M2P CCI : corrigé examen Langage Machine, No-
vembre 2014

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matiéres

1 Introduction et conventions (5mn, pas de question) 1
2 Questions sur le programme de conversion (1h20mn) 1
2.1 char_to_valchiffre : paramétres valeur et résultat (20mn) 1
2.2 string to_tabval : while et arithmétique sur les pointeurs (30mn) . . . 3
2.3 Hornerl0 : boucle for et tableau (20mn) 5
3 Questions diverses (35mn) 7
3.1 Scanf("%s",...) est dangereux! : chaines, pile (20mn) 7
3.2 Mémoire, Big/little endian (15mn) 10

1 Introduction et conventions (5mn, pas de question)

Eviter I'instruction de multiplication mul dans les traductions.

Sauf précision contraire, la convention d’appel utilisée est celle de gce, a savoir
(pour le jeu d’instructions ARM v4) :

— Passage des quatre premiers parameétres dans les registres r0 a r3

— Résultat des fonctions dans r0 & la place du premier argument

— Adresse de retour passée dans le registre Ir

Les principales questions portent sur la traduction du programme de conversion
de chaine en entier (équivalent de sscanf(chaine,"%d",...), présenté en annexe. On
suppose que les paramétres ¢ (char to valchiffre) et string (string to tabval) ne
contiennent que des caractéres ASCII (codes<128).

2 Questions sur le programme de conversion (1h20mn)

2.1 char to_valchiffre : paramétres valeur et résultat (20mn)

Traduire en langage d’assemblage la fonction char to valchiffre. La gestion de la
pile sera simpifiée : pas de fp et les opérations sur la pile seront décrites par un simples
commentaires empiler ou dépiler accompagnés de la liste des registres a copier.

.global char_to_valchiffre
.text

Convention d’appel
r0 : parametre c, puis resultat de la fonction
rl : parametre intval

@
@
Q
0
@ Variables locales

@ rd : val

@ Temporaires

@ r5 : copie de ¢

char_to_valchiffre:

prologue:
stmfd sp!,{r4,r5} @ empiler(r4,r5)
mov r5,r0 @ copie de ¢
corps: mov r0,#0 @ resultat par defaut
cmp r5,#°0’ @ if (c<’0’) goto epilogue
blt epilogue @ blo fonctionne aussi puisque 0<=c<=127 (ASCII)
cmp r5,#’9’ Q@ if (c>’9’) goto epilogue
bgt epilogue
cmp rl,#0 @ if (intvall == NULL) goto fimsi
beq finsi
sub rd,r5,#°0° @ *intval = c-’0’;
strh r4,[r1]
finsi: mov r0,#1
epilogue: ldmfd sp!,{r4,r5} @ depiler (r4,rb)

mov pc,lr

@ Seuls les 8 bits de poids faible de ¢ regu
@ dans r0 sont significatifs. On peut par

@ precaution forcer les bits de poids forts
@ & 0 dans le prologue de la fonction :

prologue:
stmfd sp!,{r4,r5}
mov r5,r0,LSL #24
mov r5,r5,LSR #24
Commentaires :

— Dans plusieurs copies, il n’a pas été tenu compte de la convention d’appel spécifiée
dans la partie introduction et conventions.

— Voici ce qu’il fallait comprendre de la déclaration du paramétre intval, qui a été
souvent mal interprétée :

1. le nom du deuxéme paramétre est intval

2. son type est (unsigned short *) : intval est donc une adresse de variable de
type entier court

3. étant le deuxiéme paramétre, intval est passé dans rl

4. *intval — expresssion signifie que la valeur de expression doit étre écrite en
mémoire & 'adresse intval (contenue dans rl).

— La gestion de pile simplifiée ne vous dispensait pas de gérer correctement I'adresse
de retour. Char to_valchiffre n’appelant aucune autre fonction, son corps ne
modifie pas Ir et il n’est pas utile d’empiler Ir pour le sauvegarder (branche-
ment de retour classique par mov pc,lr). On peut utiliser une instruction (dmy,
avec pc dans la liste des registres a dépiler, mais cela suppose d’avoir empilé Ir
correctement dans le prologue.

