
M2P CCI : examen Langage Machine, Novembre 2018

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Avant de répondre aux questions, vous devez impérativement lire la convention d'appel des
fonctions et les contraintes de stockage à respecter.

Table des matières

1 Convention d'appel et contraintes de stockage (sans question) 1

2 Fonction n'en utilisant pas d'autre : échanger (20mn) 2

3 Fonction en appelant une autre et tableaux : parcours (60mn) 3

4 Paramètre pointeur, questions générales (40mn) 6
4.1 Paramètre pointeur (20mn) . 6
4.2 Questions générales (20mn) . 8

1 Convention d'appel et contraintes de stockage (sans ques-

tion)

La convention d'appel applicable à toutes les fonctions à traduire est inspirée de celle de gcc :
� Les paramètres explicites de gauche à droite sont stockés dans les registres r0 à r3.
� Le paramètre implicite adresse de retour dans l'appelante est passé dans le registre lr (r14).
� Pour les fonctions, le résultat est retourné à la place du premier argument dans le registre r0.
� L'exécution de la routine appelée préserve les contenus des registres : au retour de la fonction,

tous les registres 1 autres que le compteur ordinal pc (et, dans le cas d'une fonction, r0 qui
contiendra le résultat) ont un contenu identique à celui d'avant l'appel.

Variables ou paramètres seront stockés en mémoire excepté si :
� l'attribut register est présent dans leur déclaration ou
� la convention d'appel stipule que le paramètre est passé dans un registre.

Chaque accès à'une variable en mémoire devrait générer une lecture ou une écriture en mémoire.
La lecture peut être omise (de préférence avec un commentaire approprié) si un registre contient une
copie à jour (datant de l'a�ectation la plus récente) du contenu de la variable, mais pas l'écriture en
mémoire, à réaliser pour chaque a�ectation.

La mémoire pour les informations locales à la procédure sera allouée dynamiquement dans la
pile : vous ne pouvez pas utiliser le schéma d'allocation statique dans la section bss présenté dans le
chapitre "procédures simples, sans récursion".

Le recours à la paire de pointeurs (fp,sp) ne se justi�e pas dans ce contexte où aucun paramètre
n'est passé dans la pile : toute la gestion de pile pourra être e�ectuée avec le seul registre sp.

1. fp/r11, ip/r12 et sp/r13 inclus

1

2 Fonction n'en utilisant pas d'autre : échanger (20mn)

La fonction échanger permet d'échanger le contenu de deux variables et en retourne la somme.

Traduire en langage d'assemblage cette fonction, qui pourra être appelée par n'importe quelle
fonction (dont, mais pas uniquement, parcours).

int32_t echanger (int16_t *gauche, int16_t *droit) {

register int16_t valg; // utiliser r4

register int16_t vald; // utiliser r5

valg=*gauche;

vald=*droit;

*gauche=vald;

*droit=valg;

return valg+vald;

}

.global echanger

@ parametres

@ r0 : g r1 : d

@

@ variables locales

@ r4 : valg

@ r5 : vald

.text

echanger:

@ prologue de sauvegarde des registres modifiés r4 et r5

#ifdef STMFD

stmfd sp!,{r4,r5}

#else // STMFD

sub sp,sp,#4

str r5,[sp]

sub sp,sp,#4

str r4,[sp]

#endif // STMFD

ldrsh r4,[r0] @ valg = *gauche

ldrsh r5,[r1] @ vald = *droit

strh r5,[r0] @ *gauche = vald

strh r4,[r1] @ *droit = valg

add r0,r4,r5 @ return valg + vald (val retour dans r0)

@ epilogue de estauration des registres modifiés r4 et r5

#ifdef STMFD

ldmfd sp!,{r4,r5}

#else // STMFD

2

ldr r4,[sp]

add sp,sp,#4

ldr r5,[sp]

add sp,sp,#4

#endif // STMFD

mov pc,lr

3 Fonction en appelant une autre et tableaux : parcours (60mn)

La procédure parcours utilise la fonction échanger. Elle :
� stocke dans une variable passée par l'appelante la somme des éléments du tableau reçu en

paramètre et
� inverse l'ordre des éléments dans le tableau

void parcours (unsigned taille, int16_t t[taille], int32_t *sigma) {

register unsigned i; // utiliser r4

register unsigned borne; // utiliser r5

register int32_t s; // utiliser r6

s=0;

borne=taille/2;

for (i=0; i<borne;i++) {

s = s + echanger (t+i, t+taille-1-i);

}

if (taille%2 !=0) { // si taille impair

s = s + t[i];

}

*sigma=s;

}

Le premier paramètre est le nombre d'éléments et le deuxième l'adresse du tableau. A noter, la
fonction pourrait être déclarée de 2 autres manières équivalentes, bien que moins lisibles :

void parcours (unsigned taille, int16_t t[], int32_t *sigma) {...}

void parcours (unsigned taille, int16_t *t, int32_t *sigma) {...}

Prêter attention aux détails suivant :

1. L'utilisation de registres supplémentaires (par exemple r7 et r8) comme temporaires sera sans
doute nécessaire, notament pour l'indiçage du tableau.

