
M2P CCI : corrigé Langage Machine, Novembre 2015

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matières

Conventions communes à toutes les questions

Toutes les variables locales des fonctions et procédures sont stockées dans des re-
gistres (le numéro de registre à utiliser est indiqué en commentaire). Seules les variables
déclarées à l'extérieur des fonctions et sans l'attribut register sont stockées en mémoire.

La convention d'appel des fonctions et procédures est la suivante :
� Tous les paramètres sont passés par les registres et non en mémoire
� Le premier paramètre est passé dans le registre r0
� Le deuxième paramètre est passé dans le registre r1
� Le résultat des fonctions est retourné dans le registre r0 à la place du premier

paramètre

La taille d'un char est de 8 bits, celle d'un int ou unsigned int est de 32 bits.
Remarques générales sur le contenu des copies
Dans beaucoup trop de copies, il n'a été tenu aucun compte des conventions de

stockage des variables locales et d'appel de procédure, ni de la présence ou de l'absence
d'atribut register.

Une variable déclarée avec l'attribut register est une variable stockée directement
dans un registre (de préférence celui donnée en commentaire).

Les déclarations suivantes :

register unsigned int somme; /* a stocker dans r5 */

register int i; /* a stocker dans r6 */

register unsigned int decimal; /* a stocker dans r4 */

register unsigned int *ptri; /* a stocker dans r4 */

register unsigned int longueur; /* a stocker dans r6 */

signi�ent que, dans le corps des fonctions ou procédures auxquelles elles appar-
tiennent, les variables ont les propriétés suivantes :

1. somme est le registre r5 (et n'a donc ni adresse mémoire ni étiquette somme
associée, et utiliser l'instruction ldr r8,=somme n'a aucun sens) et son contenu
est de type entier naturel. L'instruction mov r5,#32 correspond dans ce cas à
somme=32 en C.

2. même chose pour i, décimal et longueur, dans les registres respectifs r6,r4 et r6,
avec des contenus de type entier naturel excepté pour i (entier relatif)

1

3. ptri est le registre r4 (et n'a donc ni adresse mémoire ni étiquette somme asso-
ciée, et ni ldr r8,=ptri ni ldr r8,=*ptri n'ont de sens), elle est de type unsigned
int *, ce qui signi�e que son contenu est de type adresse d'un emplacement
mémoire (une variable) contenant un entier naturel.

La déclaration de ptri a été souvent interprétée à tort ainsi :
� la variable ptri est stockée en mémoire dans la section data ou bss
� r4 contient l'adresse à laquelle se trouve la variable ptri

Cette interprétation correspondrait à ce genre de déclaration :

unsigned int ptri; /* sans register, ptri sera stockée dans bss */

register unsigned int *r4 = &ptri; /* r4 pointe sur ptri */

et donnerait lieu à une réservation de place dans bss et à une initialisation de r4
en début de corps de la fonction :

.bss

... /* reservations de memoire precedentes */

ptri: .skip 4

.text

@ dans le début du corps de la fonction

ldr r4,=ptri

A contrario, dans main.c, la variable val1 n'est pas une variable locale de fonction,
et elle ne pourrait pas avoir l'attribut register puisqu'on en passe l'adresse lors de
l'appel de la fonction string_to_int. Elle sera donc obligatoirement stockée dans bss,
et en supposant que v et tmp soient 2 variables stockées dans des registre rv et rtmp :

1. v = val1 équivaut à v = *&val1, et suppose une opération d'initialisation d'un
registre avec l'adresse de val1 (ldr regadr,= val1) suivi d'une opération de lec-
ture à cette adresse (ldr rv,[regadr]).

2. val1 = v équivaut à *&val1=v et suppose une opération d'initialisation d'un re-
gistre avec l'adresse de val1 (ldr regadr,= val1) suivi d'une opération d'écriture
à cette adresse (str rv,[regadr]).

3. pour v = 35, il faut d'abord placer la constante dans un registre temporaire, on
se retrouve ensuite avec un cas analogue au précédent (mov rtmp,#35 ; ldr regadr,=val1 ; str rtmp,[regadr]).

4. une incrémentation val1 = val1 + 2 nécessite 4 instructions (initialisation de
regadr, lecture par ldr, addition, écriture par str).