— Ne pas confondre ’5’ (synonyme de 0x35, le code ASCII du caractére chiffre cinq)
et I'entier 5.

La déclaration de tabval a parfois été lue comme la déclaration d’un paramétre
valeur ordinaire de nom *tabval. Ceci témoigne d’une grave incompréhension des poin-
teurs. Il convient de retravailler sur les notions suivantes :

— le passage de paramétre par référence (algorithmique)

— le passage de paramétre par adresse (programmation et langage)

— les pointeurs, le passage de paramétre résultat (langage machine)

2.2 string to_tabval : while et arithmétique sur les pointeurs
(30mn)

Traduire en langage d’assemblage (lignes commentées trad) :
1. la boucle while

2. Daffectation res= pshort - tabval;

.global string_to_tabval

@ Convention d’appel

@ r0 : string (string_to_tabval), c(char_to_valchiffre), resultat
@ r1l : tabval (string_to_tabval), intval

@ r4 : ok

@ r5 : pshort

@ 16, r7 : copies de string et tabval

.text

string_to_tabval:
stmfd sp!, {rl,r4,r5,r6,r7,1r} @ empiler les regs modifies
@ sauf rO : le resultat

mov r6, r0 @ r6 devient la reference string
mov r7, ri @ r7 devient la reference tabval
mov rd, #1 @ ok = 1
mov r5, r7 @ pshort = tabval
b condw @ goto condw
corps: ldrsb 10, [r6] @ c = *string (1drb convient aussi)
mov rl, rb @ intval = pshort
bl char_to_valchiffre @ appel de la fonction
movs r4, r0 @ ok = resultat de 1’appel
@ movS met & jour Z et N
@ (économise une instruction cmp r4,#0)
beq finsi @ if (lok) goto finsi
add r6,r6,#1 Q@ stringt++
add r5,r5,#2 @ pshort++
finsi:
condw: cmp rd, #1 @ if (ok>=1) goto corps
bge corps
sub r0, r5, r7 Q@ res= pshort-tabval
mov r0, rO, LSR #1

ldmfd sp!, {r1,r4, r5,r6,r7,pc} @ depiler tous les regs modifies

Remarque : si la condition du while avait été ok!= 0, on aurait pu optimiser.

cmp r4,#0
bne finwhile
corps: ... idem

bl char_to_valchiffre

movS r4,r0 @ ou la séquence mov r4,r0; cmp r4,#0

beq finsi

add 1r6,r6,#1

add 15,r5,#2

b corps
finsi: @ si la condition du if est fausse
finwhile: @ celle du while, 1l’est aussi

sub r0,r5,r7

mov rO, rO, LSR #1

mov pc,lr

Dans la majorité des copies, la convention d’appel a été mal comprise ou ignorée.
Paramétres et résultat passés par les registres signifiait que :

— 10 contient le paramétre string (et non *string : la déclaration const char *string
indique que le paramétre regu sera désigné sous le nom string, et que la nature
de ce paramétre est une adresse "d’objet" char) dans le prologue de la fonction.

— méme principe pour rl et le paramétre tabval : r0 et rl contiennent donc les
adresses des tableaux chaine de caractéres a convertir (string) et valeurs entiéres
qu’ils représentent (tabval).

— dans I'épilogue de la fonction, le résultat retourné a l'appelante remplace le
premier parameétre dans r0

Certaines traductions gérent implicitement un passage de paramétres via une struc-
ture en mémoire, inspiré du td sur les procédures simples, ce qui revient a traiter les
parameétres comme des variables globales stockées en mémoire. En soi, cette interpréta-
tion n’implique pas de pénalité substancielle a condition d’en respecter les implications
et de rester cohérent :

— méme interprétation coté appelante et appelée : 'appelante doit écrire les para-

meétres en mémoire et I'appelée les y lire.

— ne pas oublier que dans ce cas, comme pour toute variable en mémoire, tabval en

C est synonyme de *&tabval et qu’accéder au contenu de tabval se fait en deux
temps : charger &tabval (I’étiquette tabval en langage d’assemblage ARM) dans
un registre, puis effectuer une lecture a cette adresse pour récupérer le contenu
du paramétre : copier tabval dans r5 donne la séquence ldr r8,=tabval ; Idr r4,[r§].

