M2P CCI : examen Langage Machine, Novembre 2014

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matiéres

1 Introduction et conventions (5mn, pas de question) 1
2 Questions sur le programme de conversion (1h20mn) 1
2.1 char_to_valchiffre : paramétres valeur et résultat (20mn) 1
2.2 string to tabval : while et arithmétique sur les pointeurs (40mn) . . . 2
2.3 Hornerl0 : boucle for et tableau (20mn) 2
3 Questions diverses (35mn) 2
3.1 Scanf("%s",...) est dangereux! : chaines, pile (20mn) 2
3.2 Mémoire, big/little endian (15mn)o 4
4 Annexe : le programme de conversion 5

1 Introduction et conventions (5mn, pas de question)

Eviter I'instruction de multiplication mul dans les traductions.

Sauf précision contraire, la convention d’appel utilisée est celle de gce, a savoir
(pour le jeu d’instructions ARM v4) :

— Passage des quatre premiers paramétres dans les registres r0 a r3

— Résultat des fonctions dans r0 & la place du premier argument

— Adresse de retour passée dans le registre Ir

Les principales questions portent sur la traduction du programme de conversion
de chaine en entier (équivalent de sscanf(chaine,"%d",...), présenté en annexe. On
suppose que les paramétres ¢ (char to valchiffre) et string (string to tabval) ne
contiennent que des caractéres ASCII (codes<128).

Le sujet est assez long. Si vous manquez de temps, sacrifiez de préférence une des
deux questions de "divers".

2 Questions sur le programme de conversion (1h20mn)

2.1 char to_valchiffre : paramétres valeur et résultat (20mn)

Traduire en langage d’assemblage la fonction char to valchiffre. La gestion de la
pile sera simpifiée : pas de fp et les opérations sur la pile seront décrites par un simples
commentaires empiler ou dépiler accompagnés de la liste des registres a copier. La
constante NULL correspond a I’adresse 0.

2.2 string to tabval : while et arithmétique sur les pointeurs
(40mn)

Traduire en langage d’assemblage (lignes commentées trad) :
1. la boucle while

2. l'affectation res— pshort - tabval;

2.3 Hornerl0 : boucle for et tableau (20mn)

Traduire en langage d’assemblage la boucle for (commentée "trad") de la fonction
horner10.

3 Questions diverses (35mn)

3.1 Scanf("%s",...) est dangereux! : chaines, pile (20mn)

Rappel : la langage C représente une chaine de caractéres sous la forme d’un ta-
bleau de char et un octet a 0 sert de marque de fin de chaine.

Le programme suivant est censé écrire dans un fichier ma_ trace une chaine de
caractéres lue au clavier.

#include <stdio.h>
#include <string.h>

#define MAX 10 // longueur max de la chaine de 1l’utilisateur
#define L 200 // Longueur max du nom de fichier de trace

FILE *f;

char chaine_u[MAX+1]="";
char nom_trace [L+1]="ma_trace";

void lire (void)

{
printf ("Entrer une chaine de (au maximum) %d caracteres\n",MAX);
scanf ("%s",chaine_u);

}

// Demander a l’utilisateur de saisir une chaine
// d’au maximum L caracteres puis 1l’écrire dans
// un fichier de nom ma_trace.

int main (void)

{

lire ();
f = fopen (nom_trace,"w");
if (f != NULL)
fprintf (f,"%s\n",chaine_u);
return O;

Traduire en langage d’assemblage les déclarations de chaine u et nom _trace et
expliquer le +1 dans la dimension de chaine u.

Voici deux exécutions de ce programme. La commande Is | we -1 permet de connaitre
le nombre de fichiers du répertoire courant.

turing> 1s

turing> simgcc -Wall ../overflow.c -o overflow
turing> 1s | wec -1

1

turing> armrun overflow

Entrer une chaine de (au maximum) 10 caracteres
cas_normal

turing> 1s

ma_trace overflow

turing> 1s | wec -1

2

turing> cat ma_trace

cas_normal

turing> armrun overflow

Entrer une chaine de (au maximum) 10 caracteres
Ne_jamais!!_faire_confiance_a_l_utilisateur_qui_saisit_une_chaine
turing> cat ma_trace

cas_normal

turing> 1s | wc -1

3

La deuxiéme exécution a créé un troisiéme fichier sans mettre a jour le contenu du
fichier ma_ trace :

1. Expliquer pourquoi

2. Donner le nom du nouveau fichier créé ainsi que son contenu
La question suivante est plus difficile (omettre si vous manquez de temps).

Considérons le scénario suivant :
1. main appelle la fonction f

2. f appelle scanf pour remplir un tableau chaine qui est une variable locale de

En fournissant une chaine de caractéres adaptée au code de f, un utilisateur peut
théoriquement faire exécuter n’importe quelle séquence de code du programme au lieu
de la suite du corps de main aprés I'appel de f.

En se basant sur le principe de gestion des fonctions avec la pile, expliquer le
principe de réalisation de ce "tour de magie".

3.2 Mémoire, big/little endian (15mn)

Un entier codé sur 32 bits stocké en mémoire a une adresse 4X occupe quatre
octets d’adresses consécutives : 4X, 4X+1, 4X+2 et 4X+3. Il existe deux conventions
possibles ou "endianness" ! :

1. Big endian : le poids des octets décroit avec les adresses ('octet d’adresse 4X
contient les bits de poids forts de I'entier).

