
M2P CCI : corrigé Langage Machine, Novembre 2017

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matières

1 Endianness (fontions et tableaux) 1
1.1 Présentation sans question . 1
1.2 Traduction de swap_bytes . 2
1.3 Traduction de reverse_endian . 3

2 Listes : structures, procédures et pile 5
2.1 Déclaration de variables . 6
2.2 Appel de listmin . 8
2.3 Listmin . 10

3 Annexe 1 : code de sawp_bytes et reverse_endian 10

4 Annexe 3 : endianness et contenu des tableaux 11

Conventions communes à toutes les questions

Toutes les variables locales des fonctions et procédures sont stockées dans des re-
gistres (le numéro de registre à utiliser est indiqué en commentaire). Seules les variables
déclarées à l'extérieur des fonctions et sans l'attribut register sont stockées en mémoire.
Types uint32_t, uint16_t, uint8_t : entiers naturels sur 32, 16 et 8 bits.

1 Endianness (fontions et tableaux)

Dans la traduction des fonctions, respecter l'allocation des registres décrite en
annexe.

1.1 Présentation sans question

On considère 3 tableaux d'entiers naturels de tailles 16,32 et 64 bits, représentés
selon la convention Big ou Little Endian de la machine (détails en annexe 4).

uint64_t t64[2] = { 0x0123456789abcdef, 0xefcdab8967452301 };

uint32_t t32[4] = { 0x01234567, 0x89abcdef, 0x67452301, 0xefcdab89 };

uint16_t t16[8] = { 0x0123, 0x4567, 0x89ab,0xcdef,

0x6745, 0x2301, 0xefcd, 0xab89 };

Les 3 paramètres de la procdure reverse_endian sont :

1. tab : adresse du tableau

1

2. indice : numéro de l'élément de tableau à modi�er

3. taille (d'élément) : sizeof(type), type ∈ {uin64_t, uint16_t,uint8_t}

Reverse_endian permet de changer la convention de représentation d'un élément
de tableau :

� Après reverse_endian(t32,2,4), l'élément t32[2] contiendra 0x01234567
� Après reverse_endian(t16,0,2), l'élément t16[0] contiendra 0x2301

1.2 Traduction de swap_bytes

Traduire en langage d'assemablage ARM le corps (boucle for) de swap_bytes. Le
prologue et l'épilogue ne sont pas demandés.

.text

@ void swap_bytes (uint32_t size, uint8_t *address)

@

@ Convention d'appel : size dans r0, address dans r1, adresse de retour dans lr

@

@ variables locales : tmp1 dans r3, tmp2 dans r4, i dans r5, tm1mi dans r6

.global swap_bytes

swap_bytes: @ registres modifiés dans le corps : r3,r4,r5

prologue: sub sp,sp,#16; @ variante possible

str r6,[sp,#12] @ sub sp,sp,#,4 str r6,[sp]

str r5,[sp,#8] @ sub sp,sp,#4, str r5,[sp]

str r4,[sp,#4] @ sub sp,sp,#4, str r4,[sp]

str r3,[sp] @ sub sp,sp,#4, str r3,[sp]

corps_swap: mov r5,#0 @ i=0

b condfor

corpstq:

initfor: sub r6,r0,#1 @ tm1mi = size -1 - i

sub r6,r6,r5

corpsfor: ldrb r3,[r1,r5] @ tmp1 = address[i];

ldrb r4,[r1,r6] @ tmp2 = address[tm1mi];

strb r4,[r1,r5] @ address[i] = tmp2;

strb r3,[r1,r6] @ address[tm1mi] = tmp1;

majfor: add r5,r5,#1 @ i++

condfor: cmp r5,r0, LSR #1 @ while(i<size/2)

2

blo corpstq

@ variante

epilogue: ldr r3,[sp] @ ldr r3,[sp]; add sp,sp,#4

ldr r4,[sp,#4] @ ldr r4,[sp]; add sp,sp,#4

ldr r5,[sp,#8] @ ldr r5,[sp]; add sp,sp,#4

ldr r6,[sp,#12] @ ldr r6,[sp]; add sp,sp,#4

add sp,sp,#16

mov pc,lr

@ Variaante avec test de la condition avant le corps

corps_swap: mov r5,#0 @ i=0

confor: cmp r5,r0, LSR #1 @ while(i<size/2) {

bhs epilogue

corpsfor: ... @ meme code

majfor: add r5,r5,#1 @ i++

b condfor @ }

1.3 Traduction de reverse_endian

Le code de reverse_endian comprend un prologue (sauvegarde des registres), le
corps proprement dit, et un épilogue (restauration des registres et retour).

La pile n'étant utilisée que pour la sauvegarde des registres modi�és dans le corps
de la fonction, seul sp sera utilisé (et pas fp).

