M2P CCI : corrigé Langage Machine, Novembre 2017

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matiéres

1 Endianness (fontions et tableaux) 1
1.1 Présentation sans question oL 1
1.2 Traduction de swap_bytes 2
1.3 Traduction de reverse endian 3

2 Listes : structures, procédures et pile 5
2.1 Déclaration de variables Lo 6
2.2 Appeldelistmin Lo 8
2.3 Listmin e 10

3 Annexe 1: code de sawp bytes et reverse endian 10

4 Annexe 3 : endianness et contenu des tableaux 11

Conventions communes & toutes les questions

Toutes les variables locales des fonctions et procédures sont stockées dans des re-
gistres (le numéro de registre a utiliser est indiqué en commentaire). Seules les variables
déclarées a 'extérieur des fonctions et sans l'attribut register sont stockées en mémoire.
Types uint32 t, uintl6_t, uint8 t : entiers naturels sur 32, 16 et 8 bits.

1 Endianness (fontions et tableaux)

Dans la traduction des fonctions, respecter l'allocation des registres décrite en
annexe.

1.1 Présentation sans question

On considére 3 tableaux d’entiers naturels de tailles 16,32 et 64 bits, représentés
selon la convention Big ou Little Endian de la machine (détails en annexe 4).

uint64_t t64[2]
uint32_t t32[4]
uint16_t t16[8]

{ 0x0123456789abcdef, 0Oxefcdab8967452301 };
{ 0x01234567, 0x89abcdef, 0x67452301, Oxefcdab89 };
{ 0x0123, 0x4567, 0x89ab,0xcdef,

0x6745, 0x2301, Oxefcd, 0xab89 I;

Les 3 parameétres de la procdure reverse endian sont :

1. tab : adresse du tableau

2. indice : numéro de ’élément de tableau & modifier

3. taille (d’élément) : sizeof(type), type € {uin64 t, uintl6 t,uint8 t}

Reverse endian permet de changer la convention de représentation d’un élément
de tableau :

— Aprés reverse _endian(t32,2,4), ’élément t32[2] contiendra 0x01234567

— Aprés reverse_endian(t16,0,2), 1'élément t16[0] contiendra 0x2301

1.2 Traduction de swap bytes

Traduire en langage d’assemablage ARM le corps (boucle for) de swap bytes. Le
prologue et I’épilogue ne sont pas demandés.

.text

@ void swap_bytes (uint32_t size, uint8_t *address)

Q

@ Convention d’appel : size dans rO, address dans rl, adresse de retour dans lr
Q

@ variables locales : tmpl dans r3, tmp2 dans r4, i dans r5, tmlmi dans r6

.global swap_bytes
swap_bytes: @ registres modifiés dans le corps : r3,r4,rb
prologue: sub sp,sp,#16; @ variante possible

str r6, [sp,#12] @ sub sp,sp,#,4 str r6, [sp]
str r5, [sp,#8] @ sub sp,sp,#4, str r5, [sp]
str r4, [sp,#4] @ sub sp,sp,#4, str r4, [sp]
str r3, [spl] @ sub sp,sp,#4, str r3, [sp]
corps_swap: mov 1r5,#0 @ 1=0
b condfor
corpstq:
initfor: sub 16,r0,#1 Q@ tmimi = size -1 - i

sub 16,r6,r5

corpsfor: 1drb r3, [rl1,r5] @ tmpl = address[il;
1drb r4, [rl,r6] @ tmp2 = address[tmimi];
strb r4, [rl,r5] @ address[i] = tmp2;
strb r3, [rl,r6] @ address([tmimi] = tmpl;

majfor: add rb5,r5,#1 Q@ it++

condfor: cmp r5,r0, LSR #1 @ while(i<size/2)

blo corpstq

@ variante

epilogue: 1dr r3, [sp] @ 1dr r3,[spl; add sp,sp,#4
ldr r4, [sp,#4] @ 1dr r4,[sp]; add sp,sp,#4
ldr r5, [sp,#8] @ 1dr r5,[sp]; add sp,sp,#4

