M2P CCI : examen Langage Machine, Novembre 2018

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Avant de répondre aux questions, vous devez impérativement lire la convention d’appel des

fonctions et les contraintes de stockage a respecter.

Table des matiéres

1

2

3

4

Convention d’appel et contraintes de stockage (sans question) 1
Fonction n’en utilisant pas d’autre : échanger (20mn) 2
Fonction en appelant une autre et tableaux : parcours (60mn) 3
Parameétre pointeur, questions générales (40mn) 6
4.1 Paramétre pointeur (20mn) L 6
4.2 Questions générales (20mn) 8

Convention d’appel et contraintes de stockage (sans ques-
tion)

La convention d’appel applicable & toutes les fonctions a traduire est inspirée de celle de gcc :

— Les parameétres explicites de gauche a droite sont stockés dans les registres r0 a r3.

— Le paramétre implicite adresse de retour dans appelante est passé dans le registre Ir (r14).

— Pour les fonctions, le résultat est retourné a la place du premier argument dans le registre r0.

— L’exécution de la routine appelée préserve les contenus des registres : au retour de la fonction,
tous les registres! autres que le compteur ordinal pc (et, dans le cas d’une fonction, r0 qui
contiendra le résultat) ont un contenu identique a celui d’avant I’appel.

Variables ou paramétres seront stockés en mémoire excepté si :
— lattribut register est présent dans leur déclaration ou
— la convention d’appel stipule que le paramétre est passé dans un registre.

Chaque accés a’une variable en mémoire devrait générer une lecture ou une écriture en mémoire.

La lecture peut étre omise (de préférence avec un commentaire approprié) si un registre contient une
copie a jour (datant de 'affectation la plus récente) du contenu de la variable, mais pas Iécriture en
mémoire, & réaliser pour chaque affectation.

La mémoire pour les informations locales & la procédure sera allouée dynamiquement dans la

pile : vous ne pouvez pas utiliser le schéma d’allocation statique dans la section bss présenté dans le
chapitre "procédures simples, sans récursion".

Le recours a la paire de pointeurs (fp,sp) ne se justifie pas dans ce contexte ou aucun parameétre

n’est passé dans la pile : toute la gestion de pile pourra étre effectuée avec le seul registre sp.

1. fp/r1l, ip/r12 et sp/rl3 inclus

2 Fonction n’en utilisant pas d’autre : échanger (20mn)

La fonction échanger permet d’échanger le contenu de deux variables et en retourne la somme.

Traduire en langage d’assemblage cette fonction, qui pourra étre appelée par n’importe quelle
fonction (dont, mais pas uniquement, parcours).

int32_t echanger (intl16_t *gauche, intl6_t *droit) {
register intl6_t valg; // utiliser r4
register intl16_t vald; // utiliser r5

valg=xgauche;
vald=*droit;
*gauche=vald,;
xdroit=valg;

return valg+vald;

.global echanger

parametres
r0 : grl = d

variables locales
r4 . valg
r5 : vald

e 6 0 6 6 6

.text
echanger:
@ prologue de sauvegarde des registres modifiés r4 et rb
#ifdef STMFD
stmfd sp!,{r4,r5}
#else // STMFD
sub sp,sp,#4

str 5, [sp]
sub sp,sp,#4
str r4, [spl

#endif // STMFD

ldrsh r4, [r0] @ valg = #*gauche

ldrsh r5, [ri] @ vald = *droit

strh r5, [r0] @ *gauche = vald

strh r4, [r1] Q@ *droit = valg

add r0,r4,rb Q@ return valg + vald (val retour dans r0)

Q@ epilogue de estauration des registres modifiés r4 et rb
#ifdef STMFD

ldmfd sp!,{r4,r5}
#else // STMFD

ldr 4, [sp]
add sp,sp,#4
ldr 15, [sp]
add sp,sp,#4

#endif // STMFD

mov pc,lr

3 Fonction en appelant une autre et tableaux : parcours (60mn)

La procédure parcours utilise la fonction échanger. Elle :

— stocke dans une variable passée par 'appelante la somme des éléments du tableau recu en
parameétre et

— inverse l'ordre des éléments dans le tableau

void parcours (unsigned taille, int16_t t[taillel, int32_t #*sigma) {

register unsigned 1i; // utiliser r4
register unsigned borne; // utiliser r5
register int32_t s; // utiliser r6
s=0;

borne=taille/2;

for (i=0; i<borne;i++) {
s = s + echanger (t+i, t+taille-1-i);

+

if (taille%2 !'=0) { // si taille impair
s = s + t[i];

}

xsigma=s;

Le premier parameétre est le nombre d’éléments et le deuxiéme ’adresse du tableau. A noter, la

fonction pourrait étre déclarée de 2 autres maniéres équivalentes, bien que moins lisibles :

void parcours (unsigned taille, int16_t t[], int32_t *sigma) {...}
void parcours (unsigned taille, intl16_t *t, int32_t *sigma) {...}

Préter attention aux détails suivant :

1. L’utilisation de registres supplémentaires (par exemple r7 et r8) comme temporaires sera sans
doute nécessaire, notament pour 'indicage du tableau.