Si vous avez décider d'ignorer l'attribut register des variables locales somme, i,
décimal, longueur, restez au minimum cohérent avec votre choix. Si vous ajoutez quel-
quechose à somme, la séquence doit ressembler à ceci :
ldr rx,= somme ; ldr r5,[rx] ; add r5,r5,... ; str r5,[rx] sans oublier la mise à jour du
contenu en mémoire avec str.

2

1 Introduction sans question (5 mn)

En utilisant le format %d, les fonctions de type scanf permet de convertir une
chaîne de caractères 1 représentant l'écriture d'un entier en décimal en la valeur en-
tière correspondante.

L'objectif est de traduire en langage d'assemblage un programme C qui e�ectue un
travail analogue et génère par exemple l'entier 1234 à partir de la chaîne de caractères
"1234".

Outre main, le programme comprend 3 routines a�ectuant chacune une tâche :

1. char10_to_val prend un (code ASCII de) caractère chi�re décimal en para-
mètre et calcule sa valeur entière (calcule 5 à partir de '5').

2. chaine_to_chi�res applique char10_to_val à chaque caractère de la chaîne
et remplit un tableau d'entiers avec les valeurs des chi�res (de "1234" à {1,2,3,4}).

3. string_to_int utilise chaine_to_chi�res pour convertir la chaîne en valeur

entière suivant la formule x =
∑n−1

i=0 xi10
i avec xi ∈ [0..9].

2 String_to_int : boucle for et tableau (1h)

Le programme principal main.c qui convertit deux chaînes, est donné en annexe :

mandelbrot> armrun string_to_int

Chaine : 43 -> 43

Chaine : 26543 -> 26543

Et voici le �chier string_to_int.c :

#include "chaine_to_chiffres.h"

#include <stdio.h>

#define MAX 11

unsigned int valeurs[MAX];

/* Conversion d'une chaine en valeur entiere (s -> valentier) */

void string_to_int (char *s, unsigned int *valentier)

{

register unsigned int nb_val; /* a stocker dans r4 */

register unsigned int somme; /* a stocker dans r5 */

register int i; /* a stocker dans r6 */

somme = 0;

1. sscanf pour une chaîne stockée dans un tableau, scanf et fscanf pour une chaîne lue au clavier

ou dans un �chier

3

nb_val = chaine_to_chiffres (s,valeurs);

for (i=0;i<nb_val;i++) {

somme = 10*somme + valeurs[i];

}

*valentier = somme;

}

et un squelette de traduction à compléter :

.global string_to_int

MAX=11

/* ajouter sections bss et/ou data */

.text

string_to_int:

prologue: stmfd sp!,{r4-r9,lr} @ sauvegarde des registres en pile

mov r9,r1 @ copie de parametre reçu valentier

@ (L'appel de chaine_to_chiffres

@ detruira le contenu de r1)

ldr r7,= valeurs

corps: ...

epilogue: ldmfd sp!,{r4-r9,lr} @ restauration registres depuis pile

mov pc,lr

.ltorg

2.1 Sections data /bss (15mn)

Traduire en langage d'assemblage la déclaration du tableau valeurs.

Traduire en langage d'assemblage la déclaration des variables ch1, val1, ch2 et
val2 du �chier main.c.

.global string_to_int

#define MAX 11

.bss

valeurs: .skip MAX*4

.data

ch1: .asciz "43" @ ou bien .ascii "43"; .byte 0

@ ou bien .byte '4'; .byte '3'; .byte '0'

ch2: .asciz "26543" @ meme principe : six fois .byte possible

4

format: .asciz "Chaine : %s -> %u \012" @ '\012' = \n

@ La taille cumulée des chaines precedentes a peu de chances d'etre multiple de 4

@ donc directive d'alignement sur la taille (plsu elevee) de la variable qui suit

.balign 4

val2: .word 7

.bss

val1: .skip 4

Traduire en langage d'assemblage (section text) l'a�ectation v = val1 de main.c.
Vous supposerez que v est stockée dans le registre r4.

Attention : dans le �chier main.c, la valeur val1 est déclarée à l'extérieur de la
fonction main. Elle n'a pas d'attribut register et ne pourrait en avoir puisqu'on en
passe l'adresse lors de cet appel : string_to_int (ch1,&val1). La variable val1 est donc
stockée en mémoire dans la section bss (pusique déclarée sans valeur initiale).

