
M2P CCI : corrigé examen Langage Machine, No-

vembre 2014

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matières

1 Introduction et conventions (5mn, pas de question) 1

2 Questions sur le programme de conversion (1h20mn) 1
2.1 char_to_valchi�re : paramètres valeur et résultat (20mn) 1
2.2 string_to_tabval : while et arithmétique sur les pointeurs (30mn) . . . 3
2.3 Horner10 : boucle for et tableau (20mn) 5

3 Questions diverses (35mn) 7
3.1 Scanf("%s",. . .) est dangereux ! : chaînes, pile (20mn) 7
3.2 Mémoire, Big/little endian (15mn) . 10

1 Introduction et conventions (5mn, pas de question)

Eviter l'instruction de multiplication mul dans les traductions.

Sauf précision contraire, la convention d'appel utilisée est celle de gcc, à savoir
(pour le jeu d'instructions ARM v4) :

� Passage des quatre premiers paramètres dans les registres r0 à r3
� Résultat des fonctions dans r0 à la place du premier argument
� Adresse de retour passée dans le registre lr

Les principales questions portent sur la traduction du programme de conversion
de chaîne en entier (équivalent de sscanf(chaine,"%d",. . .), présenté en annexe. On
suppose que les paramètres c (char_to_valchi�re) et string (string_to_tabval) ne
contiennent que des caractères ASCII (codes<128).

2 Questions sur le programme de conversion (1h20mn)

2.1 char_to_valchi�re : paramètres valeur et résultat (20mn)

Traduire en langage d'assemblage la fonction char_to_valchi�re. La gestion de la
pile sera simpi�ée : pas de fp et les opérations sur la pile seront décrites par un simples
commentaires empiler ou dépiler accompagnés de la liste des registres à copier.

.global char_to_valchiffre

.text

1

@ Convention d'appel

@ r0 : parametre c, puis resultat de la fonction

@ r1 : parametre intval

@

@ Variables locales :

@ r4 : val

@ Temporaires :

@ r5 : copie de c

char_to_valchiffre:

prologue:

stmfd sp!,{r4,r5} @ empiler(r4,r5)

mov r5,r0 @ copie de c

corps: mov r0,#0 @ resultat par defaut

cmp r5,#'0' @ if (c<'0') goto epilogue

blt epilogue @ blo fonctionne aussi puisque 0<=c<=127 (ASCII)

cmp r5,#'9' @ if (c>'9') goto epilogue

bgt epilogue

cmp r1,#0 @ if (intvall == NULL) goto finsi

beq finsi

sub r4,r5,#'0' @ *intval = c-'0';

strh r4,[r1]

finsi: mov r0,#1

epilogue: ldmfd sp!,{r4,r5} @ depiler (r4,r5)

mov pc,lr

@ Seuls les 8 bits de poids faible de c reçu

@ dans r0 sont significatifs. On peut par

@ precaution forcer les bits de poids forts

@ à 0 dans le prologue de la fonction :

prologue:

stmfd sp!,{r4,r5}

mov r5,r0,LSL #24

mov r5,r5,LSR #24

Commentaires :

2

� Dans plusieurs copies, il n'a pas été tenu compte de la convention d'appel spéci�ée
dans la partie introduction et conventions.

� Voici ce qu'il fallait comprendre de la déclaration du paramètre intval, qui a été
souvent mal interprétée :

1. le nom du deuxème paramètre est intval

2. son type est (unsigned short *) : intval est donc une adresse de variable de
type entier court

3. étant le deuxième paramètre, intval est passé dans r1

4. *intval = expresssion signi�e que la valeur de expression doit être écrite en
mémoire à l'adresse intval (contenue dans r1).

� La gestion de pile simpli�ée ne vous dispensait pas de gérer correctement l'adresse
de retour. Char_to_valchi�re n'appelant aucune autre fonction, son corps ne
modi�e pas lr et il n'est pas utile d'empiler lr pour le sauvegarder (branche-
ment de retour classique par mov pc,lr). On peut utiliser une instruction ldmxx

avec pc dans la liste des registres à dépiler, mais celà suppose d'avoir empilé lr
correctement dans le prologue.