Réécrire en C le corps de reverse_endian en supprimant tous les opérateurs
d'indexation (crochets []).

@ Le forceur (uint8_t *) est nécessaire pour éviter un warning de compilation

@ ad8 est de type uint8_t *, ad64+indice est (uint64_t *), ad32_t est (uint32_t *) etc

@ rappel : l'entier ajouté à un pinteur est multiplié iimplicitement par sizeof(type pointé)

@ IMPLICITEMENT : il n'y a pas à l'écrire.

@ On applique la régle &(t[i]) est synonyme de t+i et t[i] synonyme de *(t+i)

@ addxx+indice est déjà l'adresse : pas de & devant

@

if (taille==8) {

ad8 = (uint8_t *) (ad64+indice);

} else if (taille==4) {

ad8 = (uint8_t *) (ad32+indice);

} else if (taille==2) {

3

ad8 = (uint8_t *) (ad16+indice);

} else

return;

@ variante possible commune aux tailles 2,4 et 8 :

ad8 = (uint8_t *) address + taille*indice;

Traduire en langage d'assemblage l'appel de swap_bytes

Remarque : l'appel ne présente aucune di�culté : il su�t de copier les paramètres
dans r0 et r1 d'après la conhvention d'appel avec passage par les registres, et de penser
à utiliser bl au lieu de b pour sauver l'adresse de retour.

Traduire le reste du corps

Remarque : 2 points points importants à considérer ;

1. L'opérateur & qui indique qu'il s'agit juste de calculer l'adresse et non de
prendre le contenu

2. L'arithmétique sur les pointeurs prend en compte le type d'objet pointé : l'entier
ajouté est implicitment mutliplié par sizeof(type pointé).

@ void reverse_endian (void *tab, uint32_t indice, uint32_t taille)

@

@ Convention d'appel : tab dans r0, indice dans r1, taille dans r2, adresse de retour dans lr

@

@ variables locales : ad64 dans r4, ad32 dans r5, ad16 dans r6 ad8 dans r7

@ Parmi les registres à sauvegdarer, le plus important est lr qui contient l'adresse de

@ retour, et qui sera modifié lors de l'appel bl swap_bytes

.global reverse_endian

reverse_endian: @ registres modifiés dans le corps : r3 à r7 et lr

prologue: sub sp,sp,#24;

str lr,[sp,#20]

str r7,[sp,#16]

str r6,[sp,#12]

str r5,[sp,#8]

str r4,[sp,#4]

str r3,[sp]

corps_rev: mov r4,r0 @ ad64=tab

mov r5,r0 @ ad32=tab

mov r6,r0 @ ad16=tab

4

if1: cmp r2,#8 @ if (taille !=8) goto if2

bne if2

alors1: add r7,r4,r1,LSL #3 @ ad8 = ad64+indice (calcul indice*sizeof(uint64_t))

b suite_if

if2: cmp r2,#4 @ if (taille !=4) goto if3

bne if3

alors2: add r7,r5,r1,LSL #2 @ ad8 = ad32+indice (calcul indice*sizeof(uint32_t))

b suite_if

if3: cmp r2,#2 @ if (taille !=2) goto finsi

bne sortie

alors3: add r7,r6,r1,LSL #1 @ ad8 = ad16+indice (calcul indice*sizeof(uint16_t))

@ swap_bytes(taille,ad8)

suite_if: mov r0,r2 @ size_de_swap_bytes = taille

mov r1,r7 @ address_de_swap_bytes = ad8

bl swap_bytes

@ NB : cet appel de swap_çbytes détruit le contenu de r0 et r1

@ ce n'est pas grave dans la mesure où les paramètres reçus

@ dans r0 (tab) et r1 (indice) ne sont plus utilisés après

@ l'appel

@ Dans le cas contraire, il faudrait prévoir de sauvegarder r0 et r1

@ pour pouvoir récupérer tab et indice au retour de swap_bytes

sortie:

epiogue: ldr r3,[sp]

ldr r4,[sp,#4]

ldr r5,[sp,#8]

ldr r6,[sp,#12]

ldr r7,[sp,#16]

ldr lr,[sp,#20]

add sp,sp,#20

mov pc,lr

Ecrire le prologue et l'épilogue :

1. établir au préalable la liste des registres à sauvegarder

2. n'utiliser que les instructions sub, str, et mov.

2 Listes : structures, procédures et pile

La convention d'appel de la fonction listmin (voire annexe ??) est la suivante :

5

1. L'adresse de retour est passée dans le registre lr

2. Tous les paramètres explicites sont passés dans la pile, le premier (cl) étant en
sommet de pile.

Cette fonction parcourt une liste circulaire donnée en premier paramètre et modi�e
le pointeur passé en deuxième paramètre pour qu'il piointe sur l'éléement de liste de
plus petite valeur.