2. Echanger et parcours ayant la même convention d'appel, les paramètres reçus par parcours
seront remplacés dans les registres par les paramètres passés lors de l'appel de échanger. Il
faudra donc dupliquer les paramètres reçus dans la pile.

3. Pour le test de parité, exploiter les propriétés de la représentation en base 2. Il y a plusieurs
solutions possibles à base d'opérateurs booléens bit à bit et/ou de décalages : en plus du code
ARM, expliquer brièvement le principe de votre solution.

4. Il fortement recommandé de dé�nir des constantes symboliques (NOM_CONSTANTE=valeur)
pour nommer la position relative des sauvegardes de registres par rapport au sommet de pile.

3

Traduire parcours en langage d'assemblage ARM en trois étapes :
� Traduire l'a�ectation s = s + echanger (t+i t+tailel-1-i)
� Traduire la boucle for en remplaçant le code de l'a�ectation de s ci-dessus par un rectangle
� Dessiner l'organisation du bloc de mémoire en sommet de pile dans le corps de parcours.

@ Suggestion de squelette de parcours.S (à compléter)

.text

NB_MOTS=... @ à compléter

... = ... @ ...

SAUVE_R4=... @ compléter

... = ... @ ... etc

parcours:

prologue: sub sp,sp,#(4*NB_MOTS)

...

str r4,[sp,#SAUVE_R4]

...

corps: ...

epilogue ...

ldr r4,[sp,#SAUVE_R4]

...

add sp,sp,#(4*NB_MOTS)

...

Solution :

.global parcours

.text

NB_REGS=8 @ dessin du bloc en sommet de pile

@ |----------------|

TO_LR=0 @ sp ---->|sauvegarde de lr| +0

@ |----------------|

TO_R8=4 @ |sauvegarde de r8| +4

@ |----------------|

TO_R7=8 @ |sauvegarde de r7| +8

@ |----------------|

TO_R6=12 @ |sauvegarde de r6| +12

@ |----------------|

TO_R5=16 @ |sauvegarde de r5| +16

@ |----------------|

TO_R4=20 @ |sauvegarde de r4| +20

@ |----------------|

TO_R1=24 @ |sauvegarde de r1| +24

@ |----------------|

TO_R0=4 @ |sauvegarde de r0| +28

4

@ |----------------|

parcours:

sub sp,sp,#(4*NB_REGS)

str lr,[sp,#TO_LR]

str r8,[sp,#TO_R8]

str r7,[sp,#TO_R7]

str r6,[sp,#TO_R6]

str r5,[sp,#TO_R5]

str r4,[sp,#TO_R4]

str r1,[sp,#TO_R1]

str r0,[sp,#TO_R0]

@ void parcours (unsigned taille, int16_t t[taille], int32_t *sigma) {

@

@ taille : r0 puis Mem[sp+TO_R0]

@ t : r1 puis Mem[sp+TO_R1]

@ sigma : r2 puis Mem[sp+TO_R2]

@

@ r4 : i @ register unsigned int i; // utiliser r4

@ r5 : borne @ register unsigned borne // utiliser r5

@ r6 : s @ register int32_t s; // utiliser r6

@ r7 : temporaire de calcul de t+taille-1 -i

@ r8 : tmp pour calcul de %2 != 0

mov r6,#0 @ s=0;

mov r5,r0, LSR #1 @ borne = taille/2

debutfor:

initfor: mov r4,#0 @ i=0

debutwhile: b testwhile @

@ {

@ ***

corps: ldr r0,[sp,#TO_R1] @ g de echanger (r0) = t+i

add r0, r4, LSL #1

ldr r1,[sp,#TO_R1] @ d de echanger (r1) = t+taille-1-i

ldr r7,[sp,#TO_R0] @ tmp r7 = taille

sub r7,r7,#1 @ tmp r7 = taille -1

sub r7,r7,r4 @ tmp r7 = taille -1 -i

add r1,r1,r7,LSL #1

bl echanger @ resultat de echanger dans r0

add r6,r6,r0 @ s = s + echanger (t+i, t+taille-1-i);

