
M2P CCI : Corrigé Langage Ma
hine, Novembre 20101 Variables et pointeurs (20mn)Traduire en langage d'assemblage les dé
larations de variables et les deux a�e
ta-tions suivantes :.bss
1: .skip 1 � unsigned
har
1;.balign 2y: .skip 2 � unsigned short y;.data
2: .byte 'a' � unsigned
har
2='a';.balign 4ptr: .word x � unsigned short *ptr = &x;x: .hword 4 � unsigned short x = 4 ;.text� r0,r1 : temporaires adresse r2: temporaire donnée� y = *ptr devient *&y = **&ptrldr r0,=ptr � r0 = &ptrldr r1,[r0℄ � r1 = *r0 = *&ptr = ptrldrh r2,[r1℄ � r2 *r1 = **&ptr = *ptrldr r0,= y � r0 = &ystrh r2,[r1℄ � *r0 (*&y ou y) = *ptr�
1 =
2 devient *&
1 = *&
2ldr r0,=
2 � r0 = &
2ldrb r2,[r1℄ � r2 = *r0 = *&
2 =
2ldr r1,=
1 � r1 = &
1strb r2,[r1℄ � *r1 = r2 : *&
1 = *&
2 :
1 =
2Toutes les variables sont sto
kées en mémoire.2 Pro
édures et
omparaisons (30mn)On
onsidère le programme suivant :.datavoi
i_x: .as
iz "x = %d\012"debut: .as
iz "debut !\012"fin: .as
iz "fin !\012" 1

.global main.text � void main (void) {main: ldr r0,=debut � printf ("debut !\n");bl printfbl pro
 � pro
();ldr r0,=finbl printf � printf ("fin !\n");mov p
,lr � }� void pro
 (void) {pro
: mov r4, #3 � int x = 3� do {bou
le: ldr r0,= voi
i_x � printf ("x = %d\n",x);mov r1, r4bl printfsub r4, r4, #1 � x = x - 1;
mp r4,#0 � } while (x != 0);bne bou
lemov p
,lr � }Si le programme était traduit
orre
tement, son exé
ution devrait donner l'a�-
hage
i-dessous à gau
he. Mais
ette tradu
tion
ontient une erreur et on obtient latra
e d'exé
ution
i-dessous à droite :debut !x = 3x = 2x = 1fin ! debut !x = 3x = 2x = 1x = -1x = -2x = -3... � et ainsi de suiteQuestion : expliquer pourquoi l'exé
ution ne s'arrête pas après l'a�
hage"x = 1" et n'a�
hage pas ("x = 0").On peut
onstater que le problème ne vient pas de la
ondition utilisée dans lebran
hement : le
as x=0 n'est pas traité,
e qui prouve que la sortie de bou
le a étéréalisée
orre
tement sur x=0.Mais il semble que l'exé
ution revienne malgré tout ensuite sur le
orps de la bou
le.Puisque bge joue son r�le
orre
tement, le problème vient de l'autre bran
hement :mov p
,lr. L'expli
ation est simple : le
ontenu de lr est l'adresse sto
kée par l'instru
-tion bl printf, qui a rempla
é dans lr l'adresse de retour dans main.2