L’arithmétique sur les pointeurs a souvent été ignorée : string et tabval différent
par la taille d’élément repéré : sizeof(short) = 2 et sizeof(char) = 1.
— tabval ++ se traduit par I’ajout de 2 et non 1
— la diférence entre pshort et tabval est un nombre d’octets, qui doit étre converti
en différence d’indices de tableau en le divisant par 2

Rappelons aussi que toutes les adresses (étiquettes et adresses contenues dans de
tout type de pointeur) sont sur 32 bits, et que les tailles des accés aux contenus repérés
par les pointeurs sont définies par le type de pointeur utilisé.

Ok n’ayant pas l'attribut unsigned, devrait étre traité comme un entier relatif
dans les conditions de branchement (blt au lieu de blo). En pratique ceci n’est pas
important, puisque les valeurs affectées a ok (0 et 1) ne sont ni négatives, ni proches
de la limite supérieures des entiers positifs représentables.

2.3 Hornerl0 : boucle for et tableau (20mn)

Traduire en langage d’assemblage la boucle for de la fonction hornerl0.
Remarques :

— ne pas oublier de multiplier I'indice i par la taille d’un élément dans le calcul de
'adresse de chiffres]i|

— le décalage a gauche (LSL) de g bits multiplie par 29.

— ne pas oublier I'incrémentation de la variable indice de la boucle for.

.global horneri10

@ r6 : var locale res
@ r7 : var locale i
@ rO : parametre nb_chiffres
@ rl : parametre chiffres
@ r5 : templ : (res*10, chiffes[i])
Q@ r8 : temp2 : i*sizeof(unsigned short)
.text
@ hornerl10: stmfd sp!,{r5-r8} @ empiler r5 a r8

@ Horner10 n’appelle pas de fontion : sauvegarde de 1lr inutile

mov r6,#0 @ res = 0
mov r7,#0 @i=0

@ Debut de la traduction
b condfor @ goto condfor

corps: mov r8, r7, LSL #1 @ temp2 = ix2
mov 1rb, r6, LSL #3 @ temp2 = res * 8
add r6, rb, r6, LSL #1 @ res = temp2 + res *2
1ldrh r5, [r1,r8] @ templ = chiffres[i]
add r6, r6, r5 @ res +== chiffres[i]
add r7,r7, #1 @ i++

condfor: cmp r7,r0 @ if (i<nb_chiffres) goto corps
blo corps

@ fin de la traduction
mov 10,r6 @ return res
1ldmfd sp!,{r5-r8} @ depiler r5 & r8

mov pc,lr

3 Questions diverses (35mn)

3.1 Scanf("%s",...) est dangereux! : chaines, pile (20mn)

Rappel : la langage C représente une chaine de caractéres sous la forme d’un ta-
bleau de char et un octet a 0 sert de marque de fin de chaine.

Le programme suivant est censé écrire dans un fichier ma_ trace une chaine de
caracteres lue au clavier.

#include <stdio.h>
#include <string.h>

#define MAX 10 // longueur max de la chaine de 1l’utilisateur
#define L 200 // Longueur max du nom de fichier de trace

FILE *f;

char chaine_u[MAX+1]="";
char nom_trace [L+1]="ma_trace";

void lire (void)

{
printf ("Entrer une chaine de (au maximum) %d caracteres\n",MAX);
scanf ("%s",chaine_u);

}
// Demander a l’utilisateur de saisir une chaine
// d’au maximum L caracteres puis 1l’écrire dans

// un fichier de nom ma_trace.

int main (void)

{
lire ();
f = fopen (nom_trace,"w");
if (f != NULL)
fprintf (f,"%s\n",chaine_u);
return O;
+

Traduire en langage d’assemblage les déclarations de chaine u et nom _trace et
expliquer le +1 dans la dimension de chaine u.

Il faut prévoir un octet de plus que le nombre maximal de caractéres dans la chaine
pour stocker l'octet 0 marqueur de fin de chaine. Ainsi la chaine vide ("") occupe un

7

octet contenant 0 (ou synonyme \0’).

La traduction de la déclaration comprend deux parties : des directives de réserva-
tion d’octets avec valeurs initiales pour la chaine initialisatrice et sa marque de fin de
chaine et une directive .skip pour réserver des octets sans valeur initiale pour le reste
de la taille des tableaux.