� Ne pas confondre '5' (synonyme de 0x35, le code ASCII du caractère chi�re cinq)
et l'entier 5.

La déclaration de tabval a parfois été lue comme la déclaration d'un paramètre
valeur ordinaire de nom *tabval. Ceci témoigne d'une grave incompréhension des poin-
teurs. Il convient de retravailler sur les notions suivantes :

� le passage de paramètre par référence (algorithmique)
� le passage de paramètre par adresse (programmation et langage)
� les pointeurs, le passage de paramètre résultat (langage machine)

2.2 string_to_tabval : while et arithmétique sur les pointeurs
(30mn)

Traduire en langage d'assemblage (lignes commentées trad) :

1. la boucle while

2. l'a�ectation res= pshort - tabval ;

.global string_to_tabval

@ Convention d'appel

@ r0 : string (string_to_tabval), c(char_to_valchiffre), resultat

@ r1 : tabval (string_to_tabval), intval

@ r4 : ok

@ r5 : pshort

@ r6, r7 : copies de string et tabval

.text

3

string_to_tabval:

stmfd sp!, {r1,r4,r5,r6,r7,lr} @ empiler les regs modifies

@ sauf r0 : le resultat

mov r6, r0 @ r6 devient la reference string

mov r7, r1 @ r7 devient la reference tabval

mov r4, #1 @ ok = 1

mov r5, r7 @ pshort = tabval

b condw @ goto condw

corps: ldrsb r0, [r6] @ c = *string (ldrb convient aussi)

mov r1, r5 @ intval = pshort

bl char_to_valchiffre @ appel de la fonction

movS r4, r0 @ ok = resultat de l'appel

@ movS met à jour Z et N

@ (économise une instruction cmp r4,#0)

beq finsi @ if (!ok) goto finsi

add r6,r6,#1 @ string++

add r5,r5,#2 @ pshort++

finsi:

condw: cmp r4, #1 @ if (ok>=1) goto corps

bge corps

sub r0, r5, r7 @ res= pshort-tabval

mov r0, r0, LSR #1

ldmfd sp!, {r1,r4, r5,r6,r7,pc} @ depiler tous les regs modifies

Remarque : si la condition du while avait été ok != 0, on aurait pu optimiser.

cmp r4,#0

bne finwhile

corps: ... idem

bl char_to_valchiffre

movS r4,r0 @ ou la séquence mov r4,r0; cmp r4,#0

beq finsi

add r6,r6,#1

add r5,r5,#2

b corps

finsi: @ si la condition du if est fausse

finwhile: @ celle du while, l'est aussi

sub r0,r5,r7

mov r0, r0, LSR #1

4

mov pc,lr

Dans la majorité des copies, la convention d'appel a été mal comprise ou ignorée.
Paramètres et résultat passés par les registres signi�ait que :

� r0 contient le paramètre string (et non *string : la déclaration const char *string
indique que le paramètre reçu sera désigné sous le nom string, et que la nature
de ce paramètre est une adresse "d'objet" char) dans le prologue de la fonction.

� même principe pour r1 et le paramètre tabval : r0 et r1 contiennent donc les
adresses des tableaux chaîne de caractères à convertir (string) et valeurs entières
qu'ils représentent (tabval).

� dans l'épilogue de la fonction, le résultat retourné à l'appelante remplace le
premier paramètre dans r0

Certaines traductions gèrent implicitement un passage de paramètres via une struc-
ture en mémoire, inspiré du td sur les procédures simples, ce qui revient à traiter les
paramètres comme des variables globales stockées en mémoire. En soi, cette interpréta-
tion n'implique pas de pénalité substancielle à condition d'en respecter les implications
et de rester cohérent :

� même interprétation côté appelante et appelée : l'appelante doit écrire les para-
mètres en mémoire et l'appelée les y lire.

� ne pas oublier que dans ce cas, comme pour toute variable en mémoire, tabval en
C est synonyme de *&tabval et qu'accéder au contenu de tabval se fait en deux
temps : charger &tabval (l'étiquette tabval en langage d'assemblage ARM) dans
un registre, puis e�ectuer une lecture à cette adresse pour récupérer le contenu
du paramètre : copier tabval dans r5 donne la séquence ldr r8,=tabval ; ldr r4,[r8].