Tout accès à la variable val1 nécessite donc un accès mémoire, que l'on peut mettre
en évidence en remplaçant dans le code C val par *&val1. L'a�ectation
ldr r4,= val1 correspond en C à r = &val1 (avec un problème de typage puisque &vl1
est de type unsigned int * et r de type unsigned int) et non à r=val1.

.text

@ v : r4

@ tmp : r5,r6

main: stmfd sp!,{r4,r5,r6,lr}

ldr r0,= ch1 @ string_to_int(ch1,&val1)

ldr r1,=val1

bl string_to_int

@ Début de traduction de v = val1

ldr r4,=val1 @ v = *&val1

ldr r4,[r4]

@ Fin de traduction de v=val1

ldr r0,=format @ printf ("...",ch1,v)

ldr r1,=ch1

mov r2,r4

bl printf

5

ldr r0,= ch2 @ string_to_int(ch2,&val2)

ldr r1,=val2

bl string_to_int

ldr r4,=val2 @ v = *&val2

ldr r4,[r4]

ldr r0,=format @ printf ("...", ch2,val2)

ldr r1,=ch2

ldr r2,= val2

ldr r2,[r2]

bl printf

ldmfd sp!,{r4,r5,r6,lr}

mov pc,lr

.ltorg

Imaginons que l'on ajoute dans le corps de main l'a�ection suivante : val1 = 35.
Comment la traduirait-on en langage d'assemblage (en veillant à ne pas faire d'accès
mémoire inutile).

@ Noter qu'il n'y a aucune raison de lire l'ancienne valeur de val1 avant

@ de lui en affecter une nouvelle : str et non une séquence ldr + str.

@ La constante 35 est codable sur 8 bits : mov # possible

ldr r5,=val1 @ *&val1 = 35

mov r6,#35

str r6,[r5]

2.2 Boucle for (35mn)

Traduire en langage d'assemblage l'a�ectation somme = 10*somme + va-
leurs[i]

corpswhile: add r5,r5,r5, LSL #2 @ somme = 5*somme

mov r5,r5,LSL #1 @ somme = 2*somme

mov r8,r6,LSL #2 @ i*sizeof(unsigned int)

ldr r8,[r7,r8]

add r5,r5,r8 @ somme = somme + valeurs[i]

Remplacer la boucle for par une séquence d'instructions C équivalente utilisant
une boucle while.

6

i=0;

while (i < nb_val) {

somme = somme * 10 + valeurs[i];

i++;

}

Traduire en langage d'assemblage la boucle for (indiquer par un commentaire
l'endroit où placer la traduction de l'a�ectation précédente).

L'endroit où se trouvent les paramètres s et valentier est dé�ni par la convention
d'appel rappelée en début de sujet.

@ for (i=0;i<nb_val;i++)

mov r6,#0 @ i=0

b condwhile @ goto condwhile

corpswhile: ... @ somme = 10*somme + valeurs[i]

add r6,r6,#1 @ i++

condwhile: cmp r6,r4 @ if (i<nb_val) goto corpswhile

blt corpswhile @ rappel : i n'est pas unsigned

Si vous préférez le test avant le corps :

condwhile: cmp r6,r4 @ if (i >= nb_val) goto finwhile

bge finwhile

corps: ... @ somme = ...

add r6,r6,#1 @ i++

b condwhile @ goto condwhile

finwhile: ... @ suite après for

Remarque : la traduction (pas demandée) de *valentier=somme est str r5,[r1]
puisque valentier, en tant que deuxième paramètre, doit être passé dans r1 par l'ap-
pelante, et que le registre stockant somme est r5.

2.3 Appel de fonction (10mn)

Traduire en langage d'assemblage l'appel string_to_int (ch1,&val1) de main.c.

ldr r0,= ch1 @ string_to_int(ch1,&val1)

ldr r1,=val1

bl string_to_int

7

3 Char10_to_val : if, paramètre adresse (30 mn)

Voici le code C de la procédure char10_to_val et un squelette de traduction à
compléter :

#include "char10_to_val.h"

#include <stdio.h>

/* Conversion d'un caractere chiffre -> valeur du chiffre ('4' -> 4) */

/* Convention d'appel : chiffre dans r0, pvalchiffe dans r1, */

/* resultat dans r0 à la place de chval */

/* Retourne 0 en cas d'erreur (pas un caractere dans ['0' ... '9'] */

/* Retourne 1 si la conversion est reussie */

int char10_to_val (char chiffre, unsigned int *pvalchiffre)

