M2P CCI : examen Langage Machine, Novembre 2012

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matiéres

1

1 Tableaux et fonctions (90mn)

Tableaux et fonctions (90mn)
1.1 Section .data (15mn)
1.2 Chercher_mini (parcours de tableau avec pointeur) (40mn)
1.3 Main (Appel de fonction, arithmétique sur les pointeurs) (20mn)
1.4 Parcours du tableau par indice (15mn)

Fonction mystére (branchements et appels, if) (30mn)

W W N DN

On considére le programme suivant qui recherche la valeur et 'indice de I’élément
minimum d’un tableau :

#include <stdio.h>
#include <string.h>

char formatl [13]
char format2 [24]

unsigned short *p = tab;

void chercher_mini (unsigned int n,
unsigned short **ptr_mini)

{

register unsigned short min;
register unsigned short *p_min;
register unsigned short *p;

min = tabl[0];
p_min = tab;

for (p=tab+l; p<tab+n;p++)
{
if (*p < min)
{
min = *p;
p_min = p;

+

"tab[0] = %d\n";
"mini = %hu , indice %u\n";
unsigned short tab [9] = {3,6,8,7,2,1,9,0,5};

// n dans r0
// ptr_mini dans ri1

// a stocker dans r4
// a stocker dans r5
// a stocker dans ré6

}

*ptr_mini = p_min;

}
int main (void)
{
register unsigned short m; // a stocker dans r6
register unsigned int indice; // a stocker dans r7
printf (formatl,*p);
chercher_mini (8,&p);
m = *p;
indice = p-tab;
printf (format2, m,indice);
return O;
+

La convention d’appel de chercher mini est la suivante :
— le premier paramétre (n) est passé dans le registre r0.
— le deuxiéme paramétre (ptr_mini) est passé dans rl.
— L’adresse de retour est passée dans Ir.

1.1 Section .data (15mn)
Traduire en langage d’assemblage ARM les déclarations de formatl, format2, tab

et p.

L’initialisateur de formatl est une chaine de douze caractéres (\n représente un
seul caractére), celui de tab un ensemble de 9 entiers. Pourquoi le tableau formatl
est-il déclaré de taille 13 alors que tab est bien de taille 97

1.2 Chercher mini (parcours de tableau avec pointeur) (40mn)

Voici un squelette de la traduction de chercher mini en langage d’assemblage ARM
a compléter :

.global chercher_mini

.text
chercher_mini:
prologue : stmfd sp!, {r4-r9} @ sauver r4 a r9 dans la pile
corps : o @ traduire ici min = tab[0]

@ jusqu’a *ptr_mini = p_min

epilogue: sp!,{r4-ro9} @ restaurer r4 a r9

Traduire les instructions min = tab[0] et p _min = tab.
Traduire la totalité de la boucle for (if inclus).

Traduire la fin de la fonction.

1.3 Main (Appel de fonction, arithmétique sur les pointeurs)
(20mn)

Traduire en langage d’assemblage I'instruction chercher mini (8,&p).

Traduire en langage d’assemblage l'instruction indice = p-tab. Attention :
si deux pointeurs pl et p2 repérent respectivement tabl[i] et tab|j|, alors I'expression
pl-p2 représente i-j.

1.4 Parcours du tableau par indice (15mn)

Voici une autre version de chercher mini utilisant une variable de boucle de type
indice.

void chercher_mini (unsigned int n, // n dans r0
unsigned short **ptr_mini) // ptr_mini dans ril
{
register unsigned short min; // a stocker dans r4
register unsigned indice_min; // a stocker dans r5
register unsigned int i; // a stocker dans r6

min = tabl[0];

for (i=0;i<n;i++)

{
if (tab[i] < min)
{
min = tabl[il;
indice_min = 1i;
}
}

*ptr_mini = tab + 1i;

}

Répondre aux questions suivantes sans rajouter de variable de boucle de type
pointeur :

— Traduire linstruction if (corps du if inclus).
— Traduire U'instruction *ptr mini = tab + i.

2 Fonction mystére (branchements et appels, if) (30mn)

Voici une traduction manuelle d’une fonction lettre dont le prototype est le suivant :
void lettre (char c).

.global lettre

.data

table: .word voy_hexa
.word cons_hexa
.word cons_hexa
.word cons_hexa
.word voy_hexa
.word cons_hexa
.word cons
.word cons
.word voy
.word cons
.word cons
.word cons
.word cons
.word cons
.word voy
.word cons
.word cons
.word cons
.word cons
.word cons
.word voy
.word cons
.word cons
.word cons
.word voy
.word cons

.text
ml: .asciz "N’est pas une minuscule\n"
m2: .asciz "consonne\n"
m3: .asciz '"voyelle\n"
m4: .asciz '"consonne hexa\n"
m5: .asciz '"voyelle hexa\n"

.global lettre
.balign 4

lettre: stmfd sp!, {r0-r2,1r}
1dr 1lr,= fin

cmp r0, #’a’

blo pas_min
cmp r0, #’°z’
bhi pas_min

sub rl,r0,#’a’
mov rl, rl1, LSL #2
1ldr r2,= table
ldr pc, [r2,ri]

pas_min:

ldr r0,= ml

b printf
cons_hexa:

ldr r0,= m4

b printf
cons:

ldr 1r0,= m2

b printf
voy_hexa:

ldr 1r0,= mb

b printf
voy:

ldr r0,= m3

b printf
fin: ldmfd sp!, {r0-r2,1r}

mov pc,1lr
.1torg

Cette fonction affiche un message décrivant une information sur la nature du ca-
ractére recu en parameétre.

Qu’affiche-t-elle pour

N
<

Expliquer pourquoi

— Printf n’est exécuté qu'une seule fois par appel de lettre alors qu’il n’y a aucun
branchement entre deux appels de printf et le branchement & printf s’effectue
par b et non par bl.

— Lr doit étre sauvé dans le prologue et restauré dans I'épilogue.

Pourrait-on effectuer le branchement a printf sans utiliser de branchement relatif
(ni b ni bl)?

— Si oui, avec quelle instruction ou séquence d’instructions ARM 7

— Si non, expliquer pourquoi ce n’est pas possible.

Donner une séquence de code ARM se comportant de la méme maniére que la
fonction lettre mais n’utilisant aucun tableau. Les deux méthodes sont-elles compa-
rables en nombre d’instructions exécutées (justifier briévement votre conclusion) ?