2. Litte endian : le poids des octets croit avec les adresses (I'octet d’adresse 4X
contient les bits de poids faibles de l'entier).

Exemple : stockage de 0x12345678 a I’adresse 0x10000
Adresses des octets | 0x10000 | 0x10001 | 0x10002 | 0x10003
Contenus Big endian | 0x12 0x34 0x56 0x78
Contenus Little endian | 0x78 0x56 0x34 0x12

La primitive de communication de base d’un réseau informatique est le transfert
d’un tableau d’octets entre deux machines ("d’endianness" identiques ou pas).

void swl6 (unsigned short *val, unsigned short *res)
{
register unsigned char *pv;
register unsigned char *pr;
// 1’adresse val est copiée sans modification dans pv
// le forceur (unsigned char *) permet d’ignorer la différence de type
// entre pv et val
pv=(unsigned char *) val;
pr=(unsigned char *) res;
*(pr+1)= *pv;
*pr = *(pv+1);

Expliquer I'utilité de la procédure swl6 pour copier un tableau d’entiers courts
entre deux machines.

Ecrire en langage d’assemblage le corps d’une procédure similaire sw32 pour en-
tiers 32 bits (vous pouvez omettre le prologue et I’épilogue de sauvegarde/restauration

1. Quelquefois francisées en "gros boutisme ou petit boutisme".

4

des resgistres modifiés).

Ecrire en langage d’assemblage une version de swl6 qui utilise des opérations de
décalages au lieu de pointeurs.

4 Annexe : le programme de conversion

Le squelette de programme ci-dessous utilise la fonction sscanf pour convertir en
une valeur entiére une chaine représentant un nombre (passée en argument de la ligne
de commande : accessible en tant que argv|1]).

void main (int argc, char *xargv[])

{

// verification de argc omise

sscanf (argv[1],"’%d",&valentier);

printf ("Conversion : %s donne %d\n",argv[l],valentier);
}

Le programme suivant réalise 1’équivalent en deux étapes :

1. passer d’une chaine de caractéres chiffres & un tableau contenant les valeurs
entiéres correspondant aux chiffres.

2. calculer la valeur de 'entier en utilisant le schéma de calcul de Horner

void main (int argc, char *argv([])

{
register unsigned int n;
unsigned short *lesvals;
unsigned int valentier;
// verification de argc omise
n = strlen(argv[1]); // strlen : string length
// allocation dynamique de memoire pour le tableau lesvals
lesvals = malloc (n*sizeof (unsigned short));
n = string_to_tabval (argv[1i],lesvals);
valentier = horner10 (n,lesvals);
printf ("valentier = %d\n",valentier);
}

La fonction char to valchiffre permet de passer d’un caractére a 'entier qu’il
représente :

#include <stdio.h>

// Retourne un booléen "c est un caractére chiffre décimal"
// Le 2eme paramétre permet de récupérer 1l’entier qu’il représente

int char_to_valchiffre (char c, unsigned short *intval)
{

if (¢ < ’0’) return O;

if (¢ > ’9’) return O;

if (intval '= NULL) { *intval= c-’0’;}

return 1;

La fonction string to_tabval I’appelle pour convertir toute une chaine en tableau
d’entiers :

#include "string_to_tabval.h"
#include "char_to_int.h"

// Parcourt la chaine de caracteres chiffres decimaux string

// et remplit le tableau tabval avec les valeurs entieres

// que les caracteres representent. Exemple : "1324" -> {1,3,2,4}
//

// La conversion s’arrete

// + en fin de chaine

// + sur le ler caractere qui n’est pas un chiffre decimal

//

// const indique que la fonction ne modifie pas la chaine string
// la fonction retourne le nombre de chiffres convertis

unsigned int string_to_tabval (const char *string,
unsigned short #*tabval)

{
register int ok; // a stocker dans r4
register unsigned short *pshort; // a stocker dans rb
register unsigned int res; // a stocker dans r6
ok=1;

pshort=tabval;
while (ok>=1) { // ne pas transformer en while (ok!=0) // trad

ok = char_to_valchiffre (*string, pshort); // trad
if (ok) { /* Rappel : ==0 : faux, != 0 : vrai // trad
string++; // trad
pshort++; // trad

} // trad

} // trad
res= pshort - tabval; // trad

return res;

La derniére fonction calcule la valeur selon le schéma de Horner :

#include "horner10.h"

// Convertit un tableau de nb_chfffres entiers chiffres en un entier
// selon le schéma de Horner

// X = ((...((xn-1%10+xn-2)*10+xn-3)*10 ... +x2)*10 +x1)*10+x0
//

// Les chiffres sont stockés par ordre croissant de poids :

// x0=chiffres[0] , xl=chiffres[1], ... xn-2=chiffres[n-2]

unsigned int horner10 (unsigned int nb_chiffres,
unsigned short *chiffres)

{
register unsigned int res; // a stocker dans r6
register unsigned int i; // a stocker dans r7
res = 0;
for (i=0;i<nb_chiffres; i++) { // trad
// Note : %10 = *(8+2)
res = res *x 10 + chiffres[i]; // trad
+ // trad
return res;
+