.global chaine_u
.global nom_trace

MAX=10
L=200
.data
chaine_u: .byte 0
.skip MAX
nom_trace: .byte ’m’ @ 1’ensemble des .byte ’...’° peuvent etre
.byte ’a’ @ remplace par :
.byte ’_° @ .asciz "ma_trace"
.byte ’t’
.byte ’r’
.byte ’a’
.byte ¢’
.byte ‘e’
.byte 0
.skip 192 @ .skip L+1-9
\end [verbatim}
\vspace{lex}

Voici deux exécutions de ce programme. La commande 1ls | wc -1 permet de
connaitre le nombre de fichiers du répertoire courant.

\begin{verbatim}

turing> 1s

turing> simgcc -Wall ../overflow.c -o overflow
turing> 1s | wec -1

1

turing> armrun overflow

Entrer une chaine de (au maximum) 10 caracteres
cas_normal

turing> 1s

ma_trace overflow

turing> 1s | wc -1

2

turing> cat ma_trace

cas_normal

turing> armrun overflow

Entrer une chaine de (au maximum) 10 caracteres
Ne_jamais!!_faire_confiance_a_l’utilisateur_qui_saisit_une_chaine
turing> cat ma_trace

cas_normal

turing> 1s | wec -1

3

La deuxiéme exécution a créé un troisiéme fichier sans mettre a jour le contenu du
fichier ma_ trace :

1. Expliquer pourquoi

2. Donner le nom du nouveau fichier créé ainsi que son contenu

La taille du tableau n’étant pas vérifiée, une chaine trop longue va déborder du
tableau et modifier les variables déclarées juste aprés le tableau et dans la méme sec-
tion. Les deux tableaux étant initialisés dans leur déclaration, ils seront tous les deux
stockés dans la section data. L’adresse de nom _trace sera l’adresse du dernier élément
de chaine u, plus un.

On retrouve donc les 10 premiers caractéres de la chaine trop longue dans le ta-
bleau chaine_u (sans marqueur de fin de chaine) et le reste de la chaine (avec le 0
marqueur de fin de chaine) déborde dans le début du tableau nom _trace.

Printf %s va donc parcourir et afficher tous les caractéres de chaine u, puis conti-
nuer avec ceux dans nom_ trace jusqu’a rencontrer le 0 marque de fin de chaine (ou
terminer ’exécution en erreur si la longueur de la chaine saisie fait sortir des sections
data+bss).

Le contenu déposé dans le fichier créé sera donc la totalité de la chaine saisie. Le
nom du fichier créé est donné par nom trace, qui contiendra donc la chaine saisie
privée des 11 premiers caractéres qui seront dans chaine u.

turing> 1s

faire_confiance_a_l_utilisateur_qui_saisit_une_chaine ma_trace overflow
turing> cat faire_confiance_a_l_utilisateur_qui_saisit_une_chaine
Ne_jamais!!_faire_confiance_a_l_utilisateur_qui_saisit_une_chaine

La question suivante est plus difficile (omettre si vous manquez de temps).

Considérons le scénario suivant :
1. main appelle la fonction f

2. f appelle scanf pour remplir un tableau chaine qui est une variable locale de f

En fournissant une chaine de caractéres adaptée au code de f, un utilisateur peut
théoriquement faire exécuter n’importe quelle séquence de code du programme au lieu
de la suite du corps de main aprés I'appel de f.

En se basant sur le principe de gestion des fonctions avec la pile, expliquer le
principe de réalisation de ce "tour de magie".

Le prologue de la fonction va sauvegarder les registres modifiés dans la pile, puis al-
louer de la mémoire dans la pile pour les variables locales, dont le tableau. Dans 1’ordre
des adresses en mémoire, celle du tableau va précéder celle des sauvegardes de registres.

La fin de la chaine qui déborde du tableau va donc écraser les anciennes valeurs
des registres sauvegdardés, dont Ir. Modifier le contenu de la sauvegarde de Ir revient
a modifier I'adresse destination du branchement de retour en fin d’épilogue de f. I’exé-
cution ne se poursuivra donc pas dans la suite du corps de 'appelante, mais a une
adresse formée par la concaténation des codes ASCII des caractéres de la chaine qui
ont remplacé ’ancienne valeur de lIr.

