M2P CCI : examen Langage Machine, Novembre 2010

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matiéres

1 Variables et pointeurs (20mn) 1
2 Procédures et comparaisons (30mn) 1
3 Tableaux, base 2, décalages et rotations (1h10) 3
3.1 Parcours de tableau (30mn) L 4
3.2 Rotation (25mn) 4
3.3 Deécalages (15mn) 5
4 Annexes 5
4.1 Biget Little Endian o oo 5
4.2 Rappels sur les décalages et rotations 6

1 Variables et pointeurs (20mn)

Traduire en langage d’assemblage les déclarations de variables et les deux affecta-
tions suivantes :

unsigned char ci;
unsigned short y;

unsigned char c2=’a’;
unsigned short *ptr = &x;

unsigned short x =4 ;

y = *ptr;
cl = c2;

Toutes les variables sont stockées en mémoire.

2 Procédures et comparaisons (30mn)

On considére le programme suivant :

.data
voici_x: .asciz "x = %d\o12"
debut: .asciz "debut !\012"
fin: .asciz "fin '\012"

.global main

.text
@ void main (void) {
main: ldr r0,=debut @ printf ("debut !\n");
bl printf
bl proc Q@ proc(Q);
ldr r0,=fin
bl printf @ printf ("fin !'\n");
mov pc,lr Q }
@ void proc (void) {
proc: mov r4, #3 @ int x = 3
@ do {
boucle: ldr 1r0,= voici_x @ printf ("x = %d\n",x);
mov rl, ré
bl printf
sub r4, r4, #1 @Qx =x -1;
cmp r4,#0 @ } while (x != 0);
bne boucle
mov pc,lr e }

Si le programme était traduit correctement, son exécution devrait donner 1’affi-
chage ci-dessous a gauche. Mais cette traduction contient une erreur et on obtient la
trace d’exécution ci-dessous a droite :

debut ! debut !
x =3 x =3
x =2 x =2
x =1 x =1
fin ! x = -1

X = -2

x = -3

Q@ et ainsi de suite

Question : expliquer pourquoi ’exécution ne s’arréte pas aprés 'affichage
"x = 1" et n’affichage pas ("x = 0"). Comment corriger le probléme ?

Un étudiant (mais est-il bon ?) affirme que puisque la constante a laquelle r4 est
comparé est nulle, il est possible d’optimiser le code en supprimant l'instruction cmp.

Question :

1. S’il a raison, que faut-il modifier dans le reste du programme (les instructions
autres que cmp) ?

2. S’l a tort, expliquer pourquoi 'instruction cmp est nécessaire.

3 Tableaux, base 2, décalages et rotations (1h10)

Les optimisations abordées dans cette question reposent sur les notions de déca-
lage, de rotation et de convention little/big endian, rappelées dans les annexes en fin
de sujet.

On suppose que 'on travaille sur une machine ARM little endian qui représente
les entiers relatifs selon la méthdoe du complément a deux. Les entiers de type int
sont codés sur 32 bits. On considére un tableau de caractéres sur lequel effectuer des
permutations d’éléments.

unsigned short rotation = 3;
char tabcar[4] = {’w’,’x’,’y’,’2°};

void permuter (unsigned short r) // r a stocker dans r0
{
register unsigned int i; // a stocker dans ri
register unsigned int j; // a stocker dans r2
register char tmp; // a stocker dans r3
for (i=0;i<r;i++) // a traduire
{ // a traduire
tmp = tabcar[0]; // a traduire
for (j=0; j<3; j++) // a traduire
tabcar[j] = tabcar[j+1]; // a traduire
tabcar[3] = tmp; // a traduire
} // a traduire
}
void main (int argc, char *argv[])
{
sscanf (argv[1],"%hu",&rotation);
afficher ();
permuter (rotation);
afficher ();
}

hopper> permuter 1 hopper> permuter 2 hopper> permuter 3

tab[0]
tab[1]
tab[2]
tab[3]

tab[0]
tab[1]
tab[2]
tab[3]

U

N < X

= N< X

tab[0] = w tab[0] = w
tab[1] = x tab[1] = x
tab[2] =y tab[2] =y
tab[3] = z tab[3] = z
tab[0] =y tab[0] = z
tab[1] = z tabl[1] = w
tab[2] = w tab[2] = x
tab[3] = x tab[3] =y

3.1 Parcours de tableau (30mn)

Question c : Traduire en langage d’assemblage ARM la boucle for dans le corps
de permuter (lignes commentées "a traduire"). Respectez ’allocation des variables aux
registres indiquée en commentaire.