2. Echanger et parcours ayant la méme convention d’appel, les paramétres recus par parcours
seront remplacés dans les registres par les paramétres passés lors de 'appel de échanger. Il
faudra donc dupliquer les paramétres recus dans la pile.

3. Pour le test de parité, exploiter les propriétés de la représentation en base 2. Il y a plusieurs
solutions possibles & base d’opérateurs booléens bit & bit et /ou de décalages : en plus du code
ARM, expliquer briévement le principe de votre solution.

4. Tl fortement recommandé de définir des constantes symboliques (NOM _CONSTANTE=valeur)
pour nommer la position relative des sauvegardes de registres par rapport au sommet de pile.

Traduire parcours en langage d’assemblage ARM en trois étapes :

— Traduire 'affectation s = s + echanger (t-+i t+tailel-1-i)

— Traduire la boucle for en remplagant le code de 'affectation de s ci-dessus par un rectangle
— Dessiner 'organisation du bloc de mémoire en sommet de pile dans le corps de parcours.

@ Suggestion de squelette de parcours.S (& compléter)

.text
NB_MOTS=... Q@ & compléter
= ... Q...
SAUVE_R4=. . . @ compléter
= @ ... etc
parcours:
prologue: sub sp,sp,#(4xNB_MOTS)
str r4, [sp,#SAUVE_R4]
corps:
epilogue S
ldr 14, [sp,#SAUVE_R4]
add sp,sp,#(4*NB_MOTS)
Solution :
.global parcours
.text
NB_REGS=8 @ dessin du bloc en sommet de pile
¢ |- - |
TO_LR=0 @ sp ---->|sauvegarde de 1lr| +0
¢ |- |
TO_R8=4 Q | sauvegarde de r8| +4
Q |- - |
TO_R7=8 Q | sauvegarde de r7| +8
¢ | -—mmm - |
TO_R6=12 Q | sauvegarde de r6| +12
¢ |- |
TO_R5=16 Q | sauvegarde de r5| +16
Q |- - |
TO_R4=20 Q | sauvegarde de r4| +20
¢ |- |
TO_R1=24 Q | sauvegarde de ri| +24
¢ |- |
TO_RO=4 Q | sauvegarde de rO| +28

parcours:
sub sp,sp,#(4*xNB_REGS)
str 1r, [sp,#TO_LR]
str r8,[sp,#TO_R8]
str r7,[sp,#TO_R7]
str 16, [sp,#T0_R6]
str rb5,[sp,#TO_R5]
str r4,[sp,#T0O_R4]
str ril,[sp,#TO_R1]
str 0, [sp,#TO_RO]
@ void parcours (unsigned taille, int16_t t[taille], int32_t *sigma) {
@
@ taille : r0 puis Mem[sp+TO_RO]
et : rl puis Mem[sp+TO_R1]
@ sigma : 1r2 puis Mem[sp+TO_R2]
¢
@rd4 : i @ register unsigned int i; // utiliser r4
@ r5 : borne Q@ register unsigned borne // utiliser rb5
@ r6 : s @ register int32_t s; // utiliser r6
@ r7 : temporaire de calcul de t+taille-1 -1
@ r8 : tmp pour calcul de %2 !'= 0

mov r6,#0 @ s=0;

mov r5,r0, LSR #1 @ borne = taille/2

debutfor:
initfor: mov r4,#0 @ i=0
debutwhile: b testwhile @
e {
© kokokokok kokokokokok ko okok ok ok ok okok ok ok ok ok ok ok ok ok ok ook ok ok ok ok sk ook ok ok ook ok ko ok sk ok ok ko ok ok okok ok ok sk ok ok ok ko ok ok ok ok ok ok
corps: ldr 0, [sp,#TO_R1] @ g de echanger (r0) = t+i
add r0, r4, LSL #1
ldr ri1,[sp,#TO_R1] @ d de echanger (rl) = t+taille-1-i
ldr r7,[sp,#T0_RO] @ tmp r7 = taille
sub r7,r7,#1 @ tmp r7 = taille -1
sub r7,r7,r4 @ tmp r7 = taille -1 -i
add ri,r1,r7,LSL #1
bl echanger @ resultat de echanger dans r0
add r6,r6,r0 @ s = s + echanger (t+i, t+taille-1-i);
Q@ }
© kokokokokkokokokokok ok ok ok ok ok ok okok ok ok ok sk ok ok ook ok ok ok ko ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok sk okok ok ok ook ok ok ok ok ok
majfor: add rd,rd,#1 @ it++

testwhile: cmp r4,rb @ while (i<borne)

