M2P CCI : Corrigé Langage Machine, Novembre 2010

1 Variables et pointeurs (20mn)

Traduire en langage d’assemblage les déclarations de variables et les deux affecta-
tions suivantes :

.bss

cl: .skip 1 @ unsigned char cli;
.balign 2

y: .skip 2 @ unsigned short y;
.data

c2: .byte ’a’ @ unsigned char c2=’a’;
.balign 4

ptr: .word X @ unsigned short *ptr = &x;

X: .hword 4 @ unsigned short x = 4 ;
.text

@ rO,rl : temporaires adresse r2: temporaire donnée
Q@ y = *ptr devient *&y = *xx&ptr

ldr rO0,=ptr @ rO = &ptr

ldr ri1,[r0] @ r1 = *rQ0 = *&ptr = ptr
ldrh r2, [ri] @ T2 *rl = **&ptr = *ptr
ldr r0,=y @ r0 = &y

strh r2, [ri] @ *r0 (*&y ou y) = *ptr

Q cl = c2 devient *&cl = x&c2

ldr 1r0,= c2 @ rO = &c2

1drb r2, [ri] @ r2 = *r0 = *&c2 = c2

ldr ri1,=c1 @ rl = &cil

strb r2, [r1] @ *r1l = r2 : *&cl = *&c2 : cl = c2

Toutes les variables sont stockées en mémoire.

2 Procédures et comparaisons (30mn)

On considére le programme suivant, :

.data
voici_x: .asciz "x = %d\o12"
debut: .asciz "debut '\012"
fin: .asciz "fin '\012"

.global main

@ printf ("debut !\n");

@ printf ("fin !\n");

@ printf ("x = %d\n",x);

x - 1;

.text
@ void main (void) {
main: 1dr 1r0,=debut
bl printf
bl proc Q@ proc(Q);
ldr 1r0,=fin
bl printf
mov pc,lr Q }
@ void proc (void) {
proc: mov r4, #3 @ int x = 3
@ do {
boucle: ldr 1r0,= voici_x
mov rl, ré
bl printf
sub r4, r4, #1 Q@ x =
cmp r4,#0 @ } while (x != 0);
bne boucle
mov pc,lr e}

Si le programme était traduit correctement, son exécution devrait donner I’affi-
chage ci-dessous a gauche. Mais cette traduction contient une erreur et on obtient la

trace d’exécution ci-dessous & droite :

debut ! debut !
x =3 x =3
x =2 x =2
x =1 x =1
fin ! x = -1

X = -2

x = -3

Question : expliquer pourquoi l'exécution
"x = 1" et n’affichage pas ("x = 0").

Q@ et ainsi de suite

ne s’arréte pas apreés l'affichage

On peut constater que le probléme ne vient pas de la condition utilisée dans le
branchement : le cas x—0 n’est pas traité, ce qui prouve que la sortie de boucle a été

réalisée correctement sur x=0.

Mais il semble que I’exécution revienne malgré tout ensuite sur le corps de la boucle.
Puisque bge joue son role correctement, le probléme vient de I'autre branchement :
mov pc,lr. L’explication est simple : le contenu de Ir est ’adresse stockée par I'instruc-
tion bl printf, qui a remplacé dans Ir 'adresse de retour dans main.

La cause est la suivante : le corps de la procédure proc modifie le contenu d’un
registre (Ir) sans le sauvegarder dans le prologue et le restaurer dans 1’épilogue.

comment corriger le probléme ?

Ajouter "empiler Ir" (sub sp,sp,#4; str Ir,[sp|) avant le corps de proc, et "depiler
Ir" (1dr Ir,[sp] ; add sp,sp,#4) avant I'instruction de retour.

Un étudiant (mais est-il compétent ?) affirme que puisque la constante a laquelle
r4 est comparé est nulle, il est possible d’optimiser le code en supprimant l'instruction
cmp.