On peut ainsi choisir d’aller exécuter toute fonction d’entrée/sortie X dont chaque
octet de I'adresse est un code ASCII valide. Si f empile r0 & r3, le méme mécanisme

permet de choisir également la valeur des 4 premiers paramétres a passer a la fonction
X.

3.2 Mémoire, Big/little endian (15mn)

Un entier codé sur 32 bits stocké en mémoire a une adresse 4X occupe quatre
octets d’adresses consécutives : 4X, 4X-+1, 4X+2 et 4X-+3. Il existe deux conventions
possibles ou "endianness" ! :

1. Big endian : le poids des octets décroit avec les adresses (1'octet d’adresse 4X
contient les bits de poids forts de I’entier).

2. Litte endian : le poids des octets croit avec les adresses (I'octet d’adresse 4X
contient les bits de poids faibles de l'entier).

Exemple : stockage de 0x12345678 a I’adresse 0x10000
Adresses des octets | 0x10000 | 0x10001 | 0x10002 | 0x10003
Contenus Big endian | 0x12 0x34 0x56 0x78
Contenus Little endian 0x78 0x56 0x34 0x12

La primitive de communication de base d’un réseau informatique est le transfert
d’un tableau d’octets entre deux machines ("d’endianness" identiques ou pas).

void swl6 (unsigned short *val, unsigned short *res)

1. Quelquefois francisées en "gros boutisme ou petit boutisme".

10

register unsigned char *pv;

register unsigned char *pr;

// 1’adresse val est copiée sans modification dans pv
// le forceur (unsigned char *) permet d’ignorer la différence de type
// entre pv et val
pv=(unsigned char *) val;
pr=(unsigned char *) res;
*(pr+1)= *pv;

*pr = *(pv+l);

Expliquer 1'utilité de la procédure swl6 pour copier un tableau d’entiers courts
entre deux machines.

Sw16 recopie un entier 16 bits d’une variable de type entier court vers une autre, en
permuttant les deux octets de contenu. Ceci permet d’adopter une convention unique
de représentation des entiers pour ’ensemble d’un réseau. Une machine utilisant la
convention opposée a celle du réseau utilisera swl6 pour émettre ou recevoir dans le
bon ordre les octets de contenu d’entiers courts.

Ecrire en langage d’assemblage une version de swl6 qui utilise des opérations de
décalages au lieu de pointeurs.

// En C :
unsigned short vi1,v2;
// extraire octet de poids fort et le mettre en poids faible

vl = xval >> 8; // décalage logique a droite

// extraire octet de poids faible et le mettre en poids fort
v2 = xval << 8); // décalage logique a gauche

// combiner les deux avec un ou bit & bit (ou avec une addition)
xres = vl | v2; // ou bit & bit

@ En langage d’assemblage ARM :
@rd4 : vl r5 : v2

stmfd sp!,{r4,r5}

ldrh 5, [r0]

mov r4,r5,LSR #8;

mov r4,r4,LSL #8

orr r5,rb5,r4d

strh 15, [r1]

Ecrire en langage d’assemblage le corps d’une procédure similaire sw32 pour en-
tiers 32 bits (vous pouvez omettre le prologue et I’épilogue de sauvegarde/restauration
des registres modifiés).

11

@ avec des pointeurs

void sw32 (unsigend long *val, unsigned long *res)

{
register unsigned char *pv; Q@ stmfd sp!, {r4-ré}
register unsigned char *pr;
pv = (unsigned char *) val; Q mov r4,r0
pr = (unsigned char *) res; @ mov r5,rl
*pr = *(pv+3) @ 1ldrb r6,[r4,#3]; strb r6, [r5]
*(pr+1) = *(pv+2); @ 1ldrb r6,[r4,#2]; strb r6, [r5,#1]
*(pr+2) = *x(pv+l) Q 1drb r6, [r4,#1]; strb r6, [r5,#2]
*(pr+3) = *pv; @ 1drb r6,[r4; strb r6, [r5,#3]
Q ldmfd sp!, {r4-r6}
} Q mov pc,lr

12

