M2P CCI : examen Langage Machine, Novembre 2018

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

Avant de répondre aux questions, vous devez impérativement lire la convention d’appel des

fonctions et les contraintes de stockage a respecter.

Table des matiéres

1

2

3

4

Convention d’appel et contraintes de stockage (sans question) 1
Fonction n’en utilisant pas d’autre : échanger (20mn) 2
Fonction en appelant une autre et tableaux : parcours (60mn) 2
Parameétre pointeur, questions générales (40mn) 3
4.1 Paramétre pointeur (20mn) L 3
4.2 Questions générales (20mn) 4

Convention d’appel et contraintes de stockage (sans ques-
tion)

La convention d’appel applicable & toutes les fonctions a traduire est inspirée de celle de gcc :

— Les parameétres explicites de gauche a droite sont stockés dans les registres r0 a r3.

— Le paramétre implicite adresse de retour dans appelante est passé dans le registre Ir (r14).

— Pour les fonctions, le résultat est retourné a la place du premier argument dans le registre r0.

— L’exécution de la routine appelée préserve les contenus des registres : au retour de la fonction,
tous les registres! autres que le compteur ordinal pc (et, dans le cas d’une fonction, r0 qui
contiendra le résultat) ont un contenu identique a celui d’avant I’appel.

Variables ou paramétres seront stockés en mémoire excepté si :
— lattribut register est présent dans leur déclaration ou
— la convention d’appel stipule que le paramétre est passé dans un registre.

Chaque accés a’une variable en mémoire devrait générer une lecture ou une écriture en mémoire.

La lecture peut étre omise (de préférence avec un commentaire approprié) si un registre contient une
copie a jour (datant de 'affectation la plus récente) du contenu de la variable, mais pas Iécriture en
mémoire, & réaliser pour chaque affectation.

La mémoire pour les informations locales & la procédure sera allouée dynamiquement dans la

pile : vous ne pouvez pas utiliser le schéma d’allocation statique dans la section bss présenté dans le
chapitre "procédures simples, sans récursion".

Le recours a la paire de pointeurs (fp,sp) ne se justifie pas dans ce contexte ou aucun parameétre

n’est passé dans la pile : toute la gestion de pile pourra étre effectuée avec le seul registre sp.

1. fp/r1l, ip/r12 et sp/rl3 inclus

2 Fonction n’en utilisant pas d’autre : échanger (20mn)

La fonction échanger permet d’échanger le contenu de deux variables et en retourne la somme.

Traduire en langage d’assemblage cette fonction, qui pourra étre appelée par n’importe quelle
fonction (dont, mais pas uniquement, parcours).

int32_t echanger (intl16_t *gauche, intl6_t *droit) {
register int16_t valg; // utiliser r4
register int16_t vald; // utiliser rb

valg=*gauche;
vald=*droit;
xgauche=vald,;
xdroit=valg;

return valg+vald;

3 Fonction en appelant une autre et tableaux : parcours (60mn)

La procédure parcours utilise la fonction échanger. Elle :

— stocke dans une variable passée par 'appelante la somme des éléments du tableau recu en
parameétre et

— inverse l'ordre des éléments dans le tableau

void parcours (unsigned taille, int16_t t[taille], int32_t #*sigma) {

register unsigned ij; // utiliser r4
register unsigned borne; // utiliser rb
register int32_t s; // utiliser r6
s=0;

borne=taille/2;

for (i=0; i<borne;i++) {
s = s + echanger (t+i, t+taille-1-i);

}

if (taille%2 '=0) { // si taille impair
s = s + t[il;

+

xsigma=s;
Le premier paramétre est le nombre d’éléments et le deuxiéme ’adresse du tableau. A noter, la
fonction pourrait étre déclarée de 2 autres maniéres équivalentes, bien que moins lisibles :

void parcours (unsigned taille, intl16_t t[], int32_t *sigma) {...}
void parcours (unsigned taille, int16_t *t, int32_t *sigma) {...}

Préter attention aux détails suivant :

1. L’utilisation de registres supplémentaires (par exemple r7 et r8) comme temporaires sera sans
doute nécessaire, notament pour 'indicage du tableau.

