Master CCI
Langage machine

Solution du controéle continu écrit 2012

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

1 Base2 et accés a la mémoire (50mn)

1.1 Précisions et rappels sur les décalages (pas de question)

— En C, 'expression a < b signifie valeur(a) décalée a gauche de valeur(b) bits.
Réciproquement a > b signifie valeur(a) décalée a droite de valeur(b) bits. Le
décalage est de type arithmétique si Uentier a est de type relatif (int), et logique
sinon (unsigned int).

— Lorsque l'opérande droit d’un calcul est un registre, les isntructions ARM per-
mettent de lui appliquer une opération de décalage a gauche ou a droite. Le
nombre de bits du décalage peut étre une constante immédiate ou le contenu
d’un registre. Le décalage est appliquée sur la copie du contenu du registre uti-
lisée dans I'instruction de calcul : il ne modifie pas le contenu du registre utilisé.

1.2 Accés aux variables en mémoire (35mn)

On veut traduire le programme sourcel.c en un fichier sourcel.S (langage d’assem-
blage ARM) :

#include <stdio.h>

unsigned int x = 7;
unsigned int y;
unsigned int z;

int main (void)

{
scanf ("%u",&y) ; // verification du code de retour de scanf omise
printf ("x=%u, y=%u, z=%u\n",x,y,z);

// traduire en langage d’assemblage ces deux instructions
X = (y<<3) +y;
z = x/4;

printf ("x=%u, y=hu, z=ju\n",x,y,z);
return O;

Traduire la déclaration des variables en supposant que la taille d’un int ou unsi-
gned int est un mot de 32 bits.

.data
X! .word 7
.bss
y: .skip 4
z: .skip 4

Traduire en langage d’assemblage ARM chacune des deux affectations entre les ap-
pels & printf. Traduire chaque affectation indépendament 'une de ’autre puis indiquer
les éventuelles optimisations de code possible lorsque I'on traduit les deux instructions
ensemble.

ldr r5,=y
ldr r3, [r5]
add r6, r3,r3,LSL #3
1ldr rd,= x
str r6, [r4]
ldr r4d,= X @ optimisation : supprimer ce ldr
ldr r6, [r4] @ optimisation : supprimer ce ldr
mov r3, r6, LSR #2 @ optimisation : remplacer r3 par r6
ldr r5,= z
str r3, [r5]
.1torg

On considére & présent le programme source2.c :

#include <stdio.h>

unsigned char x = ’a’;
short int y;
int z;

int main (void)

{
scanf ("%hd",&y) ; // verification du code de retour de scanf omise
printf ("x=Y)c, y=khd\n",x,y);

// traduire en langage d’assemblage ces deux instructions
X++;
z = yx4;

prlntf (”X=%C, y=%hd, Z=%d\n":X,y:Z);
return O;

}

Traduire en langage d’assemblage la déclaration des variables et les deux affecta-
tions en supposant que sizeof(short)=1 et sizeof(int)—=4.

.data
X: .byte a’ @ ou .byte 97

.bss
y: .skip 2

.balign 4
z: .skip 4

.text
@ r2 : temporaire adresse
@ r3 : temporaire contenu

main:

0 x++

1ldr r3,= x
ldrb r2,[r3]
add r2, r2, #1
strb r2, [r3]

@ z = y*x4

ldr 1r3,=y

ldrsh r2, [r3]

mov r2, r2, LSL #2
1ldr r3,= z

str r2,[r3]

1.3 Base 2 (15mn)

On suppose que la machine représente les entiers relatifs selon la convention habi-
tuelle du complément a 2.

Donner en hexadécimal et en décimal le contenu de la variable x (de taille 32
bits) & la fin de cette séquence de code (expliquer pourquoi). Quelle est 'opération
arithmétique réalisée ?

int x;
0xcde12300;
x >> 8;

[l o]
non

X étant de type relatif, on décale a droite en recopiant le bit de signe qui est ici 1
(bit de poids fort du chiffre C en poids fort). On injecte donc 8 bits & 1 a gauche, ce qui
donne deux chiffres hexadécimal f, d’otl nouvelle valeur de x : Oxffcde123. I’opération
est approximativement une division par 256 = 2% (attention : ce ne serait pas vrai si
x n’était pas mutiple de 256).