1ldr 6, [sp,#12] @ 1dr r6,[sp]; add sp,sp,#4
add sp,sp,#16

mov pc,lr
@ Variaante avec test de la condition avant le corps
corps_swap: mov r5,#0 @ 1=0

confor: cmp r5,r0, LSR #1 @ while(i<size/2) {
bhs epilogue

corpsfor: ce @ meme code
majfor: add r5,r5,#1 Q@ it++
b condfor @}

1.3 Traduction de reverse endian

Le code de reverse endian comprend un prologue (sauvegarde des registres), le
corps proprement dit, et un épilogue (restauration des registres et retour).

La pile n’étant utilisée que pour la sauvegarde des registres modifiés dans le corps
de la fonction, seul sp sera utilisé (et pas fp).

Réécrire en C le corps de reverse endian en supprimant tous les opérateurs
d’indexation (crochets |).

Le forceur (uint8_t *) est nécessaire pour éviter un warning de compilation

ad8 est de type uint8_t *, ad64+indice est (uint64_t *), ad32_t est (uint32_t *)
rappel : 1l’entier ajouté 4 un pinteur est multiplié iimplicitement par sizeof (typ
IMPLICITEMENT : il n’y a pas a 1l’écrire.

On applique la régle &(t[i]) est synonyme de t+i et t[i] synonyme de *(t+i)
addxx+indice est déjad 1l’adresse : pas de & devant

e 60 0 0 B

if (taille==8) {

ad8 = (uint8_t *) (ad64+indice);
} else if (taille==4) {

ad8 = (uint8_t *) (ad32+indice);
} else if (taille==2) {

ad8 = (uint8_t *) (adl6+indice);

} else
return;

@ variante possible commune aux tailles 2,4 et 8 :
ad8 = (uint8_t *) address + taillexindice;

Traduire en langage d’assemblage ’appel de swap bytes

Remarque : I'appel ne présente aucune difficulté : il suffit de copier les paramétres
dans r0 et r1 d’aprés la conhvention d’appel avec passage par les registres, et de penser
a utiliser bl au lieu de b pour sauver I'adresse de retour.

Traduire le reste du corps

Remarque : 2 points points importants a considérer ;

1. Lopérateur & qui indique qu’il s’agit juste de calculer I'adresse et non de
prendre le contenu

2. L’arithmétique sur les pointeurs prend en compte le type d’objet pointé : I’entier
ajouté est implicitment mutliplié par sizeof(type pointé).

Q

Q

@ Convention d’appel :
@

@ variables locales

Q

Q

void reverse_endian (void *tab, uint32_t indice, uint32_t taille)

tab dans r0, indice dans rl1, taille dans r2, adresse de retour
: ad64 dans r4, ad32 dans r5, adl6 dans r6 ad8 dans r7

Parmi les registres a sauvegdarer, le plus important est 1lr qui contient 1’adresse
retour, et qui sera modifié lors de 1l’appel bl swap_bytes

.global reverse_endian
reverse_endian: @ registres modifiés dans le corps : r3 a r7 et 1r

prologue: sub
str
str
str
str
str
str

corps_rev: mov
mov
mov

sp,sp,#24;

1r, [sp,#20]
r7, [sp,#16]
r6, [sp,#12]
r5, [sp, #8]
rd, [sp,#4]
r3, [sp]

r4d,r0
r5,r0
r6,r0

@ ad64=tab
@ ad32=tab
@ adl6=tab

ifl:
alorsi:
if2:
alors2:
if3:

alors3:

suite_if:

sortie:
epiogue:

cmp
bne
add

cmp
bne
add

cmp
bne
add

mov
mov
bl

1ldr
ldr
1dr
1dr
1ldr
1ldr

add

mov

r2,#8

if2
r7,r4,r1,LSL
suite_if
r2,#4

if3
r7,r5,r1,LSL
suite_if
r2,#2

sortie
r7,r6,r1,LSL
r0,r2

ri,r7
swap_bytes
r3, [sp]

rd, [sp,#4]
r5, [sp, #8]
r6, [sp,#12]
r7, [sp,#16]
1r, [sp, #20]
sSp,sp,#20
pc,lr

