
M2P CCI : corrigé examen Langage Machine, No-

vembre 2012

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matières

1 Tableaux et fonctions (90mn) 1
1.1 Section .data (15mn) . 2
1.2 Chercher_mini (parcours de tableau avec pointeur) (40mn) 3
1.3 Main (Appel de fonction, arithmétique sur les pointeurs) (20mn) . . . 4
1.4 Parcours du tableau par indice (15mn) 5

2 Fonction mystère (branchements et appels, if) (30mn) 6

1 Tableaux et fonctions (90mn)

On considère le programme suivant qui recherche la valeur et l'indice de l'élément
minimum d'un tableau :

#include <stdio.h>

#include <string.h>

char format1 [13] = "tab[0] = %d\n";

char format2 [24] = "mini = %hu , indice %u\n";

unsigned short tab [9] = {3,6,8,7,2,1,9,0,5};

unsigned short *p = tab;

void chercher_mini (unsigned int n, // n dans r0

unsigned short **ptr_mini) // ptr_mini dans r1

{

register unsigned short min; // a stocker dans r4

register unsigned short *p_min; // a stocker dans r5

register unsigned short *p; // a stocker dans r6

min = tab[0];

p_min = tab;

for (p=tab+1; p<tab+n;p++)

{

if (*p < min)

{

min = *p;

p_min = p;

1

}

}

*ptr_mini = p_min;

}

int main (void)

{

register unsigned short m; // a stocker dans r6

register unsigned int indice; // a stocker dans r7

printf (format1,*p);

chercher_mini (8,&p);

m = *p;

indice = p-tab;

printf (format2, m,indice);

return 0;

}

La convention d'appel de chercher_mini est la suivante :
� le premier paramètre (n) est passé dans le registre r0.
� le deuxième paramètre (ptr_mini) est passé dans r1.
� L'adresse de retour est passée dans lr.

1.1 Section .data (15mn)

Traduire en langage d'assemblage ARM les déclarations de format1, format2, tab
et p.

.data

format1: .asciz "tab[0] = %d\n"

format2: .asciz "mini = %hu , indice = %u\n"

.balign 2

tab: .half 3

.half 6

.half 8

.half 7

.half 2

.half 1

.half 9

.half 0

2

.half 5

.balugn 4

p: .word tab

L'initialisateur de format1 est une chaîne de douze caractères (\ n représente un
seul caractère), celui de tab un ensemble de 9 entiers.

Pourquoi le tableau format1 est-il déclaré de taille 13 alors que tab est bien de
taille 9 ?

Une chaîne de n caractères est représentée sur n+1 octets à cause de la marque de
�n de chaîne ('\0' ou 0) à prévoir pour délimiter la chaîne. Le problème ne concerne
pas un simple tableau d'entiers.

1.2 Chercher_mini (parcours de tableau avec pointeur) (40mn)

Voici un squelette de la traduction de chercher_mini en langage d'assemblage ARM
à compléter :

.global chercher_mini

.text

chercher_mini:

prologue : stmfd sp!, {r4-r9} @ sauver r4 a r9 dans la pile

corps : ... @ traduire ici min = tab[0]

@ jusqu'a *ptr_mini = p_min

epilogue: sp!,{r4-r9} @ restaurer r4 a r9

...

Traduire les instructions min = tab[0] et p_min = tab.

Traduire la totalité de la boucle for (if inclus).

Traduire la �n de la fonction.

.global chercher_mini

.text

chercher_mini: stmfd sp!, {r4-r8}

ldr r7,= tab @ min = tab[0]

ldrh r4, [r7]

mov r5,r7 @ p_min = tab

3

add r6, r7, #2 @ p = tab+1

add r7, r7, r0, LSL #1 @tab+n

b test @ goto test

corps:

if: ldrh r8, [r6] @ if (*p >= min) goto finsi

cmp r8,r4

bhs finsi

alors: ldrh r4,[r6] @ min = *p

mov r5,r6 @ p_min = p;

finsi: add r6,r6,#2 @ p++

test: cmp r6,r7 @ if (p<tab) goto corps

blo corps

str r5, [r1] @ *ptr_mini = p_min

ldmfd sp!,{r4-r8}

mov pc,lr

1.3 Main (Appel de fonction, arithmétique sur les pointeurs)
(20mn)

Traduire en langage d'assemblage l'instruction chercher_mini (8,&p).

.text

mov r0, #8

ldr r1,= p

bl chercher_mini

Traduire en langage d'assemblage l'instruction indice = p-tab. Attention :
si deux pointeurs p1 et p2 repèrent respectivement tab[i] et tab[j], alors l'expression
p1-p2 représente i-j.

.text

ldr r5,= tab

ldr r4,= p

ldr r4, [r4]

sub r7,r4,r5

mov r7, r7, LSR #1

4

1.4 Parcours du tableau par indice (15mn)

Voici une autre version de chercher_mini utilisant une variable de boucle de type
indice.

void chercher_mini (unsigned int n, // n dans r0

unsigned short **ptr_mini) // ptr_mini dans r1

{

register unsigned short min; // a stocker dans r4

register unsigned indice_min; // a stocker dans r5

register unsigned int i; // a stocker dans r6

min = tab[0];

for (i=0;i<n;i++)

{

if (tab[i] < min)

{

min = tab[i];

indice_min = i;

}

}

*ptr_mini = tab + i;

}

Répondre aux questions suivantes sans rajouter de variable de boucle de type
pointeur :

� Traduire l'instruction if (corps du if inclus).
� Traduire l'instruction *ptr_mini = tab + i.

