M2P CCI : corrigé examen Langage Machine, No-
vembre 2012

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matiéres

1

1 Tableaux et fonctions (90mn)

Tableaux et fonctions (90mn)
1.1 Section .data (15mn)
1.2 Chercher_mini (parcours de tableau avec pointeur) (40mn)
1.3 Main (Appel de fonction, arithmétique sur les pointeurs) (20mn)
1.4 Parcours du tableau par indice (15mn)

Fonction mystére (branchements et appels, if) (30mn)

Ot W DO =

On considére le programme suivant qui recherche la valeur et I'indice de ’élément
minimum d’un tableau :

#include <stdio.h>
#include <string.h>

char formatl [13]
char format2 [24]

"tab[0]
"mini =

unsigned short *p = tab;

void chercher_mini (unsigned int n,
unsigned short **ptr_mini)

{

register unsigned short min;
register unsigned short *p_min;
register unsigned short *p;

min = tabl[0];
p_min = tab;

for (p=tab+l; p<tab+n;p++)
{
if (*p < min)
{
min = *p;
p_min = p;

%hu , indice %u\n";
unsigned short tab [9] = {3,6,8,7,2,1,9,0,5};

// n dans r0
// ptr_mini dans ri1

// a stocker dans r4
// a stocker dans r5
// a stocker dans ré6

i
*ptr_mini = p_min;

}

int main (void)
{
register unsigned short m; // a stocker dans r6
register unsigned int indice; // a stocker dans r7

printf (formatl,*p);
chercher_mini (8,&p);

m = *p;

indice = p-tab;

printf (format2, m,indice);

return O;

La convention d’appel de chercher mini est la suivante :
— le premier paramétre (n) est passé dans le registre r0.
— le deuxiéme paramétre (ptr_mini) est passé dans rl.
— L’adresse de retour est passée dans Ir.

1.1 Section .data (15mn)

Traduire en langage d’assemblage ARM les déclarations de format1, format2, tab
et p.

.data
formati: .asciz "tab[0] = %d\n"
format2: .asciz '"mini = %hu , indice = %u\n"
.balign 2
tab: .half 3

.half 6

.half 8

.half 7

.half 2

.half 1

.half 9

.half 0

.half 5

.balugn 4
p: .word tab

L’initialisateur de formatl est une chaine de douze caractéres (\ n représente un
seul caractére), celui de tab un ensemble de 9 entiers.

Pourquoi le tableau formatl est-il déclaré de taille 13 alors que tab est bien de
taille 97

Une chaine de n caractéres est représentée sur n+1 octets a cause de la marque de
fin de chaine ("\0’ ou 0) & prévoir pour délimiter la chaine. Le probléme ne concerne
pas un simple tableau d’entiers.

1.2 Chercher mini (parcours de tableau avec pointeur) (40mn)

Voici un squelette de la traduction de chercher mini en langage d’assemblage ARM
a compléter :

.global chercher_mini

.text
chercher_mini:
prologue : stmfd sp!, {r4-r9} @ sauver r4 a r9 dans la pile
corps : o @ traduire ici min = tab[0]
@ jusqu’a *ptr_mini = p_min
epilogue: sp!,{r4-ro} @ restaurer r4 a r9

Traduire les instructions min = tab[0] et p _min = tab.
Traduire la totalité de la boucle for (if inclus).

Traduire la fin de la fonction.

.global chercher_mini

.text
chercher_mini: stmfd sp!, {r4-r8}

ldr r7,= tab @ min = tabl[0]
ldrh r4, [r7]

mov r5,r7 @ p_min = tab

corps:

if:

alors:

finsi:

test:

ldmfd
mov

sp!,{r4-

pc,lr

add
add
b
1drh
cmp

bhs

ldrh
mov

add

cmp
blo

str

r8}

ré, r7, #2

r7, r7, rO0, LSL #1

test

r8, [r6]
r8,r4
finsi

rd, [r6]
r5,r6

r6,r6,#2

ré6,r7
corps

r5, [ri]

@ p = tab+1l
@tab+n
@ goto test

@ if (xp >= min) goto finsi

@ min = *p
@ p_min = p;

Q@ pt++

@ if (p<tab) goto corps

@ *ptr_mini = p_min

1.3 Main (Appel de fonction, arithmétique sur les pointeurs)

(20mn)

Traduire en langage d’assemblage I'instruction chercher mini (8,&p).

.text
mov 10, #8
ldr ri,=p

bl

chercher_mini

Traduire en langage d’assemblage l'instruction indice = p-tab. Attention :
si deux pointeurs pl et p2 repérent respectivement tabl[i] et tab|j|, alors I'expression
pl-p2 représente i-j.

.text

1dr 1r5,= tab
ldr r4,=p
ldr r4, [r4]
sub r7,r4,r5

mov

r7, r7, LSR #1

1.4 Parcours du tableau par indice (15mn)

Voici une autre version de chercher mini utilisant une variable de boucle de type
indice.

void chercher_mini (unsigned int n, // n dans r0
unsigned short **ptr_mini) // ptr_mini dans r1
{
register unsigned short min; // a stocker dans r4
register unsigned indice_min; // a stocker dans r5
register unsigned int i; // a stocker dans r6

min = tab[0];

for (i=0;i<n;i++)

{
if (tab[i] < min)
{
min = tab[i];
indice_min = 1i;
}
}

*ptr_mini = tab + 1i;

+

Répondre aux questions suivantes sans rajouter de variable de boucle de type
pointeur :

— Traduire 'instruction if (corps du if inclus).

— Traduire U'instruction *ptr mini = tab + i.