blo corps @ fi (i<borne)= goto corps
finfor:
if: ldr 8, [sp,#T0O_RO] @ tmp r8 = taille
@ if (taille)2 ==0) goto finsi
andS 1r8,r8,#1 @ ou tst r8,#1
beq finsi
@s =s + t[il;
alors: ldr r7,[sp,#TO_R1] Qr7 =+t
add r7,r7,r4,LSL #1 Q@ r7 = t+i
1drsh r7, [r7] @ r7 = t[il
add r6,r6,r7
finsi:
str r6,[r2] Q@ *sigma=s;

ldr 1r,[sp,#TO_LR]
ldr r8,[sp,#T0_R8]
ldr 7, [sp,#TO_R7]
ldr 16, [sp,#TO_R6]
ldr 5, [sp,#TO_R5]
ldr r4, [sp,#TO_R4]
ldr ri,[sp,#TO_R1]
ldr rO0, [sp,#TO_RO]
add sp,sp,#(4*NB_REGS)

mov pc,lr

4 Paramétre pointeur, questions générales (40mn)

4.1 Paramétre pointeur (20mn)

La fonction main suivante contient une boucle d’affichage d’une chaine de caractéres. La chaine
est parcourue avec une variable pointeur pc incrémentée a chaque tour de boucle.

char ch[] = "bonjour ";
void incptr (...) { ... } @ procédure incptr & définir

void main () {
char *pc;

pc=ch;
while (xpc !'= 0) {
putchar (*pc);
#ifndef INC_BY_FUNC
pc++;

#telse

incptr(...); // & compléter
#endif
}
putchar (°\n’);

+

Par défaut (macro INC_BY FUNC non définie), la boucle contient une instuction pc-++ pour
metre a jour le pointeur.

Le programme est recompilé avec 'option -DINC_BY FUNC, et c¢’est 'appel d’'une procédure
incptr qui effectue a présent la mise a jour de pc, et non 'instruction pc++-.

Ecrire en C la procédure fonction incptr et son appel dans main.

#include "incptr.h"

void incptr(char *xp) {
*p = *p +1; // ou (*p)++;
}

Main doit passer a incptr 'adresse du pointeur pour que celle-ci puisse le modifier et le type du
parameétre de incptr doit donc étre char **, 'appel dans main étant :
incptr(&pe) ;

En supposant que le compilateur C ne tienne aucun compte de la présence ou non de 'attribut
register dans la déclaration de pc.
— Pourrait-il décider de placer pc dans un registre 7
— Sur quel critére basez-vous votre réponse et celle-ci dépend-elle de 'utilisation de la procédure
incptr?

Oui dans la version avec pc++, non dans la version avec la procédure incptr parce qu’on a besoin

d’en prendre I'adresse, ce qui implique qu’il soit en mémoire.

Traduire en langage d’assemblage la procédure incptr.

.global incptr
.text

incptr: sub sp,sp,#4
str 5, [spl]

ldr r5,[r0]
add r5,r5,#1
str 5, [r0]

ldr 15, [spl
add sp,sp,#4
mov pc,lr

4.2 Questions générales (20mn)

Commenter les propositions suivantes. Expliquer pour chacune pourquoi elle est vraie, fausse
ou partiellement vraie (et dans ce cas a quelle condition) :

1. Une fonction ou procédure doit toujours sauvegarder le registre Ir.

Partiellement vrai : seulement si la fonction contient un appel & une routine : Ir est alors
réutilisé pour passer I'adresse de retour locale et I'adresse de retour recue de ’appelante dans
Ir est écrasée.

2. La mémoire a réserver pour stocker un pointeur est définie par le type du pointeur.

Faux : tous les pointeurs ont la méme taille (celle d’une adresse), quelque soit le type d’objet
pointé. Ce dernier définit la taille d’accés a utiliser lorsqu’on applique 'opérateur * sur le
pointeur, ou le coefficient multiplicateur & appliquer lorsqu’on ajoute un entier au pointeur.

3. Lorsqu’une directive .short? suit une directive .word dans la méme section, on doit insérer
une directive .balign 2 entre les deux.

Faux : la directive d’alignement est nécéssaire lorsqu’on réserve de la mémoire pour un objet
plus grand que le précédent, la paramétre du balignétant la tail ;le de 'objet qui suit. Lorsque
I’objet suivant est plus petit, si le premier est aligné, le deuxiéme le sera forcément aussi.

4. Une fonction est généralement appelée par une instruction bl, mais on pourrait aussi 'appeler
avec une séquence composée uniquement d’instruction mov et ldr (préciser laquelle ou pourquoi
ce n’est pas possible).

@ fonctionnement equivalent & bl f, mais avec un branchement de type absolu
ldr 1r,= suite_du_bl @ ou mov lr,pc @ pc 2 instr en avance : 1lr <- suite_bl
ldr pc,=f 1dr pc,=f

suite_bl:

2. ou .hword la directive existant sous les 2 noms