.text

@ traduction du if

@ traduction du if

ldr r7,= tab @ r9 <- tab[i]

mov r8, r6, LSL #1

ldrh r9, [r7,r8]

cmp r9, min

bhs finsi

mov r4,r9

mov r5, r6

finsi:

@ traduction de *ptr_mini = tab + i

ldr r7,=tab @ instruction redondante

add r8, r7, r6, LSL #1

str r8, [r1]

5

2 Fonction mystère (branchements et appels, if) (30mn)

Voici une traduction manuelle d'une fonction lettre dont le prototype est le suivant :
void lettre (char c).

.global lettre

.data

table: .word voy_hexa

.word cons_hexa

.word cons_hexa

.word cons_hexa

.word voy_hexa

.word cons_hexa

.word cons

.word cons

.word voy

.word cons

.word cons

.word cons

.word cons

.word cons

.word voy

.word cons

.word cons

.word cons

.word cons

.word cons

.word voy

.word cons

.word cons

.word cons

.word voy

.word cons

.text

m1: .asciz "N'est pas une minuscule\n"

m2: .asciz "consonne\n"

m3: .asciz "voyelle\n"

m4: .asciz "consonne hexa\n"

m5: .asciz "voyelle hexa\n"

.global lettre

.balign 4

6

lettre: stmfd sp!, {r0-r2,lr}

ldr lr,= fin

cmp r0, #'a'

blo pas_min

cmp r0, #'z'

bhi pas_min

sub r1,r0,#'a'

mov r1, r1, LSL #2

ldr r2,= table

ldr pc, [r2,r1]

pas_min:

ldr r0,= m1

b printf

cons_hexa:

ldr r0,= m4

b printf

cons:

ldr r0,= m2

b printf

voy_hexa:

ldr r0,= m5

b printf

voy:

ldr r0,= m3

b printf

fin: ldmfd sp!, {r0-r2,lr}

mov pc,lr

.ltorg

Cette fonction a�che un message décrivant une information sur la nature du ca-
ractère reçu en paramètre.

Qu'a�che-t-elle pour

1. '0' : N'est pas une minuscule

2. 'Z' : N'est pas une minuscule

7

3. 'a' : voyelle hexa

4. 'b' : consonne hexa

5. 'e' : voyelle hexa

6. 'g' : consonne

7. 'i' : voyelle

Donner une séquence de code ARM se comportant de la même manière que la
fonction lettre et n'utilisant aucun tableau. Les deux méthodes sont-elles comparables
en temps d'exécution (justi�er brièvement votre conclusion) ?

.text

.global lettre

.balign 4

lettre: stmfd sp!, {r0-r2,lr}

cmp r0, #'a'

blo pas_min

cmp r0, #'z'

bhi pas_min

cmp r0, #'a'

beq voy_hexa

cmp r0, #'e'

beq voy_hexa

cmp r0, #'g'

blo cons_hexa

cmp r0,#'i'

beq voy

cmp r0,#'o'

beq voy

cmp r0,#'u'

beq voy

cmp r0,#'y'

beq voy

cons:

ldr r0,= m2

bl printf

b fin

voy:

8

ldr r0,= m3

bl printf

b fin

pas_min:

ldr r0,= m1

bl printf

b fin

cons_hexa:

ldr r0,= m4

bl printf

b fin

voy_hexa:

ldr r0,= m5

bl printf

fin: ldmfd sp!, {r0-r2,lr}

mov pc,lr

.ltorg

Ci-dessous, l'estimation de vitesse de traitement ne tient pas compte des instruc-
tions appartenant au prologue et à l'épilogue.

La vitesse de traitement des non minuscules est comparable entre les deux ver-
sions : 7 instructions.

La version tableau traite les minuscules à coût constant : 11 instructions. L'autre
version demande un temps variable selon la minuscule rencontrée : 8 et 10 instructions
pour 'a' et 'e' respectivement et de 13 à 21 instructions pour les autres. Sauf fréquence
élévée de 'a' et de 'e', la version tableau exécute en moyenne moins d'instructions.

Expliquer pourquoi
� Printf n'est exécuté qu'une seule fois par appel de lettre alors qu'il n'y a aucun
branchement entre deux appels de printf et le branchement à printf s'e�ectue
par b et non par bl.

� Lr doit être sauvé dans le prologue et restauré dans l'épilogue.

Le principe consiste à transmettre à printf l'étiquette �n comme adresse de retour
(instruction ldr lr,=�n). De ce fait, il n'y a plus à sauver d'adresse de retour pour
le branchement aller vers printf (b au lieu de bl). D'autre part, au retour de printf,
l'exécution sautera directement à �n au lieu de continuer avec l'instruction qui suivrait
l'appel à printf. Il n'est donc pas nécessaire d'ajouter un branchement vers �n après

9

chaque appel de printf : le saut à �n est assuré par l'instruction de retour à la �n du
corps de printf.

L'appel de printf sauvegarde l'adresse de retour dans lettre dans lr, détruisant ainsi
l'adresse de retour de lettre vers main. Comme tous les registres modi�és par le corps
de lettre, lr doit être sauvegardé dans le prologue et restauré dans l'épilogue.

Pourrait-on e�ectuer le branchement à printf sans utiliser de branchement relatif
(ni b ni bl) ?

� Si oui, avec quelle instruction ou séquence d'instructions ARM?
� Si non, expliquer pourquoi ce n'est pas possible.
Oui, avec l'instruction ldr pc,= printf. Il s'agit alors d'un branchement de type

absolu, mais celà reste un branchement. Cette instruction doit être précédée d'une
a�ectation de l'adresse de retour dans le registre lr.

10