Q

if (taille !=8) goto if2

#3 @ ad8 = ad64+indice (calcul indicex*sizeof(uint64_t))

Q

#2

Q

#1

e &

e 0 6 ©

@ ©

Ecrire le prologue et I’épilogue :

if (taille !'=4) goto if3

@ ad8 = ad32+indice (calcul indice*sizeof (uint32_t))
if (taille !=2) goto finsi

@ ad8 = adi6+indice (calcul indice*sizeof (uintl16_t))
swap_bytes(taille,ad8)

size_de_swap_bytes = taille
address_de_swap_bytes = ad8

NB : cet appel de swap_g¢bytes détruit le contenu de rO
ce n’est pas grave dans la mesure ou les paramétres re
dans r0 (tab) et rl (indice) ne sont plus utilisés apr
1’appel

Dans le cas contraire, il faudrait prévoir de sauvegar
pour pouvoir récupérer tab et indice au retour de swap

1. établir au préalable la liste des registres a sauvegarder

2. n’utiliser que les instructions sub, str, et mov.

2 Listes : structures, procédures et pile

La convention d’appel de la fonction listmin (voire annexe ?7) est la suivante :

1. L’adresse de retour est passée dans le registre Ir

2. Tous les paramétres explicites sont passés dans la pile, le premier (cl) étant en
sommet de pile.

Cette fonction parcourt une liste circulaire donnée en premier paramétre et modifie
le pointeur passé en deuxiéme paramétre pour qu’il piointe sur 1’éléement de liste de
plus petite valeur.

2.1 Deéclaration de variables
Le type doublet t est défini comme suit :

typedef struct doublet {
struct doublet *next;
uintl6_t value;

} doublet_t;

Le fichier data.c déclare deux listes chainées circulaires créées statiquement com-
posées respectivement de :

1. 5 éléments d0 & d4

2. un seul élément single cl

/* Extern : type specification only */
/* no memory allocation */

extern doublet_t di1,d2,d3,d4,d5;

/* Circular Linked list 5,3,1,2,4 */

doublet_t d0 = {&d2,5%};
doublet_t d1 = {&d0,4};
doublet_t d2 = {&d4,3%};
doublet_t d3 = {&d1,2};
doublet_t d4 = {&d3,1%};

doublet_t *circlist = &dO;

/* Single element circular list */
doublet_t single_cl = {&single_cl,6};

doublet_t *ptrmin;

Traduire en langage d’assemblage les déclarations de variables précédentes.

Commentaire : une structure avec une composante pointeur et une composante
entiére est traitéen exactement comme une variable pointeur et une variable entiére

séparées, mais avec une seule étiquette sur la premiére et une définition de constantes
symboliques pour définir la place des composantes par rapport a 'adrsse de début de
la structure.

Le type intl6_t indiquait clairement qu’il s’agissait d’'unnentier codé sur 16 bits :
réserver 2 octets initialisés avec .short ou .hword. Un pointeur est une adresse et occupe
donc 4 octets, d’ott .word et .balign4 puisque il suivra le champ value d’une structure
précédente qui est de taille inférieure.

DOUBLET_T_DELTA_NEXT=0
DOUBLET_T_DELTA_VALUE=4

.data
.balign 4
do: .word d2
.hword 5
.balign 4
di: .word do
.hword 4
.balign 4
d2: .word d4
.hword 3
.balign 4
d3: .word di
.hword 2
.balign 4
d4: .word d3
.hword 1
.balign 4
circlist: .word dO
single_cl: .word single_cl
.hword 6
.bss
ptrmin: .skip 4

2.2 Appel de listmin

La routine ci-dessus est une version raccourcie du programme principal donné en
annexe.

void main ()

{
afficher ();
listmin(circlist,&ptrmin) ;
circlist=&d2;
afficher ();

Traduire en code ARM le corps cette fonction main (le prologue et 1’épilogue de
main ne sont pas demandés).