L'arithmétique sur les pointeurs a souvent été ignorée : string et tabval di�èrent
par la taille d'élément repéré : sizeof(short) = 2 et sizeof(char) = 1.

� tabval ++ se traduit par l'ajout de 2 et non 1
� la diférence entre pshort et tabval est un nombre d'octets, qui doit être converti
en di�érence d'indices de tableau en le divisant par 2

Rappelons aussi que toutes les adresses (étiquettes et adresses contenues dans de
tout type de pointeur) sont sur 32 bits, et que les tailles des accès aux contenus repérés
par les pointeurs sont dé�nies par le type de pointeur utilisé.

Ok n'ayant pas l'attribut unsigned, devrait être traité comme un entier relatif
dans les conditions de branchement (blt au lieu de blo). En pratique ceci n'est pas
important, puisque les valeurs a�ectées à ok (0 et 1) ne sont ni négatives, ni proches
de la limite supérieures des entiers positifs représentables.

2.3 Horner10 : boucle for et tableau (20mn)

Traduire en langage d'assemblage la boucle for de la fonction horner10.
Remarques :

5

� ne pas oublier de multiplier l'indice i par la taille d'un élément dans le calcul de
l'adresse de chi�res[i]

� le décalage à gauche (LSL) de g bits multiplie par 2g.
� ne pas oublier l'incrémentation de la variable indice de la boucle for.

.global horner10

@ r6 : var locale res

@ r7 : var locale i

@ r0 : parametre nb_chiffres

@ r1 : parametre chiffres

@ r5 : temp1 : (res*10, chiffes[i])

@ r8 : temp2 : i*sizeof(unsigned short)

.text

@ horner10: stmfd sp!,{r5-r8} @ empiler r5 à r8

@ Horner10 n'appelle pas de fontion : sauvegarde de lr inutile

mov r6,#0 @ res = 0

mov r7,#0 @ i = 0

@ Debut de la traduction

b condfor @ goto condfor

corps: mov r8, r7, LSL #1 @ temp2 = i*2

mov r5, r6, LSL #3 @ temp2 = res * 8

add r6, r5, r6, LSL #1 @ res = temp2 + res *2

ldrh r5, [r1,r8] @ temp1 = chiffres[i]

add r6, r6, r5 @ res +== chiffres[i]

add r7,r7, #1 @ i++

condfor: cmp r7,r0 @ if (i<nb_chiffres) goto corps

blo corps

@ fin de la traduction

mov r0,r6 @ return res

ldmfd sp!,{r5-r8} @ depiler r5 à r8

mov pc,lr

6

3 Questions diverses (35mn)

3.1 Scanf("%s",. . .) est dangereux ! : chaînes, pile (20mn)

Rappel : la langage C représente une chaîne de caractères sous la forme d'un ta-
bleau de char et un octet à 0 sert de marque de �n de chaîne.

Le programme suivant est censé écrire dans un �chier ma_trace une chaîne de
caractères lue au clavier.

#include <stdio.h>

#include <string.h>

#define MAX 10 // longueur max de la chaine de l'utilisateur

#define L 200 // Longueur max du nom de fichier de trace

FILE *f;

char chaine_u[MAX+1]="";

char nom_trace [L+1]="ma_trace";

void lire (void)

{

printf ("Entrer une chaîne de (au maximum) %d caracteres\n",MAX);

scanf ("%s",chaine_u);

}

// Demander a l'utilisateur de saisir une chaine

// d'au maximum L caracteres puis l'écrire dans

// un fichier de nom ma_trace.

int main (void)

{

lire ();

f = fopen (nom_trace,"w");

if (f != NULL)

fprintf (f,"%s\n",chaine_u);

return 0;

}

Traduire en langage d'assemblage les déclarations de chaine_u et nom_trace et
expliquer le +1 dans la dimension de chaine_u.

Il faut prévoir un octet de plus que le nombre maximal de caractères dans la chaîne
pour stocker l'octet 0 marqueur de �n de chaîne. Ainsi la chaîne vide ("") occupe un

7

octet contenant 0 (ou synonyme '\0').

