
M2P CCI : examen Langage Machine, Novembre 2008

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matières

1 Introduction (10mn) 1

2 Question : déclarations et section data (40mn) 2

3 Question : constructeurs algorithmiques (30mn) 3

4 Question : procédures et pointeurs (40 mn) 3

5 Annexe 1 : dé�nition de big et little endian 4

6 Annexe 2 : contenu mémoire (tableau à remplir) 5

1 Introduction (10mn)

On suppose que la convention d'appel de procédure ou fonction passe les quatre
premiers paramètres dans les registres r0 à r3 et que le résultat d'une fonction
est retourné dans r0 à la place du premier paramètre.

La fonction strchr reçoit en paramètre une chaîne et un caractère à rechercher
dans cette chaîne de caractères. Elle retourne un pointeur contenant l'adresse à
laquelle se trouve ce caractère dans la chaîne, et NULL si le caractère n'est pas présent
dans la chaîne. Strchr fait partie de la bibliothèque C standard.

/* L'attribut const indique que la chaîne s ne peut être modifiée */

/* et que toute instruction du type *p = ... est interdite */

/* c aurait aussi pu etre declare de type char */

const char * mon_strchr (const char *s, int c)

{

register const char *p, *resultat; /* dans r5 */

register resultat = NULL; /* dans r6 */

p = s;

while (*p != 0)

{

if (*p == c)

{

resultat = p; break; /* trouve : break termine la boucle */

}

p++;

1



}

return resultat;

}

On peut aussi écrire une fonction nchr qui retourne l'indice du caractère recherché
dans la chaîne, et une valeur négative en cas d'absence.

2 Question : déclarations et section data (40mn)

Le programme C à traduire contient les déclarations suivantes :

char chaine [] = "abcdefgh";

short x = 0x3050;

short y = 0x8765;

long z = 0x71;

Voici leur traduction en langage d'assemblage (.global omis) :

.data

chaine: .byte 'a'

.byte 'b'

.byte 'c'

.byte 'd'

.byte 'e'

.byte 'f'

.byte 'g'

.byte 'h'

x: .half 0x3050

y: .half 0x2070

z: .word 0x71

On suppose que la section data commence à l'adresse 0x10000 et que la machine
est de type little endian (la dé�nition de big et little endian est rappelée en annexe).

Question a : Représenter octet par octet et en hexadécimal le contenu de la
section data à partir de l'adresse 0x10004. Vous pouvez utiliser l'annexe 2 comme
feuille de réponse si vous le souhaitez.

La traduction en langage d'assemblage ci-dessus étant incorrecte, la fonction strchr
retourne des résultats inattendus :

x= 'a' 'c' 'i' 'j' '0' 'P' ' ' '_'
strchr(x) = 10000 10002 00000 00000 10009 10008 1000b 00000

2



Question b : Expliquer pourquoi strchr ne retourne pas NULL lors de la
recherche des caractères zéro, p majuscule et espace. Quelles adresses seraient
retournées par strchr pour ces caractères sur une machine de type big endian ?

Question c : Corriger cette traduction en langage d'assemblage de ces déclara-
tions. A quelle adresse (après correction) est stockée la variable z ?

3 Question : constructeurs algorithmiques (30mn)

Question d : Traduire en langage d'assemblage la boucle while de la fonction
mon_strchr. Notez que le type des variables est char (et non unsigned char).

4 Question : procédures et pointeurs (40 mn)

Il existe plusieurs standards pour la représentation des caractères spéci�ques aux
di�érentes langues 1 (accents, cédille, ,̃ . . . ).

Les formats iso-xx et UTF8.yy sur 8 bits sont spécialisées dans un groupe de
langues2, mais permettent de représenter les caractères avec le type C char. Le format
générique unicode n'est pas restreint à un groupe de langues, mais code les caractères
sur 16 bits : on utilise alors le type C wchar_t synonyme de short 3.

Les fonctions standard sur les chaînes de caractères sont disponibles dans les deux
variantes de codage des caractères (dont strchr et wcsstr pour la recherche d'un carac-
tère dans une chaîne).

Une réalisation possible de la fonction nchr est donnée ci-dessous pour les deux
variantes de format.

/* Variante pour char */

const char *adr;

int nchr (char car,

const char *chaine)

{

register int res;

adr = strchr (chaine,car);

res = adr - chaine;

return res;

}

/* variante pour wchar_t */

const wchar_t *wadr;

int wnchr (wchar_t car,

const wchar_t *chaine)

{

register int res; /* dans r8 */

wadr = wcsstr (chaine,car);

res = wadr - chaine;

return res;

}

Qeustion e : Comment traduirait-on en langage d'assemblage l'instruction
suivante : wadr++ ?

1basées sur l'alphabet, contrairement par exemple à l'écriture du chinois
2exemple : iso-latin1 et UTF8.FR pour le français
3On trouve dans les �chiers d'en-tête standard cette dé�nition : typedef unsigned short wchar_t ;

3



Question f : Traduire en langage d'assemblage l'instruction res = wadr - chaine.
Rappel : wadr est stocké en mémoire.

Question g : Traduire en langage d'assemblage l'appel de procédure
wadr = wcsstr (chaine,car).

Question h : Ecrire en C une procédure retournant à la fois l'adresse et
l'indice d'un caractère dans une chaîne et un exemple d'appel de cette procédure.

5 Annexe 1 : dé�nition de big et little endian

Soit un entier codé sur 32 bits et soit 4*X l'adresse à laquelle il est stocké en mé-
moire. L'entier occupe donc quatre octets, d'adresses 4*X, 4*X+1, 4*X+2 et 4*X+3,
dont chacun contient deux chi�res hexadécimaux, soit huit bits.

Les paquets de 8 bits des entiers dont la taille dépasse l'octet peuvent être rangés
en mémoire par ordre de poids croissant (little endian) ou décroissant (big endian).
Les deux méthodes sont utilisées dans les machines actuelles.

A titre d'exemple, voici comment est stocké l'entier 0x12345678 à l'adresse 0x1000 :

Adresse Contenu big Contenu little
de l'octet endian endian
0x1000 0x12 0x78
0x1001 0x34 0x56
0x1002 0x56 0x34
0x1003 0x78 0x12

4



6 Annexe 2 : contenu mémoire (tableau à remplir)

Voici un exemplaire de tableau vide que vous pouvez utiliser pour répondre à la
question a.

Adresses octets (hexa) 10000 10001 10002 10003

Contenus octets (hexa)
Adresses octets (hexa) 10004 10005 10006 10007

Contenus octets (hexa)
Adresses octets (hexa) 10008 10009 1000a 1000b

Contenus octets (hexa)
Adresses octets (hexa) 1000c 1000d 1000e 1000f

Contenus octets (hexa)
Adresses octets (hexa) 10010 10011 10012 10013

Contenus octets (hexa)

Le contenu de la section data après correction ne vous est pas demandé. Mais rien
ne vous empêche de remplir le même tableau pour visualiser la correction et répondre
à la question c.

Adresses octets (hexa) 10000 10001 10002 10003

Contenus octets (hexa)
Adresses octets (hexa) 10004 10005 10006 10007

Contenus octets (hexa)
Adresses octets (hexa) 10008 10009 1000a 1000b

Contenus octets (hexa)
Adresses octets (hexa) 1000c 1000d 1000e 1000f

Contenus octets (hexa)
Adresses octets (hexa) 10010 10011 10012 10013

Contenus octets (hexa)

5


