M2P CCI : corrigé Langage Machine, Novembre 2015

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.
Table des matiéres

Conventions communes & toutes les questions

Toutes les variables locales des fonctions et procédures sont stockées dans des re-
gistres (le numéro de registre a utiliser est indiqué en commentaire). Seules les variables
déclarées a 'extérieur des fonctions et sans I'attribut register sont stockées en mémoire.

La convention d’appel des fonctions et procédures est la suivante :

— Tous les paramétres sont passés par les registres et non en mémoire

— Le premier paramétre est passé dans le registre r0

— Le deuxiéme paramétre est passé dans le registre rl

— Le résultat des fonctions est retourné dans le registre r0 a la place du premier
parameétre

La taille d’'un char est de 8 bits, celle d'un int ou unsigned int est de 32 bits.

Remarques générales sur le contenu des copies

Dans beaucoup trop de copies, il n’a été tenu aucun compte des conventions de
stockage des variables locales et d’appel de procédure, ni de la présence ou de 1’absence
d’atribut register.

Une variable déclarée avec l'attribut register est une variable stockée directement
dans un registre (de préférence celui donnée en commentaire).
Les déclarations suivantes :

stocker dans rb5 */
stocker dans r6 x/

register unsigned int somme; /*
register int i; /*

S

register unsigned int decimal; /* a stocker dans r4 */

register unsigned int *ptri; /* a stocker dans r4 */
register unsigned int longueur; /* a stocker dans r6 */

signifient que, dans le corps des fonctions ou procédures auxquelles elles appar-
tiennent, les variables ont les propriétés suivantes :

1. somme est le registre r5 (et n’a donc ni adresse mémoire ni étiquette somme
associée, et utiliser I'instruction ldr r8,=somme n’a aucun sens) et son contenu
est de type entier naturel. L’instruction mov r5,#32 correspond dans ce cas a
somme=32 en C.

2. méme chose pour i, décimal et longueur, dans les registres respectifs r6,r4 et 16,
avec des contenus de type entier naturel excepté pour i (entier relatif)

3. ptri est le registre r4 (et n’a donc ni adresse mémoire ni étiquette somme asso-
ciée, et ni ldr r8,=ptri ni Idr r8,=*ptri n’ont de sens), elle est de type unsigned
int *, ce qui signifie que son contenu est de type adresse d’'un emplacement
mémoire (une variable) contenant un entier naturel.

La déclaration de ptri a été souvent interprétée a tort ainsi :
— la variable ptri est stockée en mémoire dans la section data ou bss
— r4 contient 'adresse a laquelle se trouve la variable ptri

Cette interprétation correspondrait & ce genre de déclaration :

unsigned int ptri; /* sans register, ptri sera stockée dans bss */
register unsigned int *r4 = &ptri; /* r4 pointe sur ptri */

et donnerait lieu a une réservation de place dans bss et a une initialisation de r4
en début de corps de la fonction :

.bss

... /* reservations de memoire precedentes */
ptri: .skip 4

.text

@ dans le début du corps de la fonction
ldr r4,=ptri

A contrario, dans main.c, la variable vall n’est pas une variable locale de fonction,
et elle ne pourrait pas avoir I'attribut register puisqu’on en passe l'adresse lors de
Pappel de la fonction string to int. Elle sera donc obligatoirement stockée dans bss,
et en supposant que v et tmp soient 2 variables stockées dans des registre rv et rtmp :

1. v = vall équivaut & v — *&vall, et suppose une opération d’initialisation d’un
registre avec 'adresse de vall (ldr regadr,= vall) suivi d’une opération de lec-
ture & cette adresse (ldr rv,|regadr]).

2. vall = v équivaut & *&vall=v et suppose une opération d’initialisation d’un re-
gistre avec 1'adresse de vall (ldr regadr,= vall) suivi d’une opération d’écriture
a cette adresse (str rv,|regadr]).

3. pour v = 35, il faut d’abord placer la constante dans un registre temporaire, on
se retrouve ensuite avec un cas analogue au précédent (mov rtmp,#35 ; 1dr regadr,=vall ; str rtm;

4. une incrémentation vall = vall + 2 nécessite 4 instructions (initialisation de
regadr, lecture par ldr, addition, écriture par str).