{

register unsigned int decimal; /* a stocker dans le registre r4 */

register int r; /* a stocker dans le registre r5 */

decimal = chiffre;

if (decimal >= '0' && decimal <= '9') {

decimal = decimal - '0';

*pvalchiffre = decimal;

r = 1;

} else {

r = 0;

}

return r;

}

.global char10_to_val

.text

char10_to_val:

prologue: stmfd sp!, {r4,r5} @ sauvegarde des registres en pile

corps: ...

si: ...

alors: ...

sinon: ...

finsi:

epilogue: ... @ return r

8

ldmfd sp!,{r4,r5}

mov pc,lr

Avec une condition composée de type ET, il su�t que l'un ou l'autre des termes de
la condition soit faux pour que l'on saute dans la branche sinon du if. La sémantique
du C indique que l'opérateur && est de type "et puis" : la deuxième partie de la
condtion n'est évaluée que si la première partie de la condition est véri�ée.

La traduction d'un if avec un condition de type ET suit le même principe que
celle d'un if avec une condition simple, mais avec une séquence d'autant couples
test+branchement si faux que de termes dans la condition composée.

Traduire en langage d'assemblage les instructions du corps de char10_to_val en
décompsant au préalable la construction if en équivalent C avec if et goto. Vous pouvez
écrire deux blocs de code séparés ou bien placer la forme if ... goto en commentaire
des instructions en langage d'assemblage.

Remarque : il faut se souvenir que 'c' désigne l'entier code ASCII du caractère c
minuscule, soit l'entier 0x63 et que le code ASCII des caractères chi�res décimaux sont
di�érents des entiers qu'ils représentent. Les caractères chi�res 0 et 9 ont pour codes
ASCII 0x30 et 0x39 et non 0 et 9 : '0' 6= 0 et '9' 6= 9.

Une déclaration C char valcar = '9' se traduirait dans la section data par
valcar : .byte 0x39 @ ou bien .byte 99 ou bien (plus,lisible) à .byte '9'.

.text

char10_to_val:

prologue: stmfd sp!, {r4,r5} @ sauvegarde des registre en pile

corps: mov r4,r0 @ decimal = chiffre

condif: cmp r4, #'0' @ if (decimal < '0') goto sinon

blo sinon @ blt si deicmal n'etait pas unsigned

cmp r4, #'9' @ if (decimal > '9') goto sinon

bhi sinon @ bgt si decimal n'etait pas unsigned

alors: sub r4,r4,#'0' @ decimal = decimal - '0'

str r4,[r1] @ *pvalchiffre = decimal

mov r5,#1 @ r = 1

b finsi @ goto finsi

sinon: mov r5,#0 @ r = 0

finsi:

epilogue: mov r0,r5 @ return r

9

ldmfd sp!,{r4,r5}

mov pc,lr

A noter : si la première condition est vraie, il ne faut pas poursuivre avec le bloc
alors, mais avec l'évaluation de la deuxième partie de la condition.

/* Cette structure de code correspond a une condition de type OU : */

/* if ((decimal >= '0') || (decimal <= '9')) { */

/* ... */

/* r=1; */

/* } else { */

/* r=0; */

/* } */

condif: cmp r4,#'0" @ if (decimal >= '0') goto alors

bhs alors

cmp r4,#'9' @ if (decimal > '9') goto sinon

bhi sinon

alors: ... @ decimal = decimal - '0' etc

b finsi

sinon: mov r5,#0

finsi:

4 Chaine_to_chi�res : paramètres, pointeurs (25mn)

Voici le contenu du �chier chaine_to_chi�res.c et un squelette de traduction :

#include "char10_to_val.h"

/* 1er parametre : une chaine de caracteres parmi ['0'... '9'] */

/* 2eme parametre : tableau chiffre a remplir avec les valeurs des chiffres */

/* La taille du tableau doit etre au moins egale a la longueur de la chaine s */

/* Valeur retournee : nombre de valeurs stockees dans chiffres */

/* Convention d'appel : */

/* s dans r0, chiffres dans r1, valeur de retour dans r0 a la place de s */

unsigned int chaine_to_chiffres (char *s, unsigned int *chiffres)

