
Master CCI

Langage machine

Corrigé du contrôle continu écrit 2009

Durée 1h30 heure, document autorisés, calculatrices et ordinateurs

interdits

Prévoir environ 1 heure pour la première partie et 30 mn pour la deuxième partie.

1 Base 2 et conversion asm → C

Les exercices classiques consistent à partir d'un programme C normal, à le convertir
en "C expansé" dans lequel

� toutes les variables temporaires nécessaires sont déclarées et
� toutes les constructions algorithmiques sont converties en goto et if . . . goto

puis à le traduire en langage d'assemblage.

Il s'agit ici d'e�ectuer le travail inverse : remonter du langage d'assemblage à du
"C expansé", puis de ce dernier à un programme C classique.

On considère le fragment de code en langage d'assemblage suivant.

.text

.global calcul

calcul:

debut: ldr r2,= x @ r2 = &x;

ldr r0,[r2] @ r0 = *r2;

cmp r0,#0 @ if (r0 >= 0) goto Etiq2;

bge Etiq2

Etiq1: mvn r1,r0 @ r1 = ~r0;

add r1,r1,#1 @ r1 ++; ou r1 = r1 + 1;

bal Etiq3 @ goto Etiq3

Etiq2: mov r1, r0 @ r1 = r0;

Etiq3: ldr r3,= res @ r3 = &res;

str r1,[r3] @ *r3 = r1;

mov pc,lr

1

.data

x: .word 5

format:.asciz "valabs(x) = %d\012"

.bss

res: .skip 4

Mvn (move not) calcule le complément à 1 de son opérande (r1i = r0i = 1− r0i).

En langage C, l'opérateur de complément à 1 est noté
�
.

L'instruction mov pc,lr est un branchement de retour à la procédure qui a appelé
calcul.

Question a : On considère une machine dans laquelle les entiers sont représentés
sur 6 bits. Quels entiers naturels et relatifs (écrits en base 10) s'écrivent ainsi en
hexadécimal :

1. 0x15 naturel : 21 relatif : +21

2. 0x35 naturel : 53 relatif : -11 (-32+21)

3. 0x2f naturel : 47 relatif : -17 (-32+15)

Question b : Quel(s) indicateur(s) teste la condition ge (dans le branchement
conditionnel) ? En déduire de quel type (long int ou unsigned long int) doit être dé-
clarée la variable x dans le programme C.
Bge teste la condition N identique à V (N=0 et V=0 ou N=1 et V=1)
Bge teste donc le signe d'un entier relatif, donc on peut en déduire que x n'est pas de
type unsigned.

Question c : On suppose que lors de l'exécution les sections débutent respecti-
vement aux adresses 0x1000 (text), 0x2000 (data) et 0x3000 (bss). Donner le contenu
des registres r0 à r3 en �n d'exécution.
La valeur initiale de x (5) étant positive, r1 sera initialisé par l'instruction mov r1,r0.
D'où r1 = r0 = 5. R2 contient l'adresse de x, sotcké au début de la section data, d'où
r2 = 0x2000. R3 contient l'adresse de res, stocké au début de la section bss, d'où
r3 = 0x3000. Si res avait été déclaré avec une valeur initiale, il aurait été stocké dans
data et nous aurions r3 = 0x2004.

Question d : Donner pour chacun des registres (r0, r1, r2 et r3) utilisés la décla-
ration en C de la variable temporaire correspondante.
long int r0, r1, *r2, *r3 ;

2

Question e : Donner pour chacune des instructions en langage d'assemblage une
instruction équivalente en langage C .

Question f : Donner un programme C équivalent ne contenant ni opérateur
�
,

ni goto. Quel calcul arithmétique réalise ce programme ?

/* declarations identiques */

/* Calcul de |x| : valeur absolue de x */

if (x <0) {

res = -x;

} else {

res = x

}

2 Traduction C → asm

Le corps de la procédure main suivante échange les contenus des deux variables
a et b. Rappel pour la traduction en langage d'assemblage : en l'absence d'attribut
register dans la déclaration en C, la variable doit être stockée en mémoire.

Question g : Traduire les déclarations de a, b et pta.

Question h : Traduire individuellement en langage d'assemblage les instructions
1 2, 3 et 4 de main. Votre traduction des trois dernières instructions doit résister à une
permutation des contenus des pointeurs (short int *pta = &b suivi de ptb = &a).

#include <stdio.h>

/* variables globales */

/* hors main */

@ .data

short int a = 13; @ a: .short 13 @ ou .half 13

@ .balign 4

short int *pta = &a; @ pta: .word a

@

short int b = 25; @ b: .short 25

void main (void)

{

register short temp; @ temp : r1

register short int *ptb; @ ptb : r2

@ temporaires adr : r4 val : r3

printf ("a = %d, b= %d\n",a,b);

ptb = & b; @ ldr r2,= b

3

temp = *ptb; @ ldrsh r1, [r2]

*ptb = *pta; /* *ptb = **&pta */ @ ldr r4,= pta

@ ldr r4, [r4]

@ ldrsh r3, [r4]

@ strh r3, [r2]

pta = temp; / **&pta = temp */ @ ldr r4,=pta

@ ldr r4,[r4]

@ strh r1, [r4]

printf ("a = %d, b= %d\n",a,b);

}

4