La
ause est la suivante : le
orps de la pro
édure pro
 modi�e le
ontenu d'unregistre (lr) sans le sauvegarder dans le prologue et le restaurer dans l'épilogue.
omment
orriger le problème ?Ajouter "empiler lr" (sub sp,sp,#4 ; str lr,[sp℄) avant le
orps de pro
, et "depilerlr" (ldr lr,[sp℄ ; add sp,sp,#4) avant l'instru
tion de retour.Un étudiant (mais est-il
ompétent ?) a�rme que puisque la
onstante à laqueller4 est
omparé est nulle, il est possible d'optimiser le
ode en supprimant l'instru
tion
mp.Question :1. S'il a raison, que faut-il modi�er dans le reste du programme (les instru
tionsautres que
mp) ?2. S'il a tort, expliquer pourquoi l'instru
tion
mp est né
essaire.Il faut que l'indi
ateur Z soit mis à 1 si et seulement si le résultat de la soustra
tiondonne 0. Il su�t pour
elà d'utiliser une instru
tion subS au lieu de sub pour que Zsoit positionné
orre
tement : la
omparaison à 0 devient inutile.3 Tableaux, base 2, dé
alages et rotations (1h10)3.1 Par
ours de tableau (30mn)Question
 : Traduire en langage d'assemblage ARM la bou
le for dans le
orpsde permuter (lignes
ommentées "à traduire"). Respe
tez l'allo
ation des variables auxregistres indiquée en
ommentaire.void permuter (unsigned short r) // r a sto
ker dans r0{ register unsigned int i; // a sto
ker dans r1register unsigned int j; // a sto
ker dans r2register
har tmp; // a sto
ker dans r3for (i=0;i<r;i++) // a traduire{ // a traduiretmp = tab
ar[0℄; // a traduirefor (j=0; j<3; j++) // a traduiretab
ar[j℄ = tab
ar[j+1℄; // a traduiretab
ar[3℄ = tmp; // a traduire} // a traduire} 3

� r <-> r0, i <-> r1 j <-> r2 tmp <-> r3� tab
ar : r4 temporaire : r5.global permuter.textpermuter: stmfd sp!,{r1-r5} � prologue de permutermov r1, #0 � i=0;ldr r4,= tab
ar �b testwi � while (i<r) � goto testwi� {
orpsi: ldrsb r3,[r4,#0℄ � tmp = tab
ar[0℄; �
orpsimov r2, #0 � j = 0;b testwj � while (j <3) � goto testwj� {
orpsj: add r5, r2, #1 � tab
ar[j℄ = tab
ar[j+1℄; �
orpsjldrsb r5, [r4,r5℄strb r5, [r4,r2℄ � fin
orpsjadd r2, r2,#1 � j++; � maj jtestwj:
mp r2, #3 � } � if (j<3)blo
orpsj � � goto
orpsjstrb r3, [r4,#3℄ � tab
ar[3℄ = tmp; � fin
orpsiadd r1, r1, #1 � i++; � maj itestwi:
mp r1, r0 � } � if (i<r)blo
orpsi � goto
orpsildmfd sp!,{r1-r5} � epilogue de permutermov p
,lrA noter : dans
ette version ave
 test après le
orps, on utilise la
ondition noninversée (saut si <). Ave
 le test devant le
orps, il faudrait inverser la
ondition (sautà �n si >=).Les variables i et j sont dé
larées unsigned, don
 utiliser les
onditions pour entiersnaturels : blo (<) ou bhs (>=).On utiliserait blt ou bge si i et j vaient été dé
larés
omme des entiers relatifs (sansattribut unsigned).// squelette de
ode ave
 test en tetei = 0;testi: if (i >= r) goto fin_wi; 4

tmp = tab
ar [0℄;j = 0;testj: if (j >= 3) goto fin_wj;tab
ar[j℄ = tab
ar[j+1℄;j++;goto testj;fin_wj: tar
ar[3℄ = tmp;i++;goto testi;fin_wi: // epilogue et bran
hement de retourVoir aussi exemples bran
hements dans le pla
ard.3.2 Rotation (30mn)Voi
i une autre tradu
tion (optimisée par un programmeur humain) de la pro
édurepermuter : .datarotation: .hword 3 � unsigned short rotation = 3.balign 4tab
ar: .byte 'w' � unsigned
har tab
ar [4℄ =.byte 'x' � {'w','x','y','z'};.byte 'y'.byte 'z'.textpermuter: stmfd sp!, {r0-r2}ldr r1,= tab
arldr r2,[r1℄mov r0, r0, LSL #3mov r2, r2, ROR r0str r2, [r1℄ldmfd sp!,{r0-r2}mov p
,lrQuestion : expliquer le prin
ipe de fon
tionnement de
ette tradu
tion sansbou
le, puis pourquoi
ette version ne fon
tionne pas sur une ma
hine big endian.L'instru
tion mov r0, r0, LSL #3
al
ule 8*r. En supposant que le tableau soitsto
ké à une adresse muliple de 4, l'instru
tion ldr r2,[r1℄
onsidère le
ontenu dutableau
omme la représentation d'un entier 32 bits, qui sera
opié dans le registre r2.Une rotation de 8r bits à droite est appliquée à r2 et l'entier modi�é dans r2 est réé
rit5

