
M2P CCI : examen Langage Ma
hine, Novembre 2010Deux heures, tous do
uments et
al
ulatri
es autorisés. Ordinateurs (PC) interdits.Table des matières1 Variables et pointeurs (20mn) 12 Pro
édures et
omparaisons (30mn) 13 Tableaux, base 2, dé
alages et rotations (1h10) 33.1 Par
ours de tableau (30mn) . 43.2 Rotation (25mn) . 43.3 Dé
alages (15 mn) . 54 Annexes 54.1 Big et Little Endian . 54.2 Rappels sur les dé
alages et rotations 61 Variables et pointeurs (20mn)Traduire en langage d'assemblage les dé
larations de variables et les deux a�e
ta-tions suivantes :unsigned
har
1;unsigned short y;unsigned
har
2='a';unsigned short *ptr = &x;unsigned short x = 4 ;y = *ptr;
1 =
2;Toutes les variables sont sto
kées en mémoire.2 Pro
édures et
omparaisons (30mn)On
onsidère le programme suivant :.datavoi
i_x: .as
iz "x = %d\012"debut: .as
iz "debut !\012"fin: .as
iz "fin !\012" 1

.global main.text � void main (void) {main: ldr r0,=debut � printf ("debut !\n");bl printfbl pro
 � pro
();ldr r0,=finbl printf � printf ("fin !\n");mov p
,lr � }� void pro
 (void) {pro
: mov r4, #3 � int x = 3� do {bou
le: ldr r0,= voi
i_x � printf ("x = %d\n",x);mov r1, r4bl printfsub r4, r4, #1 � x = x - 1;
mp r4,#0 � } while (x != 0);bne bou
lemov p
,lr � }Si le programme était traduit
orre
tement, son exé
ution devrait donner l'a�-
hage
i-dessous à gau
he. Mais
ette tradu
tion
ontient une erreur et on obtient latra
e d'exé
ution
i-dessous à droite :debut !x = 3x = 2x = 1fin ! debut !x = 3x = 2x = 1x = -1x = -2x = -3... � et ainsi de suiteQuestion : expliquer pourquoi l'exé
ution ne s'arrête pas après l'a�
hage"x = 1" et n'a�
hage pas ("x = 0"). Comment
orriger le problème ?Un étudiant (mais est-il bon ?) a�rme que puisque la
onstante à laquelle r4 est
omparé est nulle, il est possible d'optimiser le
ode en supprimant l'instru
tion
mp.Question :1. S'il a raison, que faut-il modi�er dans le reste du programme (les instru
tionsautres que
mp) ?2. S'il a tort, expliquer pourquoi l'instru
tion
mp est né
essaire.2

3 Tableaux, base 2, dé
alages et rotations (1h10)Les optimisations abordées dans
ette question reposent sur les notions de dé
a-lage, de rotation et de
onvention little/big endian, rappelées dans les annexes en �nde sujet.On suppose que l'on travaille sur une ma
hine ARM little endian qui représenteles entiers relatifs selon la méthdoe du
omplément à deux. Les entiers de type intsont
odés sur 32 bits. On
onsidère un tableau de
ara
tères sur lequel e�e
tuer despermutations d'éléments.unsigned short rotation = 3;
har tab
ar[4℄ = {'w','x','y','z'};void permuter (unsigned short r) // r a sto
ker dans r0{ register unsigned int i; // a sto
ker dans r1register unsigned int j; // a sto
ker dans r2register
har tmp; // a sto
ker dans r3for (i=0;i<r;i++) // a traduire{ // a traduiretmp = tab
ar[0℄; // a traduirefor (j=0; j<3; j++) // a traduiretab
ar[j℄ = tab
ar[j+1℄; // a traduiretab
ar[3℄ = tmp; // a traduire} // a traduire}void main (int arg
,
har *argv[℄){ ss
anf (argv[1℄,"%hu",&rotation);affi
her ();permuter (rotation);affi
her ();}

3

hopper> permuter 1tab[0℄ = wtab[1℄ = xtab[2℄ = ytab[3℄ = ztab[0℄ = xtab[1℄ = ytab[2℄ = ztab[3℄ = w
hopper> permuter 2tab[0℄ = wtab[1℄ = xtab[2℄ = ytab[3℄ = ztab[0℄ = ytab[1℄ = ztab[2℄ = wtab[3℄ = x