.text
@ traduction du if
@ traduction du if
ldr 1r7,= tab Q@ r9 <- tabli]
mov 1r8, r6, LSL #1
ldrh r9, [r7,r8]
cmp r9, min
bhs finsi
mov 1r4,r9
mov 1rb, 16
finsi:
@ traduction de *ptr_mini = tab + 1
1dr r7,=tab @ instruction redondante
add r8, r7, r6, LSL #1
str r8, [ri]

2 Fonction mystére (branchements et appels, if) (30mn)

Voici une traduction manuelle d’une fonction lettre dont le prototype est le suivant :
void lettre (char c).

.global lettre

.data

table: .word voy_hexa
.word cons_hexa
.word cons_hexa
.word cons_hexa
.word voy_hexa
.word cons_hexa
.word cons
.word cons
.word voy
.word cons
.word cons
.word cons
.word cons
.word cons
.word voy
.word cons
.word cons
.word cons
.word cons
.word cons
.word voy
.word cons
.word cons
.word cons
.word voy
.word cons

.text
ml: .asciz "N’est pas une minuscule\n"
m2: .asciz '"consonne\n"
m3: .asciz '"voyelle\n"
mé: .asciz '"consonne hexa\n"
m5: .asciz "voyelle hexa\n"

.global lettre
.balign 4

lettre: stmfd sp!, {r0-r2,1r}
ldr 1r,= fin

cmp r0, #’a’

blo pas_min
cmp r0, #’z’
bhi pas_min

sub rl,r0,#’a’
mov rl, r1, LSL #2
1ldr r2,= table
1ldr pc, [r2,ri]

pas_min:

ldr 1r0,=mil

b printf
cons_hexa:

ldr r0,= m4

b printf
cons:

1dr r0,= m2

b printf
voy_hexa:

ldr 1r0,= mb

b printf
voy:

ldr 1r0,= m3

b printf
fin: ldmfd sp!, {r0-r2,1r}

mov pc,1lr
.1ltorg

Cette fonction affiche un message décrivant une information sur la nature du ca-
ractére recu en parameétre.

Qu’affiche-t-elle pour
1. ’0’ : N’est pas une minuscule

2. 7’ : N’est pas une minuscule

3. ’a’ : voyelle hexa
4. ’b’ : consonne hexa
5. ’e’ : voyelle hexa
6. ‘g’ : consonne

7. 1 : voyelle

Donner une séquence de code ARM se comportant de la méme maniére que la
fonction lettre et n’utilisant aucun tableau. Les deux méthodes sont-elles comparables
en temps d’exécution (justifier briévement votre conclusion) ?

.text
.global lettre
.balign 4
lettre: stmfd sp!, {r0-r2,1r}

cmp r0, #’a’

blo pas_min
cmp ro, #’°z’
bhi pas_min

cmp r0, #’a’
beq voy_hexa
cmp r0, #’e’
beq voy_hexa

cmp r0, #°g’
blo cons_hexa

cmp r0,#°1’

beq voy
cmp r0,#’0’
beq voy
cmp r0,#°u’
beq voy
cmp ro,#’y’
beq voy
cons:
ldr 1r0,= m2
bl printf
b fin
vVoy:

1ldr 1r0,= m3

bl printf

b fin
pas_min:

ldr 1r0,=mil

bl printf

b fin
cons_hexa:

ldr 1r0,= mé

bl printf

b fin
voy_hexa:

ldr 1r0,= mb

bl printf
fin: ldmfd sp!, {r0-r2,1r}

mov pc,1lr

.1torg

Ci-dessous, I'estimation de vitesse de traitement ne tient pas compte des instruc-
tions appartenant au prologue et a 1’épilogue.

La vitesse de traitement des non minuscules est comparable entre les deux ver-
sions : 7 instructions.

La version tableau traite les minuscules a colit constant : 11 instructions. L’autre
version demande un temps variable selon la minuscule rencontrée : 8 et 10 instructions
pour ’a’ et 'e’ respectivement et de 13 a 21 instructions pour les autres. Sauf fréquence
élévée de 'a’ et de ’e’, la version tableau exécute en moyenne moins d’instructions.

Expliquer pourquoi

— Printf n’est exécuté qu'une seule fois par appel de lettre alors qu’il n’y a aucun

branchement entre deux appels de printf et le branchement & printf s’effectue
par b et non par bl.

— Lr doit étre sauvé dans le prologue et restauré dans I’épilogue.

Le principe consiste & transmettre & printf I’étiquette fin comme adresse de retour
(instruction ldr Ir,=fin). De ce fait, il n’y a plus & sauver d’adresse de retour pour
le branchement aller vers printf (b au lieu de bl). D’autre part, au retour de printf,
I’exécution sautera directement & fin au lieu de continuer avec l'instruction qui suivrait
I’appel a printf. Il n’est donc pas nécessaire d’ajouter un branchement vers fin aprés

chaque appel de printf : le saut & fin est assuré par 'instruction de retour a la fin du
corps de printf.

L’appel de printf sauvegarde I’adresse de retour dans lettre dans Ir, détruisant ainsi
I’adresse de retour de lettre vers main. Comme tous les registres modifiés par le corps
de lettre, Ir doit étre sauvegardé dans le prologue et restauré dans I’épilogue.

Pourrait-on effectuer le branchement a printf sans utiliser de branchement relatif
(ni b ni bl)?

— Si oui, avec quelle instruction ou séquence d’instructions ARM 7

— Si non, expliquer pourquoi ce n’est pas possible.

Oui, avec l'instruction ldr pc,= printf. Il s’agit alors d’un branchement de type
absolu, mais cela reste un branchement. Cette instruction doit étre précédée d’une
affectation de I’adresse de retour dans le registre Ir.

10