en mémoire.Ave
 la
onvention little endian, tab
ar[0℄ représente les 8 bits de poids faibles del'entier et tab
ar[3℄ les 8 bits de poids forts.La rotation à droite de 8*r bits équivaut à une rotation à droite de r o
tets. Chaqueo
tet dépla
é de 8 bits vers la droite dans l'entier voit diminuer son poids et sera réé
rità un empla
ement plus pro
he de tab
ar[0℄ :
e
i
orrespond à une re
opie de typetab
ar[i℄ ← tab
ar[i+1℄. De même, un o
tet dépla
é vers la gau
he de l'entier voit sonpoids augmenter et il sera réé
rit à un empla
ement plus pro
he de tab
ar[3℄.Si le
ontenu initial de tab
ar est 0x77, 0x78, 0x79, 0x7a (
odes ASCII de w,x,y etz), alors r2
ontiendra l'entier 0x7a797877. Le tableau illustre le
ontenu du registrer2 après la rotation pour di�érentes valeur de r.tab[3℄ tab[2℄ tab[1℄ tab[0℄ mémoire LE0x7a 0x79 0x78 0x77 registre (r=0)0x77 0x7a 0x79 0x78 registre (r=1)0x78 0x77 0x7a 0x79 registre (r=2)0x79 0x78 0x77 0x7a registre (r=3)Ave
 une
onvention big endian, le poids relatif des o
tets est inversé et la rotation
hange le sens des re
opies : tab
ar[i+1℄ ← tab
ar[i℄.tab[0℄ tab[1℄ tab[2℄ tab[3℄ mémoire BE0x77 0x78 0x79 0x7a registre (r=0)0x7a 0x77 0x78 0x79 registre (r=1)0x79 0x7a 0x77 0x78 registre (r=2)0x78 0x79 0x7a 0x77 registre (r=3)La dire
tive d'alignement de tab
ar est-elle né
essaire ou inutile (justi�er pour-quoi) ?Puisque tab
ar est a

édé
omme un entier de 32 bits ave
 une instru
tion ldr aulieu de 4 instru
tions ldrsb, il est impératif que l'adresse utilisée par ldr et str respe
tela règle d'alignement.Dans la variante non optimisée, tab
ar est traité
omme un ensemble d'o
tets a
-
édés séparément
ha
un par une instru
tion ldrsb ou strb et la dire
tive d'alignementdevient inutile.Proposer une tradu
tion optimisée de permuter pour ma
hine big endian.L'ordre des o
tets étant inversé, on peut reprendre le
ode de l'optimisation pourlittle endian, mais ave
 une rotation à gau
he (que le jeu d'instru
tions ARM ne four-nit pas). 6

On peut remarquer qu'une rotation à gau
he de b bits donne le même résultatqu'une rotation à droite que (32-b) bits (imaginer une rotation de 7 bits à gau
hede l'entier auquel est appliqué ROR #25 et
omparer). → Insérer une instru
tionrsb r0,r0, #32 avant la rotation3.3 Dé
alages (question bonus s'il vous reste du temps) (10mn)En C, les booléens sont représentés sous forme d'entiers. Les opérateurs de
om-paraison retournent l'entier 1 si la
ondition est vraie et l'entier 0 si la
ondition estfausse. On veut traduire l'a�e
tation dans le fragment de
ode suivant :register int x; // a sto
ker dans r0register unsigned int x_neg; // a sto
ker dans r1x_neg = (x<0); // x_neg = 1 pour x<0// x_neg = 0 pour x>=0Grça
e aux opérateurs de dé
alage, il est possible de réaliser l'équivalent de
ettea�e
tation sans utiliser d'opérateur de
omparaison. Ce
i suppose de
onnaître la mé-thode de représentation en binaire des entiers relatifs.Expliquer brièvement le prin
ipe utilisé et é
rire le
ode
orrespondant (en C eten assembleur).Dans la représentation des entiers relatifs par la méthode du
omplément à deux,le bit de poids fort représente le signe de l'entier (0 : entier ≥ 0, 1 : entier < 0). Ilsu�t don
 de dé
aler
e bit de signe de n-1 bits à droite en inje
tant des 0 en poidsforts.#define NB_BITS_MOINS_UN (8*sizeof(x_neg) -1)// la
onversion en unsigned int indique au
ompilateur de// dé
aler x à droite
omme s'il était dé
laré unsigned// --> générer un dé
alage logique et non arithmétiquex_neg = ((unsigned int) x) >> NB_BITS_MOINS_UN;� en supposant que x_neg soit sto
ké dans r0.textmov r0, r0, LSR #31
7

