M2P CCI : Corrigé Langage Machine, Novembre 2009

1 Déclarations et if

.data
.balign 2
.short OxFFFB @ short s = -5;
.byte 0x6E @ char ¢ = ’n’;
.balign 2
y: .short 3 @ unsigned short y = 3;
.data
.balign 2
X: .skip 2 @ unsigned short x;
.text
calcul:
@ sauvegarde des registres volontairement omise
@ r0, r2, r4 : temporaires adresse
@ rl, r3, r5 : temporaires données
@ s est stocke en memoire : *&s = *&s + 1
1ldr r0,=s 0 s = s+1
ldrsh r1, [r0] @ s de type short (signed)
add ri1, ri1, #1
strh ri1, [r0]
1ldr r0,=x
ldrh ri1, [r0] @ r1 = *&x
ldr r2,=y
ldrh r3, [r2] @ r3 = *&y
cmp rl, r3 @ if (x < y)
bhs sinon @ saut a sinon si >= (entier naturel)
alors: add ri1, ri1, r2 0 *x&x = *&x + *&y
strh r1, [r0] @ ne pas oublier de recopier en Mem
mov 1rb, #’0° @ *x&c = ’0’ mov rb5,#0x6f possible
1dr r4,= ¢
strb rb, [r4]
bal finsi @ ne pas continuer dans le sinon
sinon add r3, r3, #4 @ *&y = xy + 4

strh r3, [r2] @ ne pas oublie de recopier en Mem

finsi: mov pc,lr @ ne pas oublier le branchement retour
main: bl calcul
mov pc,lr

2 Procédures, boucle et tableau

.text
@ utilisation de r4 a r7 comme temporaire(s)

@ val = *adr_max (x*&adr_max)

ldr r4,= adr_max @ adresse du pointeur
ldr 15, [r4] @ contenu du pointeur
ldr 19, [r5] @ contenu de la variable pointee
@ ou ldr r9,= adr_max; ldr r9,[r9]; ldr r9, [r9]
@ pt = tableau + 1 : tableau est une constante adresse
1dr rd4,= tableau
add r2, rd, #4 @ adr debut de tableau + 1 * sizeof(long)

@ ou 1ldr r2,=tableau; add r2, r2, #4

@ adr_max = pt_maxi @ *¥adr_max = pt_maxi
ldr r4,= adr_max @ adresse du pointeur
str r3, [r4] @ affectation du contenu de pt_maxi

@ Pseudo code C equivalent a la boucle

@ borne = tableau + NB

@ goto testw

Q@ corps: /* traduction du if ici */

¢ pt++

Q testw: /* comparer pt et borne */

Q si (pt < borne) goto corps

@ Rappel : on compare les adresses d’éléments de tableau
e et non les contenus

@ borne dans r7
1dr r7,= tableau

add

r7, r7, #16

b testw

0

Q

tableau + 4*sizeof (long)

goto testw

corps: /* placer ici le code du if */

add

testw: cmp
blo

r2, r2, #4

r2,r7
corps

@ Appel de pos_max

1ldr
bl

r0,= maximum
pos_max

@ Affectation de indice

1ldr
ldr
1dr
sub
mov

r4,= adr_max

r5, [r4]

r7,= tableau
r6,r5,r7

r8, r6, LSR #2

.1torg

0

(@)

(@)

o 0 0 © ©

pt++ (1*sizeof (long))

if (pt < borne) goto corps
les adresses sont des entiers
naturels : condition < pour naturel

max_de_pos_max (r0) = & maximum
branchement en sauvant 1’adresse de retour

adresse du pointeur

contenue du pointeur (r5 = *&adr_max)
adresse du tableau

différence (des adresses d’octet)
différence (des indices) : diff_octets/4