@ }

@ ***

majfor: add r4,r4,#1 @ i++

5

testwhile: cmp r4,r5 @ while (i<borne)

blo corps @ fi (i<borne)= goto corps

finfor:

if: ldr r8,[sp,#TO_R0] @ tmp r8 = taille

@ if (taille%2 ==0) goto finsi

andS r8,r8,#1 @ ou tst r8,#1

beq finsi

@ s = s + t[i];

alors: ldr r7,[sp,#TO_R1] @ r7 = t

add r7,r7,r4,LSL #1 @ r7 = t+i

ldrsh r7,[r7] @ r7 = t[i]

add r6,r6,r7

finsi:

str r6,[r2] @ *sigma=s;

ldr lr,[sp,#TO_LR]

ldr r8,[sp,#TO_R8]

ldr r7,[sp,#TO_R7]

ldr r6,[sp,#TO_R6]

ldr r5,[sp,#TO_R5]

ldr r4,[sp,#TO_R4]

ldr r1,[sp,#TO_R1]

ldr r0,[sp,#TO_R0]

add sp,sp,#(4*NB_REGS)

mov pc,lr

4 Paramètre pointeur, questions générales (40mn)

4.1 Paramètre pointeur (20mn)

La fonction main suivante contient une boucle d'a�chage d'une chaîne de caractères. La chaîne
est parcourue avec une variable pointeur pc incrémentée à chaque tour de boucle.

char ch[] = "bonjour ";

void incptr (...) { ... } @ procédure incptr à définir

void main () {

char *pc;

pc=ch;

while (*pc != 0) {

putchar (*pc);

#ifndef INC_BY_FUNC

pc++;

6

#else

incptr(...); // à compléter

#endif

}

putchar ('\n');

}

Par défaut (macro INC_BY_FUNC non dé�nie), la boucle contient une instuction pc++ pour
metre à jour le pointeur.

Le programme est recompilé avec l'option -DINC_BY_FUNC, et c'est l'appel d'une procédure
incptr qui e�ectue à présent la mise à jour de pc, et non l'instruction pc++.

Ecrire en C la procédure fonction incptr et son appel dans main.

#include "incptr.h"

void incptr(char **p) {

*p = *p +1; // ou (*p)++;

}

Main doit passer à incptr l'adresse du pointeur pour que celle-ci puisse le modi�er et le type du
paramètre de incptr doit donc être char **, l'appel dans main étant :
incptr(&pc) ;

En supposant que le compilateur C ne tienne aucun compte de la présence ou non de l'attribut
register dans la déclaration de pc.

� Pourrait-il décider de placer pc dans un registre ?
� Sur quel critère basez-vous votre réponse et celle-ci dépend-elle de l'utilisation de la procédure

incptr ?

Oui dans la version avec pc++, non dans la version avec la procédure incptr parce qu'on a besoin
d'en prendre l'adresse, ce qui implique qu'il soit en mémoire.

Traduire en langage d'assemblage la procédure incptr.

.global incptr

.text

incptr: sub sp,sp,#4

str r5,[sp]

ldr r5,[r0]

add r5,r5,#1

str r5,[r0]

ldr r5,[sp]

add sp,sp,#4

mov pc,lr

7

4.2 Questions générales (20mn)

Commenter les propositions suivantes. Expliquer pour chacune pourquoi elle est vraie, fausse
ou partiellement vraie (et dans ce cas à quelle condition) :

1. Une fonction ou procédure doit toujours sauvegarder le registre lr.

Partiellement vrai : seulement si la fonction contient un appel à une routine : lr est alors
réutilisé pour passer l'adresse de retour locale et l'adresse de retour reçue de l'appelante dans
lr est écrasée.

2. La mémoire à réserver pour stocker un pointeur est dé�nie par le type du pointeur.

Faux : tous les pointeurs ont la même taille (celle d'une adresse), quelque soit le type d'objet
pointé. Ce dernier dé�nit la taille d'accès à utiliser lorsqu'on applique l'opérateur * sur le
pointeur, ou le coe�cient multiplicateur à appliquer lorsqu'on ajoute un entier au pointeur.

3. Lorsqu'une directive .short 2 suit une directive .word dans la même section, on doit insérer
une directive .balign 2 entre les deux.

Faux : la directive d'alignement est nécéssaire lorsqu'on réserve de la mémoire pour un objet
plus grand que le précédent, la paramètre du balignétant la tail ;le de l'objet qui suit. Lorsque
l'objet suivant est plus petit, si le premier est aligné, le deuxième le sera forcément aussi.

4. Une fonction est généralement appelée par une instruction bl, mais on pourrait aussi l'appeler
avec une séquence composée uniquement d'instruction mov et ldr (préciser laquelle ou pourquoi
ce n'est pas possible).

@ fonctionnement equivalent à bl f, mais avec un branchement de type absolu

ldr lr,= suite_du_bl @ ou mov lr,pc @ pc 2 instr en avance : lr <- suite_bl

ldr pc,=f ldr pc,=f

suite_bl:

2. ou .hword la directive existant sous les 2 noms

8

