
M2P CCI : examen Langage Machine, Novembre 2017

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Table des matières

1 Endianness (fontions et tableaux) (1h15) 1
1.1 Présentation sans question (5mn) . 1
1.2 Traduction de swap_bytes (20mn) . 2
1.3 Traduction de reverse_endian (50mn) 2

2 Listes : structures, procédures et pile (45mn) 2
2.1 Déclaration de variables (20mn) . 3
2.2 Appel de listmin (10mn) . 3
2.3 Listmin (15mn) . 4

3 Annexe 1 : code de sawp_bytes et reverse_endian 4

4 Annexe 2 : code de gestion de liste 5

5 Annexe 3 : endianness et contenu des tableaux 6

Conventions communes à toutes les questions

Toutes les variables locales des fonctions et procédures sont stockées dans des re-
gistres (le numéro de registre à utiliser est indiqué en commentaire). Seules les variables
déclarées à l'extérieur des fonctions et sans l'attribut register sont stockées en mémoire.
Types uint32_t, uint16_t, uint8_t : entiers naturels sur 32, 16 et 8 bits.

1 Endianness (fontions et tableaux) (1h15)

Dans la traduction des fonctions, respecter l'allocation des registres décrite en
annexe et la convention d'appel suivante :

� Tous les paramètres sont passés par les registres et non en mémoire
� Le premier paramètre (à gauche) est passé dans le registre r0
� Le deuxième paramètre est passé dans le registre r1

1.1 Présentation sans question (5mn)

On considère 3 tableaux d'entiers naturels de tailles 16, 32 et 64 bits, représentés
selon la convention Big ou Little Endian de la machine (détails en annexe 5).

uint64_t t64[2] = { 0x0123456789abcdef, 0xefcdab8967452301 };

uint32_t t32[4] = { 0x01234567, 0x89abcdef, 0x67452301, 0xefcdab89 };

1

uint16_t t16[8] = { 0x0123, 0x4567, 0x89ab,0xcdef,

0x6745, 0x2301, 0xefcd, 0xab89 };

Les 3 paramètres de la procédure reverse_endian (cf annexe 1) sont :

1. tab : adresse du tableau

2. indice : numéro de l'élément de tableau à modi�er

3. taille (d'élément) : sizeof(type), type ∈ {uin64_t, uint16_t,uint8_t}

Reverse_endian permet de changer la convention de représentation d'un élément
de tableau 1 :

� Après reverse_endian(t32,2,4), l'élément t32[2] contiendra 0x01234567
� Après reverse_endian(t16,0,2), l'élément t16[0] contiendra 0x2301

1.2 Traduction de swap_bytes (20mn)

Traduire en langage d'assemablage ARM le corps (boucle for) de swap_bytes. Le
prologue et l'épilogue ne sont pas demandés.

1.3 Traduction de reverse_endian (50mn)

Le code de reverse_endian comprend un prologue (sauvegarde des registres), le
corps proprement dit, et un épilogue (restauration des registres et retour).

La pile n'étant utilisée que pour la sauvegarde des registres modi�és dans le corps
de la fonction, seul sp sera utilisé (et pas fp).

Réécrire en C le corps de reverse_endian en supprimant tous les opérateurs d'in-
dexation (crochets []) : 5mn.

Traduire en langage d'assemblage l'appel de swap_bytes (10mn)

Traduire le reste du corps (20mn)

Ecrire le prologue et l'épilogue (15mn) :

1. établir au préalable la liste des registres à sauvegarder

2. n'utiliser que les instructions sub, str, et mov.

2 Listes : structures, procédures et pile (45mn)

La convention d'appel de la fonction listmin (voire annexe 2) est la suivante :

1. L'adresse de retour est passée dans le registre lr

1. ce genre de code est notament utile pour la mise en réseau de machines d'endianness 6=

2

2. Tous les paramètres explicites sont passés dans la pile, le premier (cl) étant en
sommet de pile.

Cette fonction parcourt une liste circulaire donnée en premier paramètre et modi�e
le pointeur passé en deuxième paramètre pour qu'il piointe sur l'éléement de liste de
plus petite valeur.

Le type doublet_t est dé�ni comme suit :

typedef struct doublet {

struct doublet *next;

uint16_t value;

} doublet_t;

2.1 Déclaration de variables (20mn)

Le �chier data.c déclare deux listes chaînées circulaires créées statiquement com-
posées respectivement de :

1. 5 éléments d0 à d4

2. un seul élément single_cl

/* Extern : type specification only : no memory allocation */

extern doublet_t d1,d2,d3,d4,d5;

/* Circular Linked list 5,3,1,2,4 */

doublet_t d0 = {&d2,5};

doublet_t d1 = {&d0,4};

doublet_t d2 = {&d4,3};

doublet_t d3 = {&d1,2};

doublet_t d4 = {&d3,1};

doublet_t *circlist = &d0;

/* Single element circular list */

doublet_t single_cl = {&single_cl,6};

doublet_t *ptrmin;

Traduire en langage d'assemblage les déclarations de variables précédentes.