L’appel de afficher, qui n’a pas de paramétre, ne présente pas de difficulté : il faut
jkuste penser a utilsieer bl pour sauvegarder ’adresse de retour dans le registre Ir.

La premiére difficulté pour 'appel de listmin est de déterminer quoi passer dans
les paramétres pmin et cl. La variable ptrmin est stockée dans la section bss et on en
passe I'adresse : il faut donc récupérer I’étiquette ptrmin, qu’on ne peut charger dans
un registre par mov reg,#ptrmin parce que les constantes immédiates des instructions
mov et de calcul sont liimtées a 8 bits (utiliser ldr reg,=ptrmin).

L’autre paramétre cl est circlist, une variable stockée en mémoire dans la section
data : on pourrait écrire *&circlist. Cest donc le contenu de cette variable qu’il faut
passer, et non son adresse. Il faut charger son adresse dans un registre comme pour
ptrmin, puis faire une lecture du contenu avec ldr pour récupérer le contenu.

L’autre point important est de respecter la convention d’appel qui décrit ol ces
parameétres doivent étre déposés pour que listmin les trouve. La convention indiquait
de les passer dans la pile, circlist au sommet.

Il fallait donc avant le branchement :

1. allouer un mot en sommet de pile pour le paramétre pmin : sp <— sp - 4
2. mettre dedans &ptrmin : Mem|sp| < étiquette ptrmin

3. allouer un mot en sommet de pile pour le paramétre cl : sp < sp - 4

4

. mettre dedans circlist : Mem|sp| - Mem|étiquette circlist|

Le dernier parameétre empilé cl sera donc bien en comment de pile lors du branche-
ment. De plus, il ne faut pas oublier de libérer ’espace alloué aux paramétres apreés le
retour de la procédure appelée.

main: stmfd

bl

ldr
sub

1dr
1dr
sub
bl

add
bl

1dr
1dr

str

bl

sp!,{r4-r7,1r}
afficher

r4,=ptrmin

Sp,sp,#4; str r4, [spl]
r5,=circlist

r6, [r5]

Sp,sp,#4; str r6, [spl]
listmin

Sp,sp,#8

afficher
r5,=circlist

r7,=d2

r7, [r5]

afficher

ldmfd sp!,{r4-r7,1r}

mov

pc,lr

@

0

(&)

(&)

afficher ()
listmin(circlist,&ptrmin)
pmin_de_listmin = &ptrmin

cl_de_listmin = *&circlist

afficher ()

circlist = &d2

afficher ()

Remarque : dans de nombreuses copies, le code correspond a une convention d’ap-
pel avec passage de paramétre par les registres analogue a celle utilisée dans la section

Endianness au lieu du passage par la pile demandé.

Pour une telle convention qui spécifierait que cl et ptrmin sont passés respective-
ment dans les registres r0 et r1, il faudrait utiliser Idr r1,=ptrmin et Idr r0,=circlist ; ldr r0,[r0]
(r0 et rl & sauvegarder dans prologue et épilogue de main).

2.3 Listmin

Voici le prologue et I’épilogue de listmin, ainsi qu’un dessin de la
pile au début du corps.