2.1 Déclaration de variables

Le type doublet_t est dé�ni comme suit :

typedef struct doublet {

struct doublet *next;

uint16_t value;

} doublet_t;

Le �chier data.c déclare deux listes chaînées circulaires créées statiquement com-
posées respectivement de :

1. 5 éléments d0 à d4

2. un seul élément single_cl

/* Extern : type specification only */

/* no memory allocation */

extern doublet_t d1,d2,d3,d4,d5;

/* Circular Linked list 5,3,1,2,4 */

doublet_t d0 = {&d2,5};

doublet_t d1 = {&d0,4};

doublet_t d2 = {&d4,3};

doublet_t d3 = {&d1,2};

doublet_t d4 = {&d3,1};

doublet_t *circlist = &d0;

/* Single element circular list */

doublet_t single_cl = {&single_cl,6};

doublet_t *ptrmin;

Traduire en langage d'assemblage les déclarations de variables précédentes.

Commentaire : une structure avec une composante pointeur et une composante
entière est traitéen exactement comme une variable pointeur et une variable entière

6

séparées, mais avec une seule étiquette sur la première et une dé�nition de constantes
symboliques pour dé�nir la place des composantes par rapport à l'adrsse de début de
la structure.

Le type int16_t indiquait clairement qu'il s'agissait d'unnentier codé sur 16 bits :
réserver 2 octets initialisés avec .short ou .hword. Un pointeur est une adresse et occupe
donc 4 octets, d'où .word et .balign4 puisque il suivra le champ value d'une structure
précédente qui est de taille inférieure.

DOUBLET_T_DELTA_NEXT=0

DOUBLET_T_DELTA_VALUE=4

.data

.balign 4

d0: .word d2

.hword 5

.balign 4

d1: .word d0

.hword 4

.balign 4

d2: .word d4

.hword 3

.balign 4

d3: .word d1

.hword 2

.balign 4

d4: .word d3

.hword 1

.balign 4

circlist: .word d0

single_cl: .word single_cl

.hword 6

.bss

ptrmin: .skip 4

7

2.2 Appel de listmin

La routine ci-dessus est une version raccourcie du programme principal donné en
annexe.

void main ()

{

afficher ();

listmin(circlist,&ptrmin);

circlist=&d2;

afficher ();

}

Traduire en code ARM le corps cette fonction main (le prologue et l'épilogue de
main ne sont pas demandés).

L'appel de a�cher, qui n'a pas de paramètre, ne présente pas de di�culté : il faut
jkuste penser à utilsieer bl pour sauvegarder l'adresse de retour dans le registre lr.

La première di�culté pour l'appel de listmin est de déterminer quoi passer dans
les paramètres pmin et cl. La variable ptrmin est stockée dans la section bss et on en
passe l'adresse : il faut donc récupérer l'étiquette ptrmin, qu'on ne peut charger dans
un registre par mov reg,#ptrmin parce que les constantes immédiates des instructions
mov et de calcul sont liimtées à 8 bits (utiliser ldr reg,=ptrmin).

L'autre paramètre cl est circlist, une variable stockée en mémoire dans la section
data : on pourrait écrire *&circlist. Cest donc le contenu de cette variable qu'il faut
passer, et non son adresse. Il faut charger son adresse dans un registre comme pour
ptrmin, puis faire une lecture du contenu avec ldr pour récupérer le contenu.

L'autre point important est de respecter la convention d'appel qui décrit où ces
paramètres doivent être déposés pour que listmin les trouve. La convention indiquait
de les passer dans la pile, circlist au sommet.

Il fallait donc avant le branchement :

1. allouer un mot en sommet de pile pour le paramètre pmin : sp ← sp - 4

2. mettre dedans &ptrmin : Mem[sp] ← étiquette ptrmin

3. allouer un mot en sommet de pile pour le paramètre cl : sp ← sp - 4

4. mettre dedans circlist : Mem[sp] ← Mem[étiquette circlist]

Le dernier paramètre empilé cl sera donc bien en comment de pile lors du branche-
ment. De plus, il ne faut pas oublier de libérer l'espace alloué aux paramètres après le
retour de la procédure appelée.

8

main: stmfd sp!,{r4-r7,lr}

bl afficher @ afficher ()

@ listmin(circlist,&ptrmin)

ldr r4,=ptrmin

sub sp,sp,#4; str r4,[sp] @ pmin_de_listmin = &ptrmin

ldr r5,=circlist @ cl_de_listmin = *&circlist

ldr r6,[r5]

sub sp,sp,#4; str r6,[sp]

bl listmin

add sp,sp,#8

bl afficher @ afficher ()

ldr r5,=circlist @ circlist = &d2

ldr r7,=d2

str r7,[r5]

bl afficher @ afficher ()

ldmfd sp!,{r4-r7,lr}

mov pc,lr

Remarque : dans de nombreuses copies, le code correspond à une convention d'ap-
pel avec passage de paramètre par les registres analogue à celle utilisée dans la section
Endianness au lieu du passage par la pile demandé.

