #2 @ + 1 * gsizeof(wchar_t = 2)
str r9, [ri10]

Traduire en langage d’assemblage l'instruction res = wadr - chaine.

Réciproquement, pour que la différence entre deux pointeurs corresponde a une
différence d’indices entre éléments de tableau, elle doit étre implicitement divisée par
la taille d’un élément.

.bss
.skip 2
adr: .skip 4

.text

@ res : r8 chaine : rl car : r0 tmpl : r9 tmp2 : ri0
1ldr ri10,=adr

ldr r9, [ri10] @ r9 = *&adr (r9
sub r8, r9, ri

mov r8, r8, LSR #1 @ LSR 1 correspond a /2 (/sizeof(wchar_t)

adr)

Traduire en langage d’assemblage I’appel de procédure wadr = wcsstr (ch,car).

.text
@ on peut detruire le contenu de car, mais

@ la valeur de chaine doit étre sauvegardee pour 1l’instruction
@ suivante

mv 19, ril @ sauver chaine

mv rl, r0 @ ¢ = car

mv 10, ril @ s = chaine

bl wcsstr @ resultat dans rO

1dr r10,= adr

str r0, [ri10] @ adr = wsstr(...)

mv rl, r9 Q@ restaurer le contenu de ch pour la suite

Ecrire en C une procédure retournant a la fois 'adresse et I'indice d’un carac-
tére dans une chaine et un exemple d’appel de cette procédure.

Pour modifier une variable, on passe en paramétre un pointeur sur cette variable.
Pour modifier un pointeur, on passe en paramétre un pointeur sur ce pointeur.

void proc (const char *chaine, char c,
char *xadresse, int *position)
{
const char *adr;
adr = wcsstr (chaine,c);
¥adresse = adr;
*position = adr - chaine;

b

void main (void)

{

const char *pt;

int indice;

proc ("bonjour", ’j’, &pt,&indice);

}