3.2 Rotation (25mn)

Voici une autre traduction (optimisée par un programmeur humain) de la procédure

permuter :

rotation:

tabcar:

permuter:

.data

.hword 3 Q@ unsigned short rotation = 3
.balign 4

.byte >w’> @ unsigned char tabcar [4] =
_byte ,X, @ {’W’,’X’,’y’,’z’};

.byte y?

.byte >z’

.text

stmfd sp!, {r0-r2}
1dr ri1,= tabcar
ldr r2,[ri]

mov r0, rO, LSL #3
mov r2, r2, ROR r0O
str r2, [ri]

1dmfd sp!,{r0-r2}
mov pc,lr

Question : expliquer le principe de fonctionnement de cette traduction sans
boucle, puis pourquoi cette version ne fonctionne pas sur une machine big endian.

La directive d’alignement de tabcar est-elle nécessaire ou inutile (justifier pour-
quoi) ?

Proposer une traduction optimisée de permuter pour machine big endian.

3.3 Décalages (15 mn)

En C, les booléens sont représentés sous forme d’entiers. Les opérateurs de com-
paraison retournent l’entier 1 si la condition est vraie et ’entier 0 si la condition est
fausse. On veut traduire 'affectation dans le fragment de code suivant :

register int x; // a stocker dans r0
register unsigned int x_neg; // a stocker dans ri
x_neg = (x<0); // x_neg = 1 pour x<0

// x_neg = 0 pour x>=0

Grcace aux opérateurs de décalage, il est possible de réaliser I’équivalent de cette
affectation sans utiliser d’opérateur de comparaison. Ceci suppose de connaitre la mé-
thode de représentation en binaire des entiers relatifs.

Expliquer briévement le principe utilisé et écrire le code correspondant (en C et
en assembleur).

4 Annexes

4.1 Big et Little Endian

Soit un entier 32 bits stocké en mémoire a I'adresse 4X : chaque octet contient 8
bits de ’entier. Il existe deux méthodes de rangement de ces octets en mémoire :
— big endian ' : les octets d’adresses croissantes contiennent les paquets de 8 bits
de poids croissant.
— little endian ? : les octets d’adresses croissantes contiennent les paquets de 8 bits
de poids décroissant.

Exemple : stockage de I'entier Oxabcdef12 & I’adresse 1000.

Adresse d’octet | Contenu Big endian | Contenu Little Endian
1000 Oxab 0x12
1001 Oxcd Oxef
1002 Oxef Oxcd
1003 0x12 Oxab

1. parfois traduit "gros boutiste" en francais
2. "petit boutiste"

4.2 Rappels sur les décalages et rotations

En C, les opérateurs de décalage sont notés < et > (la nature du décalage a droite
dépend du type de la variable décalée). En langage d’assemblage, les notations sont
LSL, LSR et ASR et il existe aussi une rotation a droite notée ROR (mais il n’existe

pas de rotation a gauche).

C Lang. assemblage | Opération Vers | Type d’entier r(
9 10p] | OV r2, r0, LSR r1 | décalage logique droite | naturel (unsigned int)
a mov 12, 10, ASR rl | décalage arithmétique | droite | relatif (int)
r2=r0«rl | mov r2, r0, LSL r1 | décalage logique gauche .
mov 12, r0, ROR rl | rotation droite naturel ou relatif

Un décalage a gauche de b bits supprime les b bits de poids forts et ajoute (a

droite) b bits & 0 en poids faibles.

Un décalage logique a droite de b bits supprime les b bits de poids faibles et ajoute (a

gauche) b bits a 0 en poids forts.

Un décalage arithmétique a droite de b bits supprime les b bits de poids faibles et
ajoute (& gauche) b bits égaux a 'ancien bit de poids fort (bit de signe).

Une rotation a droite est une variante de décalage a droite dans lequel les bits
ajoutés a gauche sont les bits supprimés a droite.

Entier initial opération Résultat
&1 10001001000110100010101101011 LSL #3 10001001000110100010101101011 000
@ 10001001000110100010101101010 10001001000110100010101101010 000
10110001001000110100010101101 (M LSR #3 000 10110001001000110100010101101
00110001001000110100010101101 w 000 00110001001000110100010101101
10110001001000110100010101101 (& ASR #3 111 10110001001000110100010101101
00110001001000110100010101101 (& 000 00110001001000110100010101101
1011000100100011010001010110 1011 | ROR #4 | 1011 1011000100100011010001010110
10110001 001000110100010101101011 ROR #25 001000110100010101101011 10110001

TABLE 1 — Les bits conservés et décalés sont indiqués en gras