Si vous avez décider d’ignorer l'attribut register des variables locales somme, i,
décimal, longueur, restez au minimum cohérent avec votre choix. Si vous ajoutez quel-
quechose a somme, la séquence doit ressembler a ceci :
ldr rx,= somme; ldr r5,[rx|; add r5,r5,...; str r5,[rx| sans oublier la mise a jour du
contenu en mémoire avec str.

1 Introduction sans question (5 mn)

En utilisant le format %d, les fonctions de type scanf permet de convertir une
chaine de caractéres! représentant 1’écriture d’un entier en décimal en la valeur en-
tiére correspondante.

L’objectif est de traduire en langage d’assemblage un programme C qui effectue un
travail analogue et génére par exemple 'entier 1234 a partir de la chaine de caractéres
"1234".

Outre main, le programme comprend 3 routines affectuant chacune une tache :

1. charl0 to wval prend un (code ASCII de) caractére chiffre décimal en para-
métre et calcule sa valeur entiére (calcule 5 & partir de ’5’).

2. chaine to chiffres applique charl0_to_val a chaque caractére de la chaine
et remplit un tableau d’entiers avec les valeurs des chiffres (de "1234" a {1,2,3,4}).

3. string to_int utilise chaine_to_ chiffres pour convertir la chaine en valeur
entiére suivant la formule 2 = 31 2,10 avec z; € [0..9)].

2 String to int : boucle for et tableau (1h)

Le programme principal main.c qui convertit deux chaines, est donné en annexe :

mandelbrot> armrun string_to_int
Chaine : 43 -> 43
Chaine : 26543 -> 26543

Et voici le fichier string to int.c :

#include "chaine_to_chiffres.h"
#include <stdio.h>

#tdefine MAX 11
unsigned int valeurs[MAX];

/* Conversion d’une chaine en valeur entiere (s -> valentier) */
void string_to_int (char *s, unsigned int *valentier)

{
register unsigned int nb_val; /* a stocker dans r4 */
register unsigned int somme; /* a stocker dans r5 */
register int i; /* a stocker dans r6 x/
somme = 0;

1. sscanf pour une chaine stockée dans un tableau, scanf et fscanf pour une chaine lue au clavier
ou dans un fichier

nb_val = chaine_to_chiffres (s,valeurs);
for (i=0;i<nb_val;i++) {
somme = 10*somme + valeurs[i];

}
*valentier = somme;
+
et un squelette de traduction a compléter :
.global string_to_int
MAX=11

/* ajouter sections bss et/ou data */

.text

string_to_int:

prologue: stmfd sp!,{r4-r9,1r} @ sauvegarde des registres en pile
mov r9,rl @ copie de parametre regu valentier

@ (L’appel de chaine_to_chiffres
@ detruira le contenu de ril)
1ldr r7,= valeurs

corps:
epilogue: ldmfd sp!,{r4-r9,1r} @ restauration registres depuis pile
mov pc,lr
.1torg

2.1 Sections data /bss (15mn)

Traduire en langage d’assemblage la déclaration du tableau valeurs.

Traduire en langage d’assemblage la déclaration des variables chl, vall, ch2 et
val2 du fichier main.c.

.global string_to_int
#define MAX 11

.bss
valeurs: .skip MAX*4
.data
chi: .asciz "43" @ ou bien .ascii "43"; .byte 0
@ ou bien .byte ’4’; .byte ’3’; .byte ’0’
ch2: .asciz "26543" @ meme principe : six fois .byte possible

format: .asciz "Chaine : %s -> %u \012" @ °\012’ = \n

@ La taille cumulée des chaines precedentes a peu de chances d’etre multiple de 4
@ donc directive d’alignement sur la taille (plsu elevee) de la variable qui suit

.balign 4
val2: .word 7

.bss
vall: .skip 4

Traduire en langage d’assemblage (section text) I'affectation v = vall de main.c.
Vous supposerez que v est stockée dans le registre r4.

Attention : dans le fichier main.c, la valeur vall est déclarée a 'extérieur de la
fonction main. Elle n’a pas d’attribut register et ne pourrait en avoir puisqu’on en
passe 'adresse lors de cet appel : string_to_int (ch1,&vall). La variable vall est donc
stockée en mémoire dans la section bss (pusique déclarée sans valeur initiale).

Tout accés a la variable vall nécessite donc un accés mémoire, que 'on peut mettre
en évidence en remplacant dans le code C val par *&vall. L’affectation
Idr r4,= vall correspond en C a r = &vall (avec un probléme de typage puisque &vll
est de type unsigned int * et r de type unsigned int) et non a r=vall.