Question :

1. S’ a raison, que faut-il modifier dans le reste du programme (les instructions
autres que cmp) ?

2. S’il a tort, expliquer pourquoi 'instruction cmp est nécessaire.

Il faut que l'indicateur Z soit mis a 1 si et seulement si le résultat de la soustraction
donne 0. Il suffit pour celd d’utiliser une instruction subS au lieu de sub pour que Z
soit positionné correctement : la comparaison a 0 devient inutile.

3 Tableaux, base 2, décalages et rotations (1h10)

3.1 Parcours de tableau (30mn)

Question c : Traduire en langage d’assemblage ARM la boucle for dans le corps
de permuter (lignes commentées "a traduire"). Respectez ’allocation des variables aux
registres indiquée en commentaire.

void permuter (unsigned short r) // r a stocker dans r0
{
register unsigned int i; // a stocker dans ril
register unsigned int j; // a stocker dans r2
register char tmp; // a stocker dans r3
for (i=0;i<r;i++) // a traduire
{ // a traduire
tmp = tabcar[0]; // a traduire
for (j=0; j<3; j++) // a traduire
tabcar[j] = tabcar[j+1]; // a traduire
tabcar[3] = tmp; // a traduire
} // a traduire
}

@Qr <->r0, i <->rl j<->r2tmp <->1r3
@ tabcar : r4 temporaire : rb
.global permuter
.text
permuter: stmfd sp!,{r1-r5} @ prologue de permuter

mov ril, #0 @ i=0;
1dr r4,= tabcar (@
b testwi @ while (i<r) Q@ goto testwi
¢ {
corpsi: ldrsb r3,[r4,#0] @ tmp = tabcar[0]; @ corpsi
mov 1r2, #0 6] j = 0;
b testwj Q while (j <3) Q@ goto testwj
¢ {
corpsj: add «r5, r2, #1 0@ tabcar[j] = tabcar[j+1]; @ corpsj
ldrsb r5, [r4,r5]
strb r5, [r4,r2] @ fin corpsj
add r2, r2,#1 0© et @ maj j
testwj: cmp r2, #3 Q } @ if (j<3)
blo corpsj 0 0 goto corpsj
strb r3, [r4,#3] @ tabcar[3] = tmp; @ fin corpsi
add ri1, ri1, #1 (@ i++; Q@ maj 1
testwi: cmp ril, r0 @ T @ if (i<r)
blo corpsi @ goto corpsi

ldmfd sp!,{r1-r5} @ epilogue de permuter
mov pc,lr

A noter : dans cette version avec test aprés le corps, on utilise la condition non
inversée (saut si <). Avec le test devant le corps, il faudrait inverser la condition (saut
a fin si >=).

Les variables i et j sont déclarées unsigned, donc utiliser les conditions pour entiers
naturels : blo (<) ou bhs (>=).

On utiliserait blt ou bge si i et j vaient été déclarés comme des entiers relatifs (sans
attribut unsigned).

// squelette de code avec test en tete
i=0;
testi: if (i >= r) goto fin_wi;

tmp = tabcar [0];
j=0;
testj: if (j >= 3) goto fin_wj;
tabcar[j] = tabcar[j+1];
Jjt+;
goto testj;
fin_wj: tarcar[3] = tmp;
i++;

goto testi;
fin_wi: // epilogue et branchement de retour

Voir aussi exemples branchements dans le placard.

3.2 Rotation (30mn)

Voici une autre traduction (optimisée par un programmeur humain) de la procédure
permuter :

.data
rotation: .hword 3 @ unsigned short rotation = 3
.balign 4
tabcar: .byte >w> @ unsigned char tabcar [4] =
.byte ,X, @ {’W’,’X’,’y’,’z’};
.byte Yy
.byte >z’
.text
permuter: stmfd sp!, {r0-r2}
1dr ri1,= tabcar
ldr r2,[ri]

mov r0, rO, LSL #3
mov r2, r2, ROR rO
str r2, [ri]

1dmfd sp!,{r0-r2}
mov pc,lr

Question : expliquer le principe de fonctionnement de cette traduction sans
boucle, puis pourquoi cette version ne fonctionne pas sur une machine big endian.

