Master CCI LM Examen final 2011

Durée Deux heures, documents autorisés, calculatrice et ordinateur
interdits

Avant de commencer ce sujet, prennez bien connaissance de 'annexe D qui vous
donne des consignes sur ’ABI a respecter au cours de cet examen. Vous pourrez ensuite
vous laisser guider par les diverses consignes de ces trois exercices indépendants.

1 Variables et pointeurs

Q1) Traduire en langage d’assemblage ARM les déclarations et affectatins sui-
vantes :

short a;
char car;

char =*pcar = &car;

char car2 = ’b’;
short b = 3;
[...]

a = b;

car = *pcar;
[...]

Attention : Ici, toutes les variables sont placées en mémoire et sont globales.

2 Sérialisation (Tableaux, structures, ...)

2.1 Définition de I’enregistrement

On a la structure suivante :

struct record {

int id;
char initial;
short age;

short poids;

};
struct record a;

Q2.1) Traduire en langage d’assemblage ARM, la déclaration de a. Vous donnerez
par la méme la taille de la structure struct toto.

2.2 Sérialisation des enregistrement

On posséde une grande collection d’enregistrement du type struct record pla-
cée sous la forme d’un tableau dans la mémoire centrale. On souhaite maintenant le
transmettre par le réseau a une autre machine. Nous avons pour cela deux contraintes :

— rien ne sert de transmettre des octets inutiles, le débit de transfert est une res-
source rare, on va donc éviter de la gaspiller. On ne transmettra donc pas les
octets de bourrage.

— toutes les machines n’ont pas la méme endianness (c.f. annexe E). L’ARM est
naturellement little-endian. Malheureusement, il y a fort longtemps les construc-
teurs se sont mis d’accord pour que les valeurs transmises sur les réseaux soit
big endian. Il nous faut donc écrire les valeurs dans la bonne endianness.

Pour réaliser cela, on utilise une fonction serialize (présentée en annexe A qui
prend pour argument I'adresse d’un tableau d’enregistrements placés en mémoire,
ladresse d’un buffer d’octet assez grand pour contenir la serialisation de nos enre-
gistrements, ainsi qu’un dernier argument qui nous donne le nombre d’enregistrement
a serialiser.

Q2.2) Traduire en langage d’assemblage ARM la fonction serialize en respectant
les conventions qui se doivent.

Attention : 'operation LE_to_net n’est pas une fonction qu’il vous faut appeler,
mais bien une série d’instructions ARM & définir dans votre programme en langage
d’assemblage.

3 Recursions

3.1 Recursion simple : calcul de puissance

Pour élever un nombre quelconque a une puissance quelconque, on peut avoir re-
cours a une fonction récursive présentée en annexe B.

Q3.1.1) Traduire en langage d’assemblage ARM la fonction pow en respectant les
conventions qui se doivent.

On produit un programme qui appelle directement la fonction pow dans le main.
En observant le simulateur, dans le main, on trouve 'appel a la fonction pow :

[pC] insn LM insn LA
[0x00400038] 0xeb00005C bl 0x0040009C [pow] ; 24: bl pow

Juste avant 'exécution de cette instruction, le contenu des registres est le suivant :

$r0 = 00000008
$r1 = 00000006
$sp = T7FFFEBCO

Q3.1.2) En fonction de votre programme, quel paramétre représente $r0 et $rl?
En observant le simulateur, a quelle adresse commence votre fonction pow ?

Q3.1.3) Dessiner la pile en précisant bien les adresses et le contenu correspondant
a 'exécution de votre programme pour 3 appels a votre fonction récursive.

3.2 BONUS : Récursion double : Calcul des combinaisons

Pour calculer les coefficients binomiaux de deux entiers positifs, on peut avoir
recours a une fonction récursive cnp dite double présentée en annexe C.

Q bonus) Traduire en langage d’assemblage ARM la fonction cnp en respectant
les conventions qui se doivent.

11

13

15

17

19

21

23

25

27

29

31

A Code C réalisant la serialisation

struct record {

int id;
char initial;
short age;

}s

void
serialize(struct record xsrc, char xdst, int

int i;
for(i = 0; i < n; i++){

x(int *)dst) = LE to_net(src[i].id);
dst += 4;

xdst = LE_to_mnet(src[i].initial);

dst += 1;

x(short *)dst = LE to_net(src[i].age);
dst += 2;

*(short x)dst = LE to_net(src|[i].poids);
dst += 2;

serialize.c

10

B Code C réalisant le calcul de puissance

int pow(int a, int n)
{
if (n = 0) return 1;

return a x pow(a, n — 1);

}

recursion_1.c

C Code C réalisant le calcul des combinaisons

int cnp(int n, int p)

{
if (p > n)
return 0;
if (p = 0)
return 1;
return cnp(n — 1, p) + conp(n — 1, p — 1);
}

recursion_2.c

D ABI simplifiée

Pour la traduction de fonction/procédure dans cette examen, il vous est demandez
de respecter une ABI simplifiée (par rapport a celle produite par exemple par les
chaines de compilation GNU).

Il vous est proposé d’adopter 'agencement de pile suivant :

params des arg4 < SP
fonctions
appelées argN

local + tmp

adresses
RegSave croissantes
ancien FP
ancien SP
LR

ancien SP - < FP

Dans le cas de ’ARM, nous sommes bien en présence d’un pile FD (Full Descen-
ding). C’est a dire que la pile grandit vers les adresses décroissantes et que le sommet
de pile (SP) pointe sur le dernier élément plein. On rappelera de méme que les quatres
premiers arguments des fonctions sont passés par registres (r0 - r3) et que la valeur
de retour est passée par registre (r0). Aucun registre n’est sir au travers des appels
de fonction.

Pour la sauvegarde et la restauration de registres vous n’utiliserez que des 1dr et
str (pas de 1dm et stm).

E Big et Little Endian

Soit un entier sur 32 bits stocké en mémoire & I’adresse 4X : chaque octet contient
8 bits de l'entier. Il existe deux méthodes de rangement de ces octets en mémoire :
— big-endian® : les octets d’adresses croissantes contiennent les paquets de 8 bits
de poids croissant.
— little-endian 2 : les octets d’adresses croissantes contiennent les paquets de 8 bits
de poids décroissant.
Exemple : stockage de I'entier Oxabcdef12 a I’adresse 0x1000

Adresse | Big Endian | Little Endian
0x1000 Oxab 0x12
0x1000 Oxcd Oxef
0x1000 Oxef Oxcd
0x1000 0x12 Oxab

1. dit grand boutiste
2. dit petit boutiste