—
text sp sauve r2

@ void listmin (doublet_t *cl, doublet_t **pmin) I I

listmin:
prologue: stmfd sp!,{r2-r7,fp} sauve r6
add fp,sp,#28 sauve r7
corps: /* non détaillé , dessin de pile ici */ fp e Sauve fp
params
epilogue: ldmfd sp!,{r2-r7,fp}

mov pc,lr

Traduire 'extrait de code C suivant :

Apreés le prologue, fp & la position ou 'appelante avait laissé sp, sur le paramétre cl,
donc ¢l = Meml|fp]| et cl->value = Mem|Mem|fp| +DOUBLET T DELTA VALUE]

Sur le méme principe, pmin est en Mem|[fp+4] et *pmin = cl correspond & Mem|[Mem|fp
+4]] = el

valmin = (*c1) .value;
*pmin = cl;

ldr r8, [fp] @ r8 =cl
ldr r4, [r8,#DOUBLET_T_DELTA_VALUE] @ valmin = (*r8).value
ldr r3, [fp] @ *pmin = cl

str r2, [r3]

Dans I'alternative de convention de passage des parameétres par registres :

ldr r4, [r0,#DOUBLET_T_DELTA_VALUE] @ valmin
str r0, [r1] @ *pmin = cl

(x*cl) .value

3 Annexe 1 : code de sawp Dbytes et reverse endian

Pour la traduction en lanagage d’assemblage ARM, la convention d’affectation des
variables locales aux registres est imposée (cf tableaux suivant,les déclarations de va-
riables locales).

10

void swap_bytes(uint32_t size, void reverse_endian (void x*tab,
uint8_t *address) { uint32_t indice,
uint32_t taille) {
register uint8_t tmpl;

register uint8_t tmp2; register uint64_t *ad64;
register uint32_t i; register uint32_t *ad32;
register uint32_t tmimi, register uintl6_t *adl6;

register uint8_t *ad$8;
/* Si un temporaire supplémentaire
est nécessaire, utiliser r7 */

choix regs imposé choix regs imposé
tmpl | tmp2 | 1| tmlmi ad64 | ad32 | ad16 | ad8
r3 r4d | rd r6 r4 rH r6 r7
for (i=0; i<size/2; i++) { ad64=tab;
tmimi = size - 1 - 1i; ad32=tab;
tmpl = addressl[i]; adl6=tab;
tmp2 = address[tmimi];
address[i] = tmp2; if (taille==8) {
address[tmimi] = tmpl; ad8 = (uint8_t *) & (ad64[indice]);
+ } else if (taille==4) {
} ad8 = (uint8_t *) & (ad32[indice]);

} else if (taille==2) {

ad8 = (uint8_t *) & (adl6[indice]);
} else

return;

swap_bytes(taille,ad8);

4 Annexe 3 : endianness et contenu des tableaux

Dans la représentation Big Endian, le premier octet de 'entier contient la paire
de chiffres hexacimaux de poid forts et le dernier octet ceux de poids faibles. Avec la
convention Little Endian, le premier octet contient au contraire les chiffres de poids
faibles.

11

Contenu des premiers octets de t64 si stocké en 0x60000

Endian | 60000 | 60001 | 60002 | 60003 | 60004 | 60005 | 60006 | 60007
Big | 0x01 | 0x23 | 0x45 | 0x67 | 0x89 | Oxab | Oxcd | Oxef
Little Oxef | Oxcd | Oxab | 0x89 | 0x67 | O0x45 | 0x23 | 0x01
Contenu des premiers octets de t32 si stocké en 0x30000
Endian | 30000 | 30001 | 30002 | 30003 | 30004 | 30005 | 30006 | 30007
Big | 0x01 | 0x23 | O0x45 | 0x67 | 0x89 | Oxab | Oxcd | Oxef
Little | 0x67 | 0x45 | 0x23 | 0x01 Oxef | Oxcd | Oxab | 0x89
Contenu des premiers octets de t16 si stocké en 0x10000
Endian | 10000 | 10001 | 10002 | 10003 | 10004 | 10005 | 10006 | 10007
Big | 0x01 | 0x23 | Ox45 | 0x67 | 0x89 | Oxab | Oxcd | Oxef
Little | 0x23 | 0x01 | 0x67 | 0x45 | Oxab | 0x89 Oxef | Oxcd

12