La traduction de la déclaration comprend deux parties : des directives de réserva-
tion d'octets avec valeurs initiales pour la chaîne initialisatrice et sa marque de �n de
chaîne et une directive .skip pour réserver des octets sans valeur initiale pour le reste
de la taille des tableaux.

.global chaine_u

.global nom_trace

MAX=10

L=200

.data

chaine_u: .byte 0

.skip MAX

nom_trace: .byte 'm' @ l'ensemble des .byte '...' peuvent etre

.byte 'a' @ remplace par :

.byte '_' @ .asciz "ma_trace"

.byte 't'

.byte 'r'

.byte 'a'

.byte 'c'

.byte 'e'

.byte 0

.skip 192 @ .skip L+1-9

\end[verbatim}

\vspace{1ex}

Voici deux exécutions de ce programme. La commande ls | wc -l permet de

connaître le nombre de fichiers du répertoire courant.

\begin{verbatim}

turing> ls

turing> simgcc -Wall ../overflow.c -o overflow

turing> ls | wc -l

1

turing> armrun overflow

Entrer une chaîne de (au maximum) 10 caracteres

cas_normal

turing> ls

ma_trace overflow

turing> ls | wc -l

2

turing> cat ma_trace

8

cas_normal

turing> armrun overflow

Entrer une chaîne de (au maximum) 10 caracteres

Ne_jamais!!_faire_confiance_a_l'utilisateur_qui_saisit_une_chaine

turing> cat ma_trace

cas_normal

turing> ls | wc -l

3

La deuxième exécution a créé un troisième �chier sans mettre à jour le contenu du
�chier ma_trace :

1. Expliquer pourquoi

2. Donner le nom du nouveau �chier créé ainsi que son contenu

La taille du tableau n'étant pas véri�ée, une chaîne trop longue va déborder du
tableau et modi�er les variables déclarées juste après le tableau et dans la même sec-
tion. Les deux tableaux étant initialisés dans leur déclaration, ils seront tous les deux
stockés dans la section data. L'adresse de nom_trace sera l'adresse du dernier élément
de chaine_u, plus un.

On retrouve donc les 10 premiers caractères de la chaîne trop longue dans le ta-
bleau chaine_u (sans marqueur de �n de chaîne) et le reste de la chaîne (avec le 0
marqueur de �n de chaîne) déborde dans le début du tableau nom_trace.

Printf %s va donc parcourir et a�cher tous les caractères de chaine_u, puis conti-
nuer avec ceux dans nom_trace jusqu'à rencontrer le 0 marque de �n de chaîne (ou
terminer l'exécution en erreur si la longueur de la chaîne saisie fait sortir des sections
data+bss).

Le contenu déposé dans le �chier créé sera donc la totalité de la chaîne saisie. Le
nom du �chier créé est donné par nom_trace, qui contiendra donc la chaîne saisie
privée des 11 premiers caractères qui seront dans chaine_u.

turing> ls

faire_confiance_a_l_utilisateur_qui_saisit_une_chaine ma_trace overflow

turing> cat faire_confiance_a_l_utilisateur_qui_saisit_une_chaine

Ne_jamais!!_faire_confiance_a_l_utilisateur_qui_saisit_une_chaine

La question suivante est plus di�cile (omettre si vous manquez de temps).

Considérons le scénario suivant :

1. main appelle la fonction f

2. f appelle scanf pour remplir un tableau chaîne qui est une variable locale de f

9

En fournissant une chaîne de caractères adaptée au code de f, un utilisateur peut
théoriquement faire exécuter n'importe quelle séquence de code du programme au lieu
de la suite du corps de main après l'appel de f.

En se basant sur le principe de gestion des fonctions avec la pile, expliquer le
principe de réalisation de ce "tour de magie".

Le prologue de la fonction va sauvegarder les registres modi�és dans la pile, puis al-
louer de la mémoire dans la pile pour les variables locales, dont le tableau. Dans l'ordre
des adresses en mémoire, celle du tableau va précéder celle des sauvegardes de registres.

La �n de la chaîne qui déborde du tableau va donc écraser les anciennes valeurs
des registres sauvegdardés, dont lr. Modi�er le contenu de la sauvegarde de lr revient
à modi�er l'adresse destination du branchement de retour en �n d'épilogue de f. L'exé-
cution ne se poursuivra donc pas dans la suite du corps de l'appelante, mais à une
adresse formée par la concaténation des codes ASCII des caractères de la chaîne qui
ont remplacé l'ancienne valeur de lr.

