Master CCI
Langage machine

Corrigé du controéle continu écrit 2009

Durée 1h30 heure, document autorisés, calculatrices et ordinateurs
interdits

Prévoir environ 1 heure pour la premiére partie et 30 mn pour la deuxiéme partie.

1 Base 2 et conversion asm — C

Les exercices classiques consistent & partir d’un programme C normal, a le convertir
en "C expansé" dans lequel

— toutes les variables temporaires nécessaires sont déclarées et

— toutes les constructions algorithmiques sont converties en goto et if ... goto
puis a le traduire en langage d’assemblage.

Il s’agit ici d’effectuer le travail inverse : remonter du langage d’assemblage a du
"C expansé", puis de ce dernier a un programme C classique.

On considére le fragment de code en langage d’assemblage suivant.

.text
.global calcul
calcul:
debut: 1dr r2,= x Q0 r2 = &x;
1dr r0, [r2] @ r0 = *r2;
cmp r0,#0 @ if (r0 >= 0) goto Etiq2;
bge Etiqg2
Etiql: mvn rl,r0 @ rli = "r0;
add ri1,r1,#1 Q0 r1 ++; ourl =rl1 + 1;
bal Etiqg3 @ goto Etiq3
Etiq2: mov rl, r0 @ rl1 = r0;
Etiq3: 1dr r3,= res @ r3 = &res;
str ri1,[r3] @ *r3 = ri;

mov pc,lr

.data
X: .word 5
format:.asciz "valabs(x) = %d\o12"

.bss
res: .skip 4

Mvn (move not) calcule le complément & 1 de son opérande (rl; = r0; = 1 — r0;).
En langage C, 'opérateur de complément a 1 est noté ~.

I’instruction mov pc,lr est un branchement de retour a la procédure qui a appelé
calcul.

Question a : On considére une machine dans laquelle les entiers sont représentés
sur 6 bits. Quels entiers naturels et relatifs (écrits en base 10) s’écrivent ainsi en
hexadécimal :

1. 0x15 naturel : 21 relatif : +21
2. 0x35 naturel : 53 relatif : -11 (-32+21)
3. 0x2f naturel : 47 relatif : -17 (-32+15)

Question b : Quel(s) indicateur(s) teste la condition ge (dans le branchement
conditionnel) ? En déduire de quel type (long int ou unsigned long int) doit étre dé-
clarée la variable x dans le programme C.

Bge teste la condition N identique & V (N=0 et V=0 ou N=1 et V—1)
Bge teste donc le signe d’un entier relatif, donc on peut en déduire que x n’est pas de
type unsigned.

Question ¢ : On suppose que lors de I'exécution les sections débutent respecti-

vement aux adresses 0x1000 (text), 0x2000 (data) et 0x3000 (bss). Donner le contenu
des registres r0 a r3 en fin d’exécution.
La valeur initiale de x (5) étant positive, rl sera initialisé par I'instruction mov r1,r0.
D’ou rl = r0 = 5. R2 contient 'adresse de x, sotcké au début de la section data, d’ou
r2 = 0x2000. R3 contient ’adresse de res, stocké au début de la section bss, d’ou
r3 = 0x3000. Si res avait été déclaré avec une valeur initiale, il aurait été stocké dans
data et nous aurions r3 = 0x2004.

Question d : Donner pour chacun des registres (r0, rl, r2 et r3) utilisés la décla-
ration en C de la variable temporaire correspondante.
long int r0, r1, *r2, *r3;

Question e : Donner pour chacune des instructions en langage d’assemblage une
instruction équivalente en langage C .

Question f : Donner un programme C équivalent ne contenant ni opérateur ~,
ni goto. Quel calcul arithmétique réalise ce programme ?

/* declarations identiques */

/* Calcul de Ix| : valeur absolue de x */
if (x <0) {

res = -x;
} else {

res = x

2 Traduction C — asm

Le corps de la procédure main suivante échange les contenus des deux variables
a et b. Rappel pour la traduction en langage d’assemblage : en ’absence d’attribut
register dans la déclaration en C, la variable doit étre stockée en mémoire.

Question g : Traduire les déclarations de a, b et pta.
Question h : Traduire individuellement en langage d’assemblage les instructions

12, 3 et 4 de main. Votre traduction des trois derniéres instructions doit résister a une
permutation des contenus des pointeurs (short int *pta = &b suivi de ptb = &a).

#include <stdio.h>

/* variables globales */

/* hors main */
@ .data
short int a = 13; Q a: .short 13 @ ou .half 13
@ .balign 4
short int *pta = &a; Q@ pta: .word a
Q
short int b = 25; Q@ b: .short 25
void main (void)
{
register short temp; @ temp : ri
register short int *ptb; @ ptb : r2

@ temporaires adr : r4 val
printf ("a = %d, b= %d\n",a,b);
ptb = & Db; @ ldr r2,=b

:r3

temp

*ptb

*xpta

printf

*ptb;

pta; / *ptb = x*&pta */

temp; /* **&pta = temp */

("a = %d, b= %d\n",a,b);

e 0 6 © @

e ©

ldrsh

1dr
1ldr
ldrsh
strh

1dr
ldr
strh

rl, [r2]

rd,= pta
rd, [r4]
r3, [r4]
r3, [r2]
rd,=pta

rd, [r4]

rl, [r4]