Que peut-on dire des valeurs relatives de x et y lorsque l'indicateur C (retenue
finale) est a 1 aprés calcul de x-y par addition du complément a 2 de y :

— pour x et y de type int ?
on ne peut rien dire parce que pour des entiers relatifs les indicateurs a prendre
en compte sont N (signe du résultat apparent) et V (indicateur de débordement
en relatif)

— pour x et y de type unsigned int ?
les retenues dans I'addition du C2 sont complémentaires des emprunts dans la
vraie soustraction. C=1 signifie que le dernier emprunt dans la vraie soustraction
aurait été 0 : pas d’emprunt final, d’o soustraction possible et x > .

2 Constructions algorithmiques
On considére le squelette de programme C suivant :

#include <stdio.h>
#tdefine N 10

int main (void)

{
register unsigned int s; // a stocker dans registre r7
register unsigned int i; // a stocker dans registre r6
register unsigned int j; // a stocker dans registre r5
... // instructions & retrouver
return O;
}

ainsi que sa traduction en langage d’assemblage ARM :

@s :r7 1 :1r6 j : 15
@ Ne vous souviez pas de ce qui est avant debut:

4

.global main

.text

format: .asciz "%d\n"
.balign 4

main: stmfd sp!,{r0-r7,1lr}

1dr r8,= format

debut: mov rb5,#0
etl: b et6
et2: mov x7,#0
mov 16,#0
et3: b etbh
etd : add r7,r7,r6
add 16,r6,#1
eth: cmp r6,rb
bls et4
fini: @ debut de traduction de printf ("%d\n",j);

mov 10,r8
mov rl,r7
bl printf
@ fin de traduction de 1’appel de printf

debut2: add rb5,r5,#1
et6: cmp rb,#10
bls et2

@ Ne vous souciez pas non plus de ces instructions
fin2: ldmfd sp!,{r0-r7,1r}

mov 10,#0

mov pc,lr

Donner une séquence d’instructions C équivalente au code en langage d’assemblage
compris entre les étiquettes debut et fin.

debut: mov rb,#0 @ j=0;
etl: b et6 @ goto et6;
et2: mov x7,#0 @ s=0;

mov 16,#0 @ i=0;
et3: b etd @ goto etd
etd : add r7,r7,r6 @ s = s+i

add 1r6,r6,#1 @ i++

eth: cmp 16,r5 @ if (i <= j) goto et4d
bls et4d

@ debut de traduction de printf ("%d\n",j);

mov 10,r8 @ printf ("%d\n",j);
mov rl,r7
bl printf

@ fin de traduction de 1’appel de printf

add rb5,r5,#1 @ j++

et6: cmp r5,#10 @ if (j <= 10) goto et2
bls et2

fin: ldmfd sp!,{r0-r7,1r}

mov x0,#0
mov pc,lr

On reconnait & partir de I'étiquette et4 une boucle while(i<=j). A partir de I'éti-
quette et3, on reconnait une boucle while (j <= 10), dont le corps inclut la boucle
d’indice i.

while (j <= N)

s = 0;
i=0;

printf ("%d\n",s);
jt+;

}

On retrouve dans la boucle intérieure un algorithme de calcul de I’élément d’indice
j de la suite de Fibonacci. La boucle sur j calcule N éléments de cette suite.

Ecrire en langage d’assemblage un code équivalent dans lequel les branchements
conditionnels sont tous des branchements en avant.

@s :x7 i :1r6 j :1b

.global main
.text

format:

main:

debut:

testj:

corpsj:

testi:

corpsi:

suitei:

fin:

.asciz

.balign 4

stmfd

ldr

mov

cmp
bhi

mov
mov

cmp
bhi

add
add
b

r5,#0

r5,#10
fin

r7,#0
r6,#0

r6,r5
suitei

r7,r7,r6
r6,r6,#1
testi

”%d\n”

sp!,{r0-r7,1r}
r8,= format

Qe j =0

Q0@ while (j <= N)

Q0@ if (j > N) goto fin
Q00 s =0

@e i =0

@@0@ while (i <= j)

@0 if (i > j) goto suitei
Q@@ s = s + 1

Q0@ i++

Q0@ goto testi

@ debut de traduction de printf ("%d\n",j);

mov
mov
bl

r0,r8
rl,r7
printf

@ fin de traduction de 1’appel de printf

add
b

ldmfd sp!,{r0-r7,1r}

mov
mov

r5,r5,#1
test]

r0,#0
pc,lr

0@0
0aaQ

j++
goto test]