.text
Qv .
@ tmp : rb,r6
main: stmfd sp!,{r4,r5,r6,1r}
ldr r0,= chil @ string_to_int(chl,&vall)
1dr rl,=vall
bl string_to_int

@ Début de traduction de v = vall
1dr r4,=vall Q@ v = *x&vall
ldr rd, [r4]

@ Fin de traduction de v=vall

ldr r0,=format @ printf ("...",chl,v)
1dr rl,=chl

mov r2,r4

bl printf

ldr r0,= ch2 @ string_to_int(ch2,&val2)
1dr rl,=val2
bl string_to_int

1dr rd,=val2 @ v = x&val2
1dr r4, [r4]

ldr r0,=format @ printf ("...", ch2,val2)
1dr rl,=ch2

1dr r2,= val2

1dr r2,[r2]

bl printf

ldmfd sp!,{r4,r5,r6,1r}
mov pc,lr

.1torg

Imaginons que I'on ajoute dans le corps de main 'affection suivante : vall = 35.
Comment la traduirait-on en langage d’assemblage (en veillant a ne pas faire d’accés
mémoire inutile).

@ Noter qu’il n’y a aucune raison de lire 1’ancienne valeur de vall avant
@ de lui en affecter une nouvelle : str et non une séquence ldr + str.
@ La constante 35 est codable sur 8 bits : mov # possible

ldr rb,=vall @ *&vall = 35

mov r6,#35
str 6, [r5]

2.2 Boucle for (35mn)

Traduire en langage d’assemblage l'affectation somme — 10*somme + va-
leurs]i]
corpswhile: add r5,r5,r5, LSL #2 @ somme = 5*somme
mov r5,r5,LSL #1 @ somme = 2*somme
mov r8,r6,LSL #2 @ i*sizeof (unsigned int)
ldr 8, [r7,r8]
add 15,r5,r8 @ somme = somme + valeurs[i]

Remplacer la boucle for par une séquence d’instructions C équivalente utilisant
une boucle while.

1=0;

while (i < nb_val) {

somme = somme * 10 + valeursl[il;

it++;

b

}

Traduire en langage d’assemblage la boucle for (indiquer par un commentaire
’endroit on placer la traduction de I'affectation précédente).

L’endroit ol se trouvent les paramétres s et valentier est défini par la convention
d’appel rappelée en début de sujet.

mov
b

corpswhile: e
add

condwhile: cmp
blt

r6,#0
condwhile
r6,r6,#1

ré6,r4d
corpswhile

Si vous préférez le test avant le corps :

condwhile: cmp
bge
Corps: ce
add
b
finwhile:

r6,r4
finwhile

r6,r6,#1
condwhile

(&)

@

e © © ©

for (i=0;i<nb_val;i++)
1=0
goto condwhile

somme = 10*somme + valeursl[i]
it++

if (i<nb_val) goto corpswhile
rappel : 1 n’est pas unsigned

if (i >= nb_val) goto finwhile

somme = ...
i++

goto condwhile
suite aprés for

Remarque : la traduction (pas demandée) de *valentier—somme est str r5,[rl]
puisque valentier, en tant que deuxiéme paramétre, doit étre passé dans rl par 'ap-

pelante, et que le registre stockant somme est 5.

2.3 Appel de fonction (10mn)

Traduire en langage d’assemblage 'appel string to _int (ch1,&vall) de main.c.

ldr
ldr
bl

r0,= chl
rl,=valil
string_to_int

@ string_to_int(chl,&vall)

3 Charl0 to val : if, paramétre adresse (30 mn)

Voici le code C de la procédure charl0 to val et un squelette de traduction a
compléter :

#include "char10_to_val.h"
#include <stdio.h>

/* Conversion d’un caractere chiffre -> valeur du chiffre (’°4’° -> 4) x/

/* Convention d’appel : chiffre dans r0, pvalchiffe dans ri, */
/% resultat dans r0 & la place de chval */
/* Retourne O en cas d’erreur (pas un caractere dans [’0’ ... ’9°] %/
/* Retourne 1 si la conversion est reussie */

int char10_to_val (char chiffre, unsigned int *pvalchiffre)