2.2 Appel de listmin (10mn)

La routine ci-dessus est une version raccourcie du programme principal donné en
annexe.

3

void main ()

{

afficher ();

listmin(circlist,&ptrmin);

circlist=&d2;

afficher ();

}

Traduire en code ARM le corps cette fonction main (le prologue et l'épilogue de
main ne sont pas demandés.

2.3 Listmin (15mn)

Voici le prologue et l'épilogue de listmin, ainsi qu'un dessin de la
pile au début du corps.

.text

@ void listmin (doublet_t *cl, doublet_t **pmin)

listmin:

prologue: stmfd sp!,{r2-r7,fp}

add fp,sp,#28

corps: /* non détaillé , dessin de pile ici */

epilogue: ldmfd sp!,{r2-r7,fp}

mov pc,lr

sauve fp

sauve r7

sauve r6

sauve r2

paramsfp

sp

Traduire l'extrait de code C suivant :

valmin = (*c1).value;

*pmin = cl;

3 Annexe 1 : code de sawp_bytes et reverse_endian

Pour la traduction en lanagage d'assemblage ARM, la convention d'a�ectation des
variables locales aux registres est imposée (cf tableaux suivant,les déclarations de va-
riables locales).

4

void swap_bytes(uint32_t size,

uint8_t *address) {

register uint8_t tmp1;

register uint8_t tmp2;

register uint32_t i;

register uint32_t tm1mi;

/* Si un temporaire supplémentaire

est nécessaire, utiliser r7 */

void reverse_endian (void *tab,

uint32_t indice,

uint32_t taille) {

register uint64_t *ad64;

register uint32_t *ad32;

register uint16_t *ad16;

register uint8_t *ad8;

choix regs imposé
tmp1 tmp2 i tm1mi

r3 r4 r5 r6

choix regs imposé
ad64 ad32 ad16 ad8

r4 r5 r6 r7

for (i=0; i<size/2; i++) {

tm1mi = size - 1 - i;

tmp1 = address[i];

tmp2 = address[tm1mi];

address[i] = tmp2;

address[tm1mi] = tmp1;

}

}

ad64=tab;

ad32=tab;

ad16=tab;

if (taille==8) {

ad8 = (uint8_t *) & (ad64[indice]);

} else if (taille==4) {

ad8 = (uint8_t *) & (ad32[indice]);

} else if (taille==2) {

ad8 = (uint8_t *) & (ad16[indice]);

} else

return;

swap_bytes(taille,ad8);

}

4 Annexe 2 : code de gestion de liste

void listmin (doublet_t *cl, doublet_t **pmin) {

register uint16_t valmin; /* utiliser r4 */

register doublet_t *pdoublet; /* utiliser r5 */

if (cl == NULL) return;

valmin = (*cl).value; /* ou vamin = cl -> value */

pdoublet = cl;

*pmin = cl;

5

do {

pdoublet = pdoublet -> next;

if (pdoublet -> value < valmin) {

valmin = pdoublet -> value;

*pmin= pdoublet;

}

} while (pdoublet != cl);

}

void afficher () { /* non détaillé * }

void main ()

{

afficher ();

listmin(circlist,&ptrmin);

afficher ();

circlist=&d2;

listmin(circlist,&ptrmin);

afficher ();

listmin(&single_cl,&ptrmin);

printf ("single_cl = %p, ptrmin = %p, val = %u\n",&single_cl,ptrmin, single_cl.value);

}

5 Annexe 3 : endianness et contenu des tableaux

Dans la représentation Big Endian, le premier octet de l'entier contient la paire
de chi�res hexacimaux de poid forts et le dernier octet ceux de poids faibles. Avec la
convention Little Endian, le premier octet contient au contraire les chi�res de poids
faibles.

Contenu des premiers octets de t64 si stocké en 0x60000

Endian 60000 60001 60002 60003 60004 60005 60006 60007
Big 0x01 0x23 0x45 0x67 0x89 0xab 0xcd 0xef

Little 0xef 0xcd 0xab 0x89 0x67 0x45 0x23 0x01
Contenu des premiers octets de t32 si stocké en 0x30000

Endian 30000 30001 30002 30003 30004 30005 30006 30007
Big 0x01 0x23 0x45 0x67 0x89 0xab 0xcd 0xef

Little 0x67 0x45 0x23 0x01 0xef 0xcd 0xab 0x89
Contenu des premiers octets de t16 si stocké en 0x10000

Endian 10000 10001 10002 10003 10004 10005 10006 10007
Big 0x01 0x23 0x45 0x67 0x89 0xab 0xcd 0xef

Little 0x23 0x01 0x67 0x45 0xab 0x89 0xef 0xcd

6