Pour une telle convention qui spéci�erait que cl et ptrmin sont passés respective-
ment dans les registres r0 et r1, il faudrait utiliser ldr r1,=ptrmin et ldr r0,=circlist ; ldr r0,[r0]
(r0 et r1 à sauvegarder dans prologue et épilogue de main).

9

2.3 Listmin
Voici le prologue et l'épilogue de listmin, ainsi qu'un dessin de la
pile au début du corps.

.text

@ void listmin (doublet_t *cl, doublet_t **pmin)

listmin:

prologue: stmfd sp!,{r2-r7,fp}

add fp,sp,#28

corps: /* non détaillé , dessin de pile ici */

epilogue: ldmfd sp!,{r2-r7,fp}

mov pc,lr

sauve fp

sauve r7

sauve r6

sauve r2

paramsfp

sp

Traduire l'extrait de code C suivant :

Après le prologue, fp à la position où l'appelante avait laissé sp, sur le paramètre cl,
donc cl = Mem[fp] et cl->value = Mem[Mem[fp]+DOUBLET_T_DELTA_VALUE]

Sur le même principe, pmin est en Mem[fp+4] et *pmin = cl correspond à Mem[Mem[fp
+4]] = cl

valmin = (*c1).value;

*pmin = cl;

ldr r8,[fp] @ r8 = cl

ldr r4,[r8,#DOUBLET_T_DELTA_VALUE] @ valmin = (*r8).value

ldr r3,[fp] @ *pmin = cl

str r2,[r3]

Dans l'alternative de convention de passage des paramètres par registres :

ldr r4,[r0,#DOUBLET_T_DELTA_VALUE] @ valmin = (*cl).value

str r0,[r1] @ *pmin = cl

3 Annexe 1 : code de sawp_bytes et reverse_endian

Pour la traduction en lanagage d'assemblage ARM, la convention d'a�ectation des
variables locales aux registres est imposée (cf tableaux suivant,les déclarations de va-
riables locales).

10

void swap_bytes(uint32_t size,

uint8_t *address) {

register uint8_t tmp1;

register uint8_t tmp2;

register uint32_t i;

register uint32_t tm1mi;

/* Si un temporaire supplémentaire

est nécessaire, utiliser r7 */

void reverse_endian (void *tab,

uint32_t indice,

uint32_t taille) {

register uint64_t *ad64;

register uint32_t *ad32;

register uint16_t *ad16;

register uint8_t *ad8;

choix regs imposé
tmp1 tmp2 i tm1mi

r3 r4 r5 r6

choix regs imposé
ad64 ad32 ad16 ad8

r4 r5 r6 r7

for (i=0; i<size/2; i++) {

tm1mi = size - 1 - i;

tmp1 = address[i];

tmp2 = address[tm1mi];

address[i] = tmp2;

address[tm1mi] = tmp1;

}

}

ad64=tab;

ad32=tab;

ad16=tab;

if (taille==8) {

ad8 = (uint8_t *) & (ad64[indice]);

} else if (taille==4) {

ad8 = (uint8_t *) & (ad32[indice]);

} else if (taille==2) {

ad8 = (uint8_t *) & (ad16[indice]);

} else

return;

swap_bytes(taille,ad8);

}

4 Annexe 3 : endianness et contenu des tableaux

Dans la représentation Big Endian, le premier octet de l'entier contient la paire
de chi�res hexacimaux de poid forts et le dernier octet ceux de poids faibles. Avec la
convention Little Endian, le premier octet contient au contraire les chi�res de poids
faibles.

11

Contenu des premiers octets de t64 si stocké en 0x60000

Endian 60000 60001 60002 60003 60004 60005 60006 60007
Big 0x01 0x23 0x45 0x67 0x89 0xab 0xcd 0xef

Little 0xef 0xcd 0xab 0x89 0x67 0x45 0x23 0x01
Contenu des premiers octets de t32 si stocké en 0x30000

Endian 30000 30001 30002 30003 30004 30005 30006 30007
Big 0x01 0x23 0x45 0x67 0x89 0xab 0xcd 0xef

Little 0x67 0x45 0x23 0x01 0xef 0xcd 0xab 0x89
Contenu des premiers octets de t16 si stocké en 0x10000

Endian 10000 10001 10002 10003 10004 10005 10006 10007
Big 0x01 0x23 0x45 0x67 0x89 0xab 0xcd 0xef

Little 0x23 0x01 0x67 0x45 0xab 0x89 0xef 0xcd

12

