M2P CCI : examen Langage Machine, Novembre 2017

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matiéres

1 Endianness (fontions et tableaux) (1h15) 1
1.1 Présentation sans question (bmn) 1
1.2 Traduction de swap_bytes (20mn) 2
1.3 Traduction de reverse_endian (50mn) 2

2 Listes : structures, procédures et pile (45mn) 2
2.1 Déclaration de variables (20mn) 3
2.2 Appel de listmin (10mn) Lo 3
2.3 Listmin (15mn) 4

3 Annexe 1: code de sawp bytes et reverse endian 4

4 Annexe 2 : code de gestion de liste 5

5 Annexe 3 : endianness et contenu des tableaux 6

Conventions communes & toutes les questions

Toutes les variables locales des fonctions et procédures sont stockées dans des re-
gistres (le numéro de registre a utiliser est indiqué en commentaire). Seules les variables
déclarées a 'extérieur des fonctions et sans l'attribut register sont stockées en mémoire.
Types uint32 t, uintl6_t, uint8 t : entiers naturels sur 32, 16 et 8 bits.

1 Endianness (fontions et tableaux) (1h15)

Dans la traduction des fonctions, respecter ’allocation des registres décrite en
annexe et la convention d’appel suivante :

— Tous les paramétres sont passés par les registres et non en mémoire

— Le premier paramétre (a gauche) est passé dans le registre r0

— Le deuxiéme paramétre est passé dans le registre rl

1.1 Présentation sans question (5mn)

On considére 3 tableaux d’entiers naturels de tailles 16, 32 et 64 bits, représentés
selon la convention Big ou Little Endian de la machine (détails en annexe 5).

uint64_t t64[2]
uint32_t t32[4]

{ 0x0123456789abcdef, 0Oxefcdab8967452301 };
{ 0x01234567, 0x89abcdef, 0x67452301, Oxefcdab89 };

uint16_t t16[8] = { 0x0123, 0x4567, 0x89ab,0xcdef,
0x6745, 0x2301, Oxefcd, 0xab89 };

Les 3 paramétres de la procédure reverse_endian (cf annexe 1) sont :
1. tab : adresse du tableau
2. indice : numéro de 1’élément de tableau a modifier

3. taille (d’élément) : sizeof(type), type € {uin64 t, uint16_t,uint8 t}

Reverse endian permet de changer la convention de représentation d’un élément
de tableau! :

— Aprés reverse _endian(t32,2,4), 'élément t32[2] contiendra 0x01234567

— Aprés reverse_endian(t16,0,2), 1'élément t16[0] contiendra 0x2301

1.2 Traduction de swap bytes (20mn)

Traduire en langage d’assemablage ARM le corps (boucle for) de swap bytes. Le
prologue et I’épilogue ne sont pas demandés.

1.3 Traduction de reverse endian (50mn)

Le code de reverse endian comprend un prologue (sauvegarde des registres), le
corps proprement dit, et un épilogue (restauration des registres et retour).

La pile n’étant utilisée que pour la sauvegarde des registres modifiés dans le corps
de la fonction, seul sp sera utilisé (et pas fp).

Réécrire en C le corps de reverse _endian en supprimant tous les opérateurs d’in-
dexation (crochets | |) : bmn.

Traduire en langage d’assemblage I'appel de swap bytes (10mn)
Traduire le reste du corps (20mn)

Ecrire le prologue et I’épilogue (15mn) :
1. établir au préalable la liste des registres a sauvegarder

2. n’utiliser que les instructions sub, str, et mov.

2 Listes : structures, procédures et pile (45mn)

La convention d’appel de la fonction listmin (voire annexe 2) est la suivante :

1. L’adresse de retour est passée dans le registre Ir

1. ce genre de code est notament utile pour la mise en réseau de machines d’endianness #

2. Tous les paramétres explicites sont passés dans la pile, le premier (cl) étant en
sommet de pile.

Cette fonction parcourt une liste circulaire donnée en premier paramétre et modifie
le pointeur passé en deuxiéme paramétre pour qu’il piointe sur 1’éléement de liste de
plus petite valeur.

Le type doublet t est défini comme suit :

typedef struct doublet {
struct doublet *next;
uint16_t value;

} doublet_t;

2.1 Déclaration de variables (20mn)

Le fichier data.c déclare deux listes chainées circulaires créées statiquement com-
posées respectivement de :

1. 5 éléments d0 & d4

2. un seul élément single cl

/* Extern : type specification only : no memory allocation */
extern doublet_t di1,d2,d3,d4,d5;

/* Circular Linked list 5,3,1,2,4 */

doublet_t d0 = {&d2,5%};
doublet_t d1 = {&d0,4};
doublet_t d2 = {&d4,3};
doublet_t d3 = {&d1,2};
doublet_t d4 = {&d3,1%};

doublet_t *circlist = &dO;

/* Single element circular list */
doublet_t single_cl = {&single_cl,6};

doublet_t *ptrmin;
Traduire en langage d’assemblage les déclarations de variables précédentes.