L’instruction mov r0, r0, LSL #3 calcule 8*r. En supposant que le tableau soit
stocké & une adresse muliple de 4, U'instruction ldr r2,[r1] considére le contenu du
tableau comme la représentation d’un entier 32 bits, qui sera copié dans le registre r2.
Une rotation de 8r bits a droite est appliquée a r2 et 'entier modifié dans r2 est réécrit

en mémoire.

Avec la convention little endian, tabcar|0] représente les 8 bits de poids faibles de
'entier et tabcar[3| les 8 bits de poids forts.

La rotation a droite de 8*r bits équivaut & une rotation a droite de r octets. Chaque
octet déplacé de 8 bits vers la droite dans I'entier voit diminuer son poids et sera réécrit
a un emplacement plus proche de tabcar[0] : ceci correspond & une recopie de type
tabcar[i] <— tabcar[i+1]. De méme, un octet déplacé vers la gauche de 'entier voit son
poids augmenter et il sera réécrit & un emplacement plus proche de tabcar|3|.

Si le contenu initial de tabcar est 0x77, 0x78, 0x79, 0x7a (codes ASCII de w,x,y et
z), alors r2 contiendra I'entier 0x7a797877. Le tableau illustre le contenu du registre
r2 aprés la rotation pour différentes valeur de r.

tab[3] | tab[2] | tab[1] | tab]0] | mémoire LE
Ox7a | 0x79 | 0x78 | Ox77 | registre (r=0)
0x77 | Ox7a | 0x79 | 0x78 | registre (r=1)
0x78 | 0x77 | Ox7a | 0x79 | registre (r=2)
0x79 | 0x78 | O0x77 | Ox7a | registre (r=3)

Avec une convention big endian, le poids relatif des octets est inversé et la rotation
change le sens des recopies : tabcar|i+1] < tabcarl[i].

tab[0] | tab[1] | tab[2] | tab[3] | mémoire BE
0x77 | 0x78 | 0x79 | OxT7a | registre (r=0
Ox7a | 0x77 | 0x78 | 0x79 | registre (r=1
0x79 | Ox7a | Ox77 | 0x78 | registre (r=2
0x78 | 0x79 | Ox7a | OX77 | registre (r

I
w

)
)
)
)

La directive d’alignement de tabcar est-elle nécessaire ou inutile (justifier pour-

quoi) ?

Puisque tabcar est accédé comme un entier de 32 bits avec une instruction Idr au
lieu de 4 instructions ldrsb, il est impératif que ’adresse utilisée par ldr et str respecte

la régle d’alignement.

Dans la variante non optimisée, tabcar est traité comme un ensemble d’octets ac-
cédés séparément chacun par une instruction Idrsb ou strb et la directive d’alignement

devient inutile.
Proposer une traduction optimisée de permuter pour machine big endian.

[’ordre des octets étant inversé, on peut reprendre le code de "'optimisation pour
little endian, mais avec une rotation a gauche (que le jeu d’instructions ARM ne four-

nit pas).

On peut remarquer qu’une rotation & gauche de b bits donne le méme résultat
qu’'une rotation a droite que (32-b) bits (imaginer une rotation de 7 bits a gauche
de l'entier auquel est appliqué ROR #25 et comparer). — Insérer une instruction
rsb r0,r0, #32 avant la rotation

3.3 Décalages (question bonus s’il vous reste du temps) (10
mn)
En C, les booléens sont représentés sous forme d’entiers. Les opérateurs de com-

paraison retournent l'entier 1 si la condition est vraie et 'entier 0 si la condition est
fausse. On veut traduire I'affectation dans le fragment de code suivant :

register int x; // a stocker dans r0
register unsigned int x_neg; // a stocker dans ri
x_neg = (x<0); // x_neg = 1 pour x<0

// x_neg = 0 pour x>=0

Grcace aux opérateurs de décalage, il est possible de réaliser I’équivalent de cette
affectation sans utiliser d’opérateur de comparaison. Ceci suppose de connaitre la mé-
thode de représentation en binaire des entiers relatifs.