hopper> permuter 3tab[0℄ = wtab[1℄ = xtab[2℄ = ytab[3℄ = ztab[0℄ = ztab[1℄ = wtab[2℄ = xtab[3℄ = y3.1 Par
ours de tableau (30mn)Question
 : Traduire en langage d'assemblage ARM la bou
le for dans le
orpsde permuter (lignes
ommentées "à traduire"). Respe
tez l'allo
ation des variables auxregistres indiquée en
ommentaire.3.2 Rotation (25mn)Voi
i une autre tradu
tion (optimisée par un programmeur humain) de la pro
édurepermuter : .datarotation: .hword 3 � unsigned short rotation = 3.balign 4tab
ar: .byte 'w' � unsigned
har tab
ar [4℄ =.byte 'x' � {'w','x','y','z'};.byte 'y'.byte 'z'.textpermuter: stmfd sp!, {r0-r2}ldr r1,= tab
arldr r2,[r1℄mov r0, r0, LSL #3mov r2, r2, ROR r0str r2, [r1℄ldmfd sp!,{r0-r2}mov p
,lrQuestion : expliquer le prin
ipe de fon
tionnement de
ette tradu
tion sansbou
le, puis pourquoi
ette version ne fon
tionne pas sur une ma
hine big endian.4

La dire
tive d'alignement de tab
ar est-elle né
essaire ou inutile (justi�er pour-quoi) ?Proposer une tradu
tion optimisée de permuter pour ma
hine big endian.3.3 Dé
alages (15 mn)En C, les booléens sont représentés sous forme d'entiers. Les opérateurs de
om-paraison retournent l'entier 1 si la
ondition est vraie et l'entier 0 si la
ondition estfausse. On veut traduire l'a�e
tation dans le fragment de
ode suivant :register int x; // a sto
ker dans r0register unsigned int x_neg; // a sto
ker dans r1x_neg = (x<0); // x_neg = 1 pour x<0// x_neg = 0 pour x>=0Grça
e aux opérateurs de dé
alage, il est possible de réaliser l'équivalent de
ettea�e
tation sans utiliser d'opérateur de
omparaison. Ce
i suppose de
onnaître la mé-thode de représentation en binaire des entiers relatifs.Expliquer brièvement le prin
ipe utilisé et é
rire le
ode
orrespondant (en C eten assembleur).4 Annexes4.1 Big et Little EndianSoit un entier 32 bits sto
ké en mémoire à l'adresse 4X :
haque o
tet
ontient 8bits de l'entier. Il existe deux méthodes de rangement de
es o
tets en mémoire :� big endian 1 : les o
tets d'adresses
roissantes
ontiennent les paquets de 8 bitsde poids
roissant.� little endian 2 : les o
tets d'adresses
roissantes
ontiennent les paquets de 8 bitsde poids dé
roissant.Exemple : sto
kage de l'entier 0xab
def12 à l'adresse 1000.Adresse d'o
tet Contenu Big endian Contenu Little Endian1000 0xab 0x121001 0x
d 0xef1002 0xef 0x
d1003 0x12 0xab1. parfois traduit "gros boutiste" en français2. "petit boutiste"
5

4.2 Rappels sur les dé
alages et rotationsEn C, les opérateurs de dé
alage sont notés≪ et≫ (la nature du dé
alage à droitedépend du type de la variable dé
alée). En langage d'assemblage, les notations sontLSL, LSR et ASR et il existe aussi une rotation à droite notée ROR (mais il n'existepas de rotation à gau
he).C Lang. assemblage Opération Vers Type d'entier r0r2=r0�r1 mov r2, r0, LSR r1 dé
alage logique droite naturel (unsigned int)mov r2, r0, ASR r1 dé
alage arithmétique droite relatif (int)r2=r0�r1 mov r2, r0, LSL r1 dé
alage logique gau
he naturel ou relatifmov r2, r0, ROR r1 rotation droiteUn dé
alage à gau
he de b bits supprime les b bits de poids forts et ajoute (àdroite) b bits à 0 en poids faibles.Un dé
alage logique à droite de b bits supprime les b bits de poids faibles et ajoute (àgau
he) b bits à 0 en poids forts.Un dé
alage arithmétique à droite de b bits supprime les b bits de poids faibles etajoute (à gau
he) b bits égaux à l'an
ien bit de poids fort (bit de signe).Une rotation à droite est une variante de dé
alage à droite dans lequel les bitsajoutés à gau
he sont les bits supprimés à droite.Entier initial opération Résultat
101
←−

10001001000110100010101101011 LSL #3 10001001000110100010101101011 000

001
←−

10001001000110100010101101010 10001001000110100010101101010 000

10110001001000110100010101101 011
−→ LSR #3 000 10110001001000110100010101101

00110001001000110100010101101 010
−→

000 00110001001000110100010101101

10110001001000110100010101101 011
−→ ASR #3 111 10110001001000110100010101101

00110001001000110100010101101 010
−→

000 00110001001000110100010101101

1011000100100011010001010110 1011
−−→

ROR #4 1011
−−→

1011000100100011010001010110

10110001 001000110100010101101011
−−−−−−−−−−−−−−−−−−−−→

ROR #25 001000110100010101101011
−−−−−−−−−−−−−−−−−−−−→

10110001Table 1 � Les bits
onservés et dé
alés sont indiqués en gras
6