On peut ainsi choisir d'aller exécuter toute fonction d'entrée/sortie X dont chaque
octet de l'adresse est un code ASCII valide. Si f empile r0 à r3, le même mécanisme
permet de choisir également la valeur des 4 premiers paramètres à passer à la fonction
X.

3.2 Mémoire, Big/little endian (15mn)

Un entier codé sur 32 bits stocké en mémoire à une adresse 4X occupe quatre
octets d'adresses consécutives : 4X, 4X+1, 4X+2 et 4X+3. Il existe deux conventions
possibles ou "endianness" 1 :

1. Big endian : le poids des octets décroit avec les adresses (l'octet d'adresse 4X
contient les bits de poids forts de l'entier).

2. Litte endian : le poids des octets croit avec les adresses (l'octet d'adresse 4X
contient les bits de poids faibles de l'entier).

Exemple : stockage de 0x12345678 à l'adresse 0x10000
Adresses des octets 0x10000 0x10001 0x10002 0x10003

Contenus Big endian 0x12 0x34 0x56 0x78
Contenus Little endian 0x78 0x56 0x34 0x12

La primitive de communication de base d'un réseau informatique est le transfert
d'un tableau d'octets entre deux machines ("d'endianness" identiques ou pas).

void sw16 (unsigned short *val, unsigned short *res)

1. Quelquefois francisées en "gros boutisme ou petit boutisme".

10

{

register unsigned char *pv;

register unsigned char *pr;

// l'adresse val est copiée sans modification dans pv

// le forceur (unsigned char *) permet d'ignorer la différence de type

// entre pv et val

pv=(unsigned char *) val;

pr=(unsigned char *) res;

*(pr+1)= *pv;

*pr = *(pv+1);

}

Expliquer l'utilité de la procédure sw16 pour copier un tableau d'entiers courts
entre deux machines.

Sw16 recopie un entier 16 bits d'une variable de type entier court vers une autre, en
permuttant les deux octets de contenu. Ceci permet d'adopter une convention unique
de représentation des entiers pour l'ensemble d'un réseau. Une machine utilisant la
convention opposée à celle du réseau utilisera sw16 pour émettre ou recevoir dans le
bon ordre les octets de contenu d'entiers courts.

Ecrire en langage d'assemblage une version de sw16 qui utilise des opérations de
décalages au lieu de pointeurs.

// En C :

unsigned short v1,v2;

// extraire octet de poids fort et le mettre en poids faible

v1 = *val >> 8; // décalage logique à droite

// extraire octet de poids faible et le mettre en poids fort

v2 = *val << 8); // décalage logique à gauche

// combiner les deux avec un ou bit à bit (ou avec une addition)

*res = v1 | v2; // ou bit à bit

@ En langage d'assemblage ARM :

@ r4 : v1 r5 : v2

stmfd sp!,{r4,r5}

ldrh r5, [r0]

mov r4,r5,LSR #8;

mov r4,r4,LSL #8

orr r5,r5,r4

strh r5,[r1]

Ecrire en langage d'assemblage le corps d'une procédure similaire sw32 pour en-
tiers 32 bits (vous pouvez omettre le prologue et l'épilogue de sauvegarde/restauration
des registres modi�és).

11

@ avec des pointeurs

void sw32 (unsigend long *val, unsigned long *res)

{

register unsigned char *pv; @ stmfd sp!, {r4-r6}

register unsigned char *pr;

pv = (unsigned char *) val; @ mov r4,r0

pr = (unsigned char *) res; @ mov r5,r1

*pr = *(pv+3) @ ldrb r6,[r4,#3]; strb r6,[r5]

*(pr+1) = *(pv+2); @ ldrb r6,[r4,#2]; strb r6,[r5,#1]

*(pr+2) = *(pv+1) @ ldrb r6,[r4,#1]; strb r6,[r5,#2]

*(pr+3) = *pv; @ ldrb r6,[r4; strb r6,[r5,#3]

@ ldmfd sp!, {r4-r6}

} @ mov pc,lr

12