{

register unsigned *ptri; /* a stocker dans r4 */

register char *ptrc; /* a stocker dans r5 */

register unsigned int longueur; /* a stocker dans r6 */

10

register int ok; /* a stocker dans r7 */

ptri = chiffres;

ptrc = s;

longueur = 0;

/* do...while : comme while mais le corps est executé au moins 1 fois */

do {

ok = char10_to_val(*ptrc, ptri);

if (ok != 0) {

longueur = longueur + 1;

ptrc = ptrc + 1;

ptri = ptri + 1;

}

} while (ok != 0);

return longueur;

}

.global chaine_to_chiffres

.text

chaine_to_chiffres:

prologue: stmfd sp!, {...} @ sauvegarde des registres dans la pile

corps: ...

epilogue: ... @ return longueur

ldmfd sp!,{...} @ restauration des registres

mov pc,lr

Traduire en langage d'assemblage l'a�ectation ptri = chi�res.

Traduire en langage d'assemblage l'a�ectation ptri = ptri + 1.

Traduire en langage d'assemblage l'a�ectation
ok = char10_to_val(*ptrc, ptri)

.text

mov r4,r1 @ ptri = chiffres

add r4,r4,#4 @ ptri = ptri + 1 *sizeof(unsigned int)

mov r1,r4 @ pvalchiffre de char10_to_val = ptri

ldrb r0,[r5] @ chiffre de char10_to_val = *ptrc

bl char10_to_val

mov r7,r0 @ ok=char10_to_val(...)

Remarque : ne pas oublier la sémantique de l'arithmétique sur un pointeur. En
supposant qu'un pointeur p contienne l'adresse de l'élément d'indice i d'un tableau

11

(p=&(t[i]), l'expression p+j doit correspondre à l'adresse de l'élément d'indice j du
même tableau (p=&(t[i+j])). Sachant que la formule de calcul de l'adresse d'un élé-
ment d'indice k d'un tableau t est t + k * sizeof(type_du_tableau), il faut donc
implicitement multiplier j par la taille d'un élément avant de l'ajouter à l'adresse
contenue dans p.

Donner la liste des registres à sauvegarder et restaurer (dans stmfd et ldmfd). Un
de ces rgistres doit impérativement être sauvegardé et restauré, faute de quoi l'exécu-
tion du programme ne sortira jamais de la fonction chaine_to_chi�res. Quel est ce
registre ? (expliquer pourquoi).

Il ne faut pas sauver/restaurer r0 qui stocke la valeur de retour de la fonction. On
peut se poser la question d sauvegarder le paramètre s avant d'appeler char10_to_val
puisque *ptrc va écraser le contenu de r0 lors de cet appel. En fait, s est copiée dans
ptrc avant ct appel, et n'est plus utilisée après, donc la réutilisation de r0 en tant que
paramètre passé ne nécessite pas de sauvegarde spé�cique de s.

On peut ne pas sauver/restaurer r1 qui est inclus dans la convention d'appel.

Il faut sauvegarder tous les autres registres a�ectés dans le corps de la fonction.
Ce sont les registres r4 à r7 qui stockent les variables locales de la fonction, ainsi que
le paramètre implicite adresse de retour : le contenu du registre lr sera détruit lors de
l'appel de char10_to_val.

Le registre a ne pas oublier de sauvegarder et restaurer (même s'il n'apparait pas
explicitement dans l'instruction bl qui le modi�e) est lr.

Chaque nouvel appel d'une routine écrase dans lr l'adresse de retour reçue de l'ap-
pelante (main) et la remplace par l'adresse de retour (instruction suivant bl) dans la
fonction (chaine_to_chi�res). En l'absence de sauvegarde/restauration de lr, l'instruc-
tion mov pc,lr à la �n de chaine_to_chi�res ne va donc pas retourner à l'appelante
main, mais e�ectuer un branchement incontionnel dans le corps de chaine_to_chi�res,
d'où une boucle in�nie.

5 Annexe 1 : main.c

#include <stdio.h>

#include "string_to_int.h"

char ch1 [] = "43"; /* La taille du tableau est deduite de celle de la chaine */

unsigned int val1;

char ch2 [] = "26543";

unsigned int val2=7;

12

int main (void)

{

register unsigned int v;

string_to_int (ch1,&val1);

v = val1;

printf ("Chaine : %s -> %u \n",ch1,v);

string_to_int (ch2,&val2);

printf ("Chaine : %s -> %u \n",ch2,val2);

return 0;

}

13

