
M2P CCI : examen Langage Machine, Novembre 2012

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matières

1 Tableaux et fonctions (90mn) 1
1.1 Section .data (15mn) . 2
1.2 Chercher_mini (parcours de tableau avec pointeur) (40mn) 2
1.3 Main (Appel de fonction, arithmétique sur les pointeurs) (20mn) . . . 3
1.4 Parcours du tableau par indice (15mn) 3

2 Fonction mystère (branchements et appels, if) (30mn) 4

1 Tableaux et fonctions (90mn)

On considère le programme suivant qui recherche la valeur et l'indice de l'élément
minimum d'un tableau :

#include <stdio.h>

#include <string.h>

char format1 [13] = "tab[0] = %d\n";

char format2 [24] = "mini = %hu , indice %u\n";

unsigned short tab [9] = {3,6,8,7,2,1,9,0,5};

unsigned short *p = tab;

void chercher_mini (unsigned int n, // n dans r0

unsigned short **ptr_mini) // ptr_mini dans r1

{

register unsigned short min; // a stocker dans r4

register unsigned short *p_min; // a stocker dans r5

register unsigned short *p; // a stocker dans r6

min = tab[0];

p_min = tab;

for (p=tab+1; p<tab+n;p++)

{

if (*p < min)

{

min = *p;

p_min = p;

}

1

}

*ptr_mini = p_min;

}

int main (void)

{

register unsigned short m; // a stocker dans r6

register unsigned int indice; // a stocker dans r7

printf (format1,*p);

chercher_mini (8,&p);

m = *p;

indice = p-tab;

printf (format2, m,indice);

return 0;

}

La convention d'appel de chercher_mini est la suivante :
� le premier paramètre (n) est passé dans le registre r0.
� le deuxième paramètre (ptr_mini) est passé dans r1.
� L'adresse de retour est passée dans lr.

1.1 Section .data (15mn)

Traduire en langage d'assemblage ARM les déclarations de format1, format2, tab
et p.

L'initialisateur de format1 est une chaîne de douze caractères (\n représente un
seul caractère), celui de tab un ensemble de 9 entiers. Pourquoi le tableau format1
est-il déclaré de taille 13 alors que tab est bien de taille 9 ?

1.2 Chercher_mini (parcours de tableau avec pointeur) (40mn)

Voici un squelette de la traduction de chercher_mini en langage d'assemblage ARM
à compléter :

.global chercher_mini

.text

chercher_mini:

prologue : stmfd sp!, {r4-r9} @ sauver r4 a r9 dans la pile

corps : ... @ traduire ici min = tab[0]

@ jusqu'a *ptr_mini = p_min

2

epilogue: sp!,{r4-r9} @ restaurer r4 a r9

...

Traduire les instructions min = tab[0] et p_min = tab.

Traduire la totalité de la boucle for (if inclus).

Traduire la �n de la fonction.

1.3 Main (Appel de fonction, arithmétique sur les pointeurs)
(20mn)

Traduire en langage d'assemblage l'instruction chercher_mini (8,&p).

Traduire en langage d'assemblage l'instruction indice = p-tab. Attention :
si deux pointeurs p1 et p2 repèrent respectivement tab[i] et tab[j], alors l'expression
p1-p2 représente i-j.

1.4 Parcours du tableau par indice (15mn)

Voici une autre version de chercher_mini utilisant une variable de boucle de type
indice.

void chercher_mini (unsigned int n, // n dans r0

unsigned short **ptr_mini) // ptr_mini dans r1

{

register unsigned short min; // a stocker dans r4

register unsigned indice_min; // a stocker dans r5

register unsigned int i; // a stocker dans r6

min = tab[0];

for (i=0;i<n;i++)

{

if (tab[i] < min)

{

min = tab[i];

indice_min = i;

}

}

*ptr_mini = tab + i;

}

Répondre aux questions suivantes sans rajouter de variable de boucle de type
pointeur :

3

� Traduire l'instruction if (corps du if inclus).
� Traduire l'instruction *ptr_mini = tab + i.

2 Fonction mystère (branchements et appels, if) (30mn)

Voici une traduction manuelle d'une fonction lettre dont le prototype est le suivant :
void lettre (char c).

.global lettre

.data

table: .word voy_hexa

.word cons_hexa

.word cons_hexa

.word cons_hexa

.word voy_hexa

.word cons_hexa

.word cons

.word cons

.word voy

.word cons

.word cons

.word cons

.word cons

.word cons

.word voy

.word cons

.word cons

.word cons

.word cons

.word cons

.word voy

.word cons

.word cons

.word cons

.word voy

.word cons

.text

m1: .asciz "N'est pas une minuscule\n"

m2: .asciz "consonne\n"

m3: .asciz "voyelle\n"

m4: .asciz "consonne hexa\n"

m5: .asciz "voyelle hexa\n"

4

.global lettre

.balign 4

lettre: stmfd sp!, {r0-r2,lr}

ldr lr,= fin

cmp r0, #'a'

blo pas_min

cmp r0, #'z'

bhi pas_min

sub r1,r0,#'a'

mov r1, r1, LSL #2

ldr r2,= table

ldr pc, [r2,r1]

pas_min:

ldr r0,= m1

b printf

cons_hexa:

ldr r0,= m4

b printf

cons:

ldr r0,= m2

b printf

voy_hexa:

ldr r0,= m5

b printf

voy:

ldr r0,= m3

b printf

fin: ldmfd sp!, {r0-r2,lr}

mov pc,lr

.ltorg

Cette fonction a�che un message décrivant une information sur la nature du ca-
ractère reçu en paramètre.

5

Qu'a�che-t-elle pour

1. '0'

2. 'Z'

3. 'a'

4. 'b'

5. 'e'

6. 'g'

7. 'i'

Expliquer pourquoi
� Printf n'est exécuté qu'une seule fois par appel de lettre alors qu'il n'y a aucun
branchement entre deux appels de printf et le branchement à printf s'e�ectue
par b et non par bl.

� Lr doit être sauvé dans le prologue et restauré dans l'épilogue.

Pourrait-on e�ectuer le branchement à printf sans utiliser de branchement relatif
(ni b ni bl) ?

� Si oui, avec quelle instruction ou séquence d'instructions ARM?
� Si non, expliquer pourquoi ce n'est pas possible.

Donner une séquence de code ARM se comportant de la même manière que la
fonction lettre mais n'utilisant aucun tableau. Les deux méthodes sont-elles compa-
rables en nombre d'instructions exécutées (justi�er brièvement votre conclusion) ?

6