2. Echanger et parcours ayant la méme convention d’appel, les paramétres recus par parcours
seront remplacés dans les registres par les paramétres passés lors de 1'appel de échanger. Tl
faudra donc dupliquer les parameétres recus dans la pile.

3. Pour le test de parité, exploiter les propriétés de la représentation en base 2. Il y a plusieurs
solutions possibles & base d’opérateurs booléens bit & bit et /ou de décalages : en plus du code
ARM, expliquer briévement le principe de votre solution.

4. Il fortement recommandé de définir des constantes symboliques (NOM _ CONSTANTE=valeur)
pour nommer la position relative des sauvegardes de registres par rapport au sommet de pile.

Traduire parcours en langage d’assemblage ARM en trois étapes :

— Traduire I'affectation s = s + echanger (...)

— Traduire la boucle for en remplacant le code de ’affectation de s ci-dessus par un rectangle et
un commentaire.

— Dessiner 'organisation du bloc de mémoire en sommet de pile dans le corps de parcours.

@ Suggestion de squelette de parcours.S (& compléter)

.text
NB_MQOTS=. .. ©@ a compléter
Ces = ... e ...
SAUVE_R4=. .. @ compléter
= @ ... etc
parcours:
prologue: sub sp,sp,#(4*NB_MOTS)
str r4, [sp,#SAUVE_R4]
corps:
epilogue

ldr r4, [sp,#SAUVE_R4]

add sp,sp,#(4*NB_MOTS)

4 Paramétre pointeur, questions générales (40mn)

4.1 Paramétre pointeur (20mn)

La fonction main suivante contient une boucle d’affichage d’une chaine de caractéres. La chaine
est parcourue avec une variable pointeur pc incrémentée a chaque tour de boucle.

char ch[] = "bonjour ";

void incptr (...) { ... } @ procédure incptr & définir

void main () {
char *pc;

pc=ch;
while (*pc !'= 0) {
putchar (*pc);
#ifndef INC_BY_FUNC

pct+;
#else
incptr(...); // & compléter
#tendif
}
putchar (’\n’);

}

Par défaut (macro INC_BY FUNC non définie), la boucle contient une instuction pc-++ pour
metre a jour le pointeur.

Le programme est recompilé avec 'option -DINC_BY FUNC, et c’est ’appel d’une procédure
incptr qui effectue a présent la mise a jour de pc, et non l'instruction pc++.

Ecrire en C la procédure fonction incptr et son appel dans main.

En supposant que le compilateur C ne tienne aucun compte de la présence ou non de 'attribut
register dans la déclaration de pc.
— Pourrait-il décider de placer pc dans un registre ?
— Sur quel critére basez-vous votre réponse et celle-ci dépend-elle de 'utilisation de la procédure
incptr ?

Traduire en langage d’assemblage la procédure incptr.

4.2 Questions générales (20mn)

Commenter les propositions suivantes. Expliquer pour chacune pourquoi elle est vraie, fausse
ou partiellement vraie (et dans ce cas a quelle condition) :

1. Une fonction ou procédure doit toujours sauvegarder le registre Ir.

2. La mémoire a réserver pour stocker un pointeur est définie par le type du pointeur.

3. Lorsqu'une directive .short? suit une directive .word dans la méme section, on doit insérer
une directive .balign 2 entre les deux.

4. Une fonction est généralement appelée par une instruction bl, mais on pourrait aussi 'appeler
avec une séquence composée uniquement d’instruction mov et ldr (préciser laquelle ou pourquoi
ce n’est pas possible).

2. ou .hword la directive existant sous les 2 noms

