M2P CCI : examen Langage Machine, Novembre 2008

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matiéres

1 Introduction (10mn) 1
2 Question : déclarations et section data (40mn) 2
3 Question : constructeurs algorithmiques (30mn) 3
4 Question : procédures et pointeurs (40 mn) 3
5 Annexe 1 : définition de big et little endian 4
6 Annexe 2 : contenu mémoire (tableau a remplir) 5
1 Introduction (10mn)

On suppose que la convention d’appel de procédure ou fonction passe les quatre
premiers paramétres dans les registres r0 & r3 et que le résultat d’une fonction
est retourné dans r0 a la place du premier paramétre.

La fonction strchr recoit en paramétre une chaine et un caractére a rechercher
dans cette chaine de caractéres. Elle retourne un pointeur contenant ’adresse a
laquelle se trouve ce caractére dans la chaine, et NULL si le caractére n’est pas présent
dans la chaine. Strchr fait partie de la bibliothéque C standard.

/* L’attribut const indique que la chaine s ne peut &tre modifiée */
/* et que toute instruction du type *p = ... est interdite */

/* ¢ aurait aussi pu etre declare de type char */

const char * mon_strchr (const char *s, int c)

{
register const char *p, *resultat; /* dans rb5 */
register resultat = NULL; /* dans r6 */
p =53
while (xp != 0)
{
if (*p == c)
{
resultat = p; break; /* trouve : break termine la boucle */
}
ptt;

+

return resultat;

}

On peut aussi écrire une fonction nchr qui retourne I'indice du caractére recherché
dans la chaine, et une valeur négative en cas d’absence.

2 Question : déclarations et section data (40mn)
Le programme C a traduire contient les déclarations suivantes :

char chaine [] = "abcdefgh";

short x = 0x3050;
short y = 0x8765;
long =z = 0x71;

Voici leur traduction en langage d’assemblage (.global omis) :

.data

chaine: .byte ’a’
.byte ’b’
.byte ’¢’?
.byte ’d’
.byte ‘e’
.byte £
.byte ‘g’
.byte ’h’

X: .half 0x3050

y: .half 0x2070

zZ: .word 0x71

On suppose que la section data commence & ’adresse 0x10000 et que la machine
est de type little endian (la définition de big et little endian est rappelée en annexe).

Question a : Représenter octet par octet et en hexadécimal le contenu de la
section data a partir de 'adresse 0x10004. Vous pouvez utiliser I’annexe 2 comme
feuille de réponse si vous le souhaitez.

La traduction en langage d’assemblage ci-dessus étant incorrecte, la fonction strchr
retourne des résultats inattendus :

<— Q)) g 7j7 0’ P IR a_7
strchr(x) = | 10000 | 10002 | 00000 | 00000 | 10009 | 10008 | 1000b | 00000

Question b : Expliquer pourquoi strchr ne retourne pas NULL lors de la
recherche des caractéres zéro, p majuscule et espace. Quelles adresses seraient
retournées par strchr pour ces caractéres sur une machine de type big endian?

Question c : Corriger cette traduction en langage d’assemblage de ces déclara-
tions. A quelle adresse (aprés correction) est stockée la variable z 7

3 Question : constructeurs algorithmiques (30mn)

Question d : Traduire en langage d’assemblage la boucle while de la fonction
mon _strchr. Notez que le type des variables est char (et non unsigned char).

4 Question : procédures et pointeurs (40 mn)

Il existe plusieurs standards pour la représentation des caractéres spécifiques aux
différentes langues ! (accents, cédille, 7, ...).

Les formats iso-xx et UTFS8.yy sur 8 bits sont spécialisées dans un groupe de
langues?, mais permettent de représenter les caractéres avec le type C char. Le format
générique unicode n’est pas restreint a un groupe de langues, mais code les caractéres
sur 16 bits : on utilise alors le type C wchar _t synonyme de short 2.

Les fonctions standard sur les chaines de caractéres sont disponibles dans les deux
variantes de codage des caractéres (dont strchr et wesstr pour la recherche d’un carac-
tére dans une chaine).

Une réalisation possible de la fonction nchr est donnée ci-dessous pour les deux
variantes de format.

/* Variante pour char */ /* variante pour wchar_t */
const char *adr; const wchar_t *wadr;
int nchr (char car, int wnchr (wchar_t car,
const char *chaine) const wchar_t *chaine)
{ {
register int res; register int res; /* dans r8 *x/
adr = strchr (chaine,car); wadr = wcsstr (chaine,car);
res = adr - chaine; res = wadr - chaine;
return res; return res;
} }

Qeustion e : Comment traduirait-on en langage d’assemblage l'instruction
suivante : wadr+-+ 7

Ibasées sur I’alphabet, contrairement par exemple & I’écriture du chinois
Zexemple : iso-latinl et UTF8.FR pour le francais
30n trouve dans les fichiers d’en-téte standard cette définition : typedef unsigned short wchar t;

Question f: Traduire en langage d’assemblage I'instruction res = wadr - chaine.
Rappel : wadr est stocké en mémoire.

Question g : Traduire en langage d’assemblage 1'appel de procédure
wadr = wcsstr (chaine,car).

Question h : Ecrire en C une procédure retournant a la fois I'adresse et
I'indice d’un caractére dans une chaine et un exemple d’appel de cette procédure.

5 Annexe 1 : définition de big et little endian

Soit un entier codé sur 32 bits et soit 4*X Padresse a laquelle il est stocké en mé-
moire. L’entier occupe donc quatre octets, d’adresses 4*X, 4*X+1, 4*X+42 et 4*X+3,
dont chacun contient deux chiffres hexadécimaux, soit huit bits.

Les paquets de 8 bits des entiers dont la taille dépasse I'octet peuvent étre rangés
en mémoire par ordre de poids croissant (little endian) ou décroissant (big endian).

Les deux méthodes sont utilisées dans les machines actuelles.

A titre d’exemple, voici comment est stocké 'entier 0x12345678 a I’adresse 0x1000 :

Adresse | Contenu big | Contenu little
de loctet endian endian
0x1000 0x12 0x78
0x1001 0x34 0x56
0x1002 0x56 0x34
0x1003 0x78 0x12

6 Annexe 2 : contenu mémoire (tableau a remplir)

Voici un exemplaire de tableau vide que vous pouvez utiliser pour répondre a la
question a.

Adresses octets (hexa) | 10000 | 10001 | 10002 | 10003

Contenus octets (hexa)
Adresses octets (hexa) | 10004 | 10005 | 10006 | 10007

Contenus octets (hexa)
Adresses octets (hexa) | 10008 | 10009 | 1000a | 1000b

Contenus octets (hexa)
Adresses octets (hexa) 1000c¢ | 1000d | 1000e | 1000f

Contenus octets (hexa)
Adresses octets (hexa) | 10010 | 10011 | 10012 | 10013

Contenus octets (hexa)

Le contenu de la section data aprés correction ne vous est pas demandé. Mais rien
ne vous empéche de remplir le méme tableau pour visualiser la correction et répondre
a la question c.

Adresses octets (hexa) | 10000 | 10001 | 10002 | 10003

Contenus octets (hexa)
Adresses octets (hexa) | 10004 | 10005 | 10006 | 10007

Contenus octets (hexa)
Adresses octets (hexa) | 10008 | 10009 | 1000a | 1000b

Contenus octets (hexa)
Adresses octets (hexa) 1000c¢ | 1000d | 1000e | 1000f

Contenus octets (hexa)
Adresses octets (hexa) | 10010 | 10011 | 10012 | 10013

Contenus octets (hexa)