{
register unsigned int decimal; /* a stocker dans le registre r4 */
register int r; /* a stocker dans le registre r5 */

decimal = chiffre;

if (decimal >= ’0° && decimal <= ’9’) {
decimal = decimal - ’0’;
xpvalchiffre = decimal;
r =1,

} else {
r = 0;

}

return r;

.global char10_to_val
.text
char10_to_val:
prologue: stmfd sp!, {r4,r5} @ sauvegarde des registres en pile
corps:
Si:
alors:

sinon:

finsi:
epilogue: ces @ return r

ldmfd sp!,{r4,r5}
mov pc,lr

Avec une condition composée de type ET, il suffit que I'un ou 'autre des termes de
la condition soit faux pour que I'on saute dans la branche sinon du if. La sémantique
du C indique que lopérateur && est de type "et puis" : la deuxiéme partie de la
condtion n’est évaluée que si la premiére partie de la condition est vérifiée.

La traduction d’un if avec un condition de type ET suit le méme principe que
celle d'un if avec une condition simple, mais avec une séquence d’autant couples
test+branchement si faux que de termes dans la condition composée.

Traduire en langage d’assemblage les instructions du corps de charl0_to_val en
décompsant au préalable la construction if en équivalent C avec if et goto. Vous pouvez
écrire deux blocs de code séparés ou bien placer la forme if ... goto en commentaire
des instructions en langage d’assemblage.

Remarque : il faut se souvenir que ’c’ désigne I'entier code ASCII du caractére ¢
minuscule, soit I'entier 0x63 et que le code ASCII des caractéres chiffres décimaux sont
différents des entiers qu’ils représentent. Les caractéres chiffres 0 et 9 ont pour codes
ASCII 0x30 et 0x39 et non 0 et 9 :’0" #~ 0 et 9" # 9.

Une déclaration C char valcar = ’9’ se traduirait dans la section data par
valcar : .byte 0x39 @ ou bien .byte 99 ou bien (plus,lisible) a .byte ’9’.

.text
char10_to_val:
prologue: stmfd sp!, {r4,r6} @ sauvegarde des registre en pile
corps: mov 14,r0 @ decimal = chiffre
condif: cmp r4, #°0° if (decimal < ’0’) goto sinon

blo sinon
cmp ré4, #°9°
bhi sinon

blt si deicmal n’etait pas unsigned
if (decimal > ’9’) goto sinon
bgt si decimal n’etait pas unsigned

o 0 0 ©

alors: sub r4,r4,#°0’ @ decimal = decimal - ’0’
str r4,[r1] @ *pvalchiffre = decimal
mov 15,#1 r =1
b finsi @ goto finsi

sinon: mov r5,#0 @r =20

finsi:

epilogue: mov r0,rb @ return r

A noter :

ldmfd sp!,{r4,r5}
mov pc,lr

alors, mais avec I’évaluation de la deuxiéme partie de la condition.

Cette structure de code correspond a une condition de type 0U :

/%

/% if ((decimal >= °0’)

/* -

/% r=1;

/* } else {

/% r=0;

/* }

condif: cmp r4,#°0"
bhs alors
cmp r4,#°9°
bhi sinon

alors:
b finsi

sinon: mov r5,#0

finsi:

4 Chaine to chiffres: paramétres, pointeurs (25mn)

|| (decimal <= ’9?)) {

@ if (decimal >= ’0’) goto alors

@ if (decimal > ’9’) goto sinon

@ decimal = decimal - ’0°’ etc

#include "char10_to_val.h"

/%
/*
/*
/%

/%
/*

unsigned int chaine_to_chiffres (char *s, unsigned int *chiffres)

{

ler parametre : une chaine de caracteres parmi [’0’... ’9°]
2eme parametre : tableau chiffre a remplir avec les valeurs des chiffres */
La taille du tableau doit etre au moins egale a la longueur de la chaine s

Valeur retournee

Convention d’appel :

s dans r0, chiffres dans rl, valeur de retour dans rO a la place de s

register unsigned *ptri,;
register char *ptrc;
register unsigned int longueur;

: nombre de valeurs stockees dans chiffres

/* a stocker dans r4 */
/* a stocker dans r5 */
/* a stocker dans r6 */

10

si la premiére condition est vraie, il ne faut pas poursuivre avec le bloc

*/
*/
*/
*/
*/
*/
*/

Voici le contenu du fichier chaine to_chiffres.c et un squelette de traduction

*/

*/
*/

*/
*/

register int ok; /* a stocker dans r7 */

ptri chiffres;
ptrc = s;
longueur = 0;