4 Commentaire sur les erreurs
ommises dans les
o-pies4.1 Variables et pointeurs� Les variables sans initialisation vont normalement dans bss� Un pointeur de quoi que
e soit
ontient une adresse (32 bits en ARM) : don
on réserve ave
 .word s'il est initialisé ou ave
 .skip 4� Devant la réservation de pla
e pour une variable de type short (.short valeur ou.skip 2) pré
édée d'une variable de taille 1 o
tet, il faut un .balign 2 (.balign 4devant un .word).� La syntaxe est soit .short valeur, .word valeur ou .byte valeur (uniquement dansdata pour valeur 6= 0, soit .skip nombre_o
tets (2 ou 4 ou 1)� Si y est en mémoire, y = v signi�e *&y = v, don
 mettre l'adresse y dansun registre reg_ad, v dans un registre reg_don (si elle n'y est pas déjà), puisranger par strh reg_v, [reg_ad℄. En parti
ulier la séquen
e ldr r0,=y ; mov r0,r1et l'instru
tion mov r0,r1 ont le même e�et et ne font au
un a

ès mémoire àl'empla
ement de sto
kage de y.� Un unsigned
har est de taille 1 o
tet : réservation .skip 1 ou .byte valeur, eta

ès par ldrb et strb.� La séquen
e ldr r0,= ptr ; ldr r1,[r0℄ met dans r0 l'adresse de la variable répéréepar ptr. Il faut ajouter ldrh r0,[r0℄ pour ré
upérer dans r0 le
ontenu de
ettevariable repérée par ptr.� Pour faire y = y + 1, il faut
opier la valeur de y de la mémoire dans un registre,ajouter 1 à
e registre et re
opier le
ontenu de
e registre en mémoire. Maispour faire seulement y = 3 ; il n'y a au
un raison de lire la valeur a
tuelle de ypour l'é
raser ensuite : il su�t d'é
rire la nouvelle valeur sans lire l'an
ienne.4.2 Tableaux� Bou
les ave
 test en tête : il faut inverser la
ondition pour bran
her à la �n età la �n du
orps ne pas oublier de revenir au test.� Bou
les ave
 test à la �n : ne pas oublier le saut au test au début, on prend la
ondition non inversée dans le test.� Variables indi
e de type unsigned : on utilise blo ou bhs et non bl ou bge.� Les éléments sont des
har : ldrsb et strb� On utilise le nom du tableau pour l'a

ès : le nom du tableau est la
onstanteadresse du premier élément don
 a�e
tation parldr reg_ad,= tab
ar ; ldrsb/strb reg_val, [reg_ad℄. Idem pour un a

ès via unpointeur sto
ké dans un registre. Si on a

ède via un pointeur sto
ké en mémoire :ldr reg_ad,= ptr ; ldr reg_ad, [reg_ad℄ ; lsrsb/strb reg_val, [reg_ad℄� Voir exemple_bran
hements dans le pla
ard pour la tradu
tion des bou
les im-briquées : le
orps de la bou
le externe in
lut toute la tradu
tion de la bou
leinterne. 8