2.2 Appel de listmin (10mn)

La routine ci-dessus est une version raccourcie du programme principal donné en
annexe.

void main ()

{
afficher ();
listmin(circlist,&ptrmin) ;
circlist=&d2;
afficher ();

+

Traduire en code ARM le corps cette fonction main (le prologue et 1’épilogue de

main ne sont pas demandés.

2.3 Listmin (15mn)

Voici le prologue et I'épilogue de listmin, ainsi qu’un dessin de la
pile au début du corps.

.text
@ void listmin (doublet_t #*cl, doublet_t **pmin)

listmin:
prologue: stmfd sp!,{r2-r7,fp}
add fp,sp,#28
corps: /* non détaillé , dessin de pile ici */
epilogue: ldmfd sp!,{r2-r7,fp}
mov pc,lr

Traduire 'extrait de code C suivant :

valmin = (*cl).value;
*pmin = cl;

Sp—>

sauve r2

sauve r6

sauve r/

sauve fp

params

3 Annexe 1: code de sawp bytes et reverse endian

Pour la traduction en lanagage d’assemblage ARM, la convention d’affectation des
variables locales aux registres est imposée (cf tableaux suivant,les déclarations de va-

riables locales).

void swap_bytes(uint32_t size, void reverse_endian (void x*tab,
uint8_t *address) { uint32_t indice,
uint32_t taille) {
register uint8_t tmpl;

register uint8_t tmp2; register uint64_t *ad64;
register uint32_t i; register uint32_t *ad32;
register uint32_t tmimi, register uintl6_t *adl6;

register uint8_t *ad$8;
/* Si un temporaire supplémentaire
est nécessaire, utiliser r7 */

choix regs imposé choix regs imposé
tmpl | tmp2 | 1| tmlmi ad64 | ad32 | ad16 | ad8
r3 r4d | rd r6 r4 rH r6 r7
for (i=0; i<size/2; i++) { ad64=tab;
tmimi = size - 1 - 1i; ad32=tab;
tmpl = addressl[i]; adl6=tab;
tmp2 = address[tmimi];
address[i] = tmp2; if (taille==8) {
address[tmimi] = tmpl; ad8 = (uint8_t *) & (ad64[indice]);
+ } else if (taille==4) {
} ad8 = (uint8_t *) & (ad32[indice]);

} else if (taille==2) {

ad8 = (uint8_t *) & (adl6[indice]);
} else

return;

swap_bytes(taille,ad8);

4 Annexe 2 : code de gestion de liste

void listmin (doublet_t *cl, doublet_t **pmin) {
register uint16_t valmin; /* utiliser r4 */
register doublet_t *pdoublet; /* utiliser r5 */

if (¢l == NULL) return;
valmin = (*cl) .value; /* ou vamin = cl -> value */

pdoublet = cl;
*pmin = cl;

do {
pdoublet = pdoublet -> next;
if (pdoublet -> value < valmin) {
valmin = pdoublet -> value;
*pmin= pdoublet;
+
} while (pdoublet != cl);
}

void afficher () { /* non détaillé x* }

void main ()
{
afficher ();
listmin(circlist,&ptrmin) ;
afficher ();
circlist=&d2;
listmin(circlist,&ptrmin) ;
afficher ();
listmin(&single_cl,&ptrmin) ;
printf ("single_cl = %p, ptrmin = %p, val = %u\n",&single_cl,ptrmin, single_cl.valu

5 Annexe 3 : endianness et contenu des tableaux

Dans la représentation Big Endian, le premier octet de 'entier contient la paire
de chiffres hexacimaux de poid forts et le dernier octet ceux de poids faibles. Avec la

convention Little Endian, le premier octet contient au contraire les chiffres de poids
faibles.

‘ Contenu des premiers octets de t64 si stocké en 0x60000 ‘

Endian | 60000 | 60001 | 60002 | 60003 | 60004 | 60005 | 60006 | 60007
Big | 0x01 | 0x23 | Ox45 | 0x67 | 0x89 | Oxab | Oxcd | Oxef
Little Oxef | Oxcd | Oxab | 0x89 | 0x67 | Ox45 | 0x23 | 0x01
Contenu des premiers octets de t32 si stocké en 0x30000

Endian | 30000 | 30001 | 30002 | 30003 | 30004 | 30005 | 30006 | 30007
Big | 0x01 | 0x23 | Ox45 | 0x67 | 0x89 | Oxab | Oxcd | Oxef
Little | 0x67 | Ox45 | 0x23 | 0x01 Oxef | Oxcd | Oxab | 0x89
Contenu des premiers octets de t16 si stocké en 0x10000

Endian | 10000 | 10001 | 10002 | 10003 | 10004 | 10005 | 10006 | 10007
Big | 0x01 | 0x23 | 0x45 | 0x67 | 0x89 | Oxab | Oxcd | Oxef
Little | 0x23 | 0x01 | 0x67 | O0x45 | Oxab | 0x&89 Oxef | Oxcd