/* do...while : comme while mais le corps est executé au moins 1 fois */

do {
ok = char10_to_val(*ptrc, ptri);
if (ok !'= 0) {
longueur = longueur + 1;
ptrc = ptrc + 1;
ptri = ptri + 1;
+
} while (ok != 0);
return longueur;

+
.global chaine_to_chiffres
.text
chaine_to_chiffres:
prologue: stmfd sp!, {...} @ sauvegarde des registres dans la pile
corps:
epilogue: ce. @ return longueur
ldmfd sp!,{...} @ restauration des registres
mov pc,1lr

Traduire en langage d’assemblage 1'affectation ptri = chiffres.
Traduire en langage d’assemblage 'affectation ptri = ptri + 1.

Traduire en langage d’assemblage 1'affectation
ok = char10 to_val(*ptrc, ptri)

.text

mov ré4,rl @ ptri = chiffres

add r4,r4,#4 Q@ ptri = ptri + 1 *sizeof(unsigned int)
mov rl,r4 @ pvalchiffre de charlO_to_val = ptri
1drb r0, [r5] @ chiffre de charl0O_to_val = *ptrc

bl char10_to_val

mov r7,r0 @ ok=char10_to_val(...)

Remarque : ne pas oublier la sémantique de I'arithmétique sur un pointeur. En
supposant qu’un pointeur p contienne ’adresse de 1’élément d’indice i d’un tableau

11

(p=&(tli]), 'expression p+j doit correspondre a Padresse de I’élément d’indice j du
méme tableau (p=&(t[i-+j])). Sachant que la formule de calcul de I'adresse d’un élé-
ment d’indice k d’un tableau t est t + k * sizeof(type du_tableau), il faut donc
implicitement multiplier j par la taille d’'un élément avant de 1’ajouter & 1’adresse
contenue dans p.

Donner la liste des registres a sauvegarder et restaurer (dans stmfd et ldmfd). Un
de ces rgistres doit impérativement étre sauvegardé et restauré, faute de quoi 'exécu-
tion du programme ne sortira jamais de la fonction chaine to chiffres. Quel est ce
registre 7 (expliquer pourquoi).

Il ne faut pas sauver/restaurer r0 qui stocke la valeur de retour de la fonction. On
peut se poser la question d sauvegarder le paramétre s avant d’appeler charl0_to_val
puisque *ptre va écraser le contenu de r0 lors de cet appel. En fait, s est copiée dans
ptrc avant ct appel, et n’est plus utilisée apres, donc la réutilisation de r0) en tant que
paramétre passé ne nécessite pas de sauvegarde spéficique de s.

On peut ne pas sauver/restaurer rl qui est inclus dans la convention d’appel.

Il faut sauvegarder tous les autres registres affectés dans le corps de la fonction.
Ce sont les registres r4 a r7 qui stockent les variables locales de la fonction, ainsi que
le parameétre implicite adresse de retour : le contenu du registre Ir sera détruit lors de
I’appel de charl0_to wval.

Le registre a ne pas oublier de sauvegarder et restaurer (méme s’il n’apparait pas
explicitement dans I'instruction bl qui le modifie) est Ir.

Chaque nouvel appel d’une routine écrase dans Ir 'adresse de retour recue de I'ap-
pelante (main) et la remplace par 'adresse de retour (instruction suivant bl) dans la
fonction (chaine to chiffres). En 'absence de sauvegarde /restauration de Ir, I'instruc-
tion mov pc,lr & la fin de chaine to chiffres ne va donc pas retourner a ’appelante
main, mais effectuer un branchement incontionnel dans le corps de chaine to chiffres,
d’ott une boucle infinie.

5 Annexe 1 : main.c

#include <stdio.h>
#include "string_to_int.h"

char chl [] = "43"; /* La taille du tableau est deduite de celle de la chaine */
unsigned int vall;

char ch2 [] = "26543";

unsigned int val2=7;

12

int main (void)

{
register unsigned int v;
string_to_int (chl,&vall);
v = vall;
printf ("Chaine : %s -> %u \n",chl,v);
string_to_int (ch2,&val2);
printf ("Chaine : %s -> %u \n",ch2,val2);
return O;
}

13