Expliquer briévement le principe utilisé et écrire le code correspondant (en C et
en assembleur).

Dans la représentation des entiers relatifs par la méthode du complément a deux,
le bit de poids fort représente le signe de Ientier (0 : entier > 0, 1 : entier < 0). Il
suffit donc de décaler ce bit de signe de n-1 bits a droite en injectant des 0 en poids
forts.

#define NB_BITS_MOINS_UN (8*sizeof (x_neg) -1)

// la conversion en unsigned int indique au compilateur de
// décaler x & droite comme s’il était déclaré unsigned
// --> générer un décalage logique et non arithmétique
x_neg = ((unsigned int) x) >> NB_BITS_MOINS_UN;

@ en supposant que x_neg soit stocké dans r0
.text
mov r0, rO, LSR #31

4.1

4.2

Commentaire sur les erreurs commises dans les co-
pies

Variables et pointeurs

Les variables sans initialisation vont normalement dans bss

Un pointeur de quoi que ce soit contient une adresse (32 bits en ARM) : donc
on réserve avec .word s’il est initialisé ou avec .skip 4

Devant la réservation de place pour une variable de type short (.short valeur ou
skip 2) précédée d’'une variable de taille 1 octet, il faut un .balign 2 (.balign 4
devant un .word).

La syntaxe est soit .short valeur, .word valeur ou .byte valeur (uniquement dans
data pour valeur # 0, soit .skip nombre octets (2 ou 4 ou 1)

Si y est en mémoire, y = v signifie *&y = v, donc mettre I'adresse y dans
un registre reg_ad, v dans un registre reg_don (si elle n’y est pas déja), puis
ranger par strth reg_ v, [reg ad|. En particulier la séquence 1dr r0,=y ; mov r0,rl
et l'instruction mov r0O,r1 ont le méme effet et ne font aucun accés mémoire a
I’emplacement de stockage de y.

Un unsigned char est de taille 1 octet : réservation .skip 1 ou .byte valeur, et
accés par ldrb et strb.

La séquence ldr r0,= ptr; 1dr r1,[r0] met dans r0 ’adresse de la variable répérée
par ptr. Il faut ajouter ldrh r0,[r0] pour récupérer dans r0 le contenu de cette
variable repérée par ptr.

Pour faire y — y + 1, il faut copier la valeur de y de la mémoire dans un registre,
ajouter 1 a ce registre et recopier le contenu de ce registre en mémoire. Mais
pour faire seulement y = 3; il n’y a aucun raison de lire la valeur actuelle de y
pour D’écraser ensuite : il suffit d’écrire la nouvelle valeur sans lire I’ancienne.

Tableaux

Boucles avec test en téte : il faut inverser la condition pour brancher a la fin et
a la fin du corps ne pas oublier de revenir au test.

Boucles avec test a la fin : ne pas oublier le saut au test au début, on prend la
condition non inversée dans le test.

Variables indice de type unsigned : on utilise blo ou bhs et non bl ou bge.

Les éléments sont des char : 1drsb et strb

On utilise le nom du tableau pour I’accés : le nom du tableau est la constante
adresse du premier élément donc affectation par

ldr reg _ad,= tabcar; ldrsb/strb reg val, [reg ad|. Idem pour un accés via un
pointeur stocké dans un registre. Si on accéde via un pointeur stocké en mémoire :
ldr reg_ad,= ptr; 1dr reg_ad, [reg_ad]|; lsrsb/strb reg val, [reg ad]|

Voir exemple branchements dans le placard pour la traduction des boucles im-
briquées : le corps de la boucle externe inclut toute la traduction de la boucle
interne.

