
Master CCI

Langage machine

Solution du contrôle continu écrit 2012

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

1 Base2 et accès à la mémoire (50mn)

1.1 Précisions et rappels sur les décalages (pas de question)

� En C, l'expression a � b signi�e valeur(a) décalée à gauche de valeur(b) bits.
Réciproquement a � b signi�e valeur(a) décalée à droite de valeur(b) bits. Le
décalage est de type arithmétique si l'entier a est de type relatif (int), et logique
sinon (unsigned int).

� Lorsque l'opérande droit d'un calcul est un registre, les isntructions ARM per-
mettent de lui appliquer une opération de décalage à gauche ou à droite. Le
nombre de bits du décalage peut être une constante immédiate ou le contenu
d'un registre. Le décalage est appliquée sur la copie du contenu du registre uti-
lisée dans l'instruction de calcul : il ne modi�e pas le contenu du registre utilisé.

1.2 Accès aux variables en mémoire (35mn)

On veut traduire le programme source1.c en un �chier source1.S (langage d'assem-
blage ARM) :

#include <stdio.h>

unsigned int x = 7;

unsigned int y;

unsigned int z;

int main (void)

{

scanf("%u",&y); // verification du code de retour de scanf omise

printf ("x=%u, y=%u, z=%u\n",x,y,z);

// traduire en langage d'assemblage ces deux instructions

x = (y<<3) + y;

z = x/4;

printf ("x=%u, y=%u, z=%u\n",x,y,z);

return 0;

}

1



Traduire la déclaration des variables en supposant que la taille d'un int ou unsi-
gned int est un mot de 32 bits.

.data

x: .word 7

.bss

y: .skip 4

z: .skip 4

Traduire en langage d'assemblage ARM chacune des deux a�ectations entre les ap-
pels à printf. Traduire chaque a�ectation indépendament l'une de l'autre puis indiquer
les éventuelles optimisations de code possible lorsque l'on traduit les deux instructions
ensemble.

ldr r5,= y

ldr r3,[r5]

add r6, r3,r3,LSL #3

ldr r4,= x

str r6, [r4]

ldr r4,= x @ optimisation : supprimer ce ldr

ldr r6, [r4] @ optimisation : supprimer ce ldr

mov r3, r6, LSR #2 @ optimisation : remplacer r3 par r6

ldr r5,= z

str r3, [r5]

.ltorg

On considère à présent le programme source2.c :

#include <stdio.h>

unsigned char x = 'a';

short int y;

int z;

int main (void)

{

scanf("%hd",&y); // verification du code de retour de scanf omise

printf ("x=%c, y=%hd\n",x,y);

// traduire en langage d'assemblage ces deux instructions

x++;

z = y*4;

2



printf ("x=%c, y=%hd, z=%d\n",x,y,z);

return 0;

}

Traduire en langage d'assemblage la déclaration des variables et les deux a�ecta-
tions en supposant que sizeof(short)=1 et sizeof(int)=4.

.data

x: .byte 'a' @ ou .byte 97

.bss

y: .skip 2

.balign 4

z: .skip 4

.text

@ r2 : temporaire adresse

@ r3 : temporaire contenu

main:

...

@ x++

ldr r3,= x

ldrb r2,[r3]

add r2, r2, #1

strb r2, [r3]

@ z = y*4

ldr r3,= y

ldrsh r2,[r3]

mov r2, r2, LSL #2

ldr r3,= z

str r2,[r3]

...

1.3 Base 2 (15mn)

On suppose que la machine représente les entiers relatifs selon la convention habi-
tuelle du complément à 2.

Donner en hexadécimal et en décimal le contenu de la variable x (de taille 32
bits) à la �n de cette séquence de code (expliquer pourquoi). Quelle est l'opération
arithmétique réalisée ?

3



int x;

x = 0xcde12300;

x = x >> 8;

X étant de type relatif, on décale à droite en recopiant le bit de signe qui est ici 1
(bit de poids fort du chi�re C en poids fort). On injecte donc 8 bits à 1 à gauche, ce qui
donne deux chi�res hexadécimal f, d'où nouvelle valeur de x : 0x�cde123. L'opération
est approximativement une division par 256 = 24 (attention : ce ne serait pas vrai si
x n'était pas mutiple de 256).

Que peut-on dire des valeurs relatives de x et y lorsque l'indicateur C (retenue
�nale) est à 1 après calcul de x-y par addition du complément à 2 de y :

� pour x et y de type int ?
on ne peut rien dire parce que pour des entiers relatifs les indicateurs à prendre
en compte sont N (signe du résultat apparent) et V (indicateur de débordement
en relatif)

� pour x et y de type unsigned int ?
les retenues dans l'addition du C2 sont complémentaires des emprunts dans la
vraie soustraction. C=1 signi�e que le dernier emprunt dans la vraie soustraction
aurait été 0 : pas d'emprunt �nal, d'où soustraction possible et x ≥ y.

2 Constructions algorithmiques

On considère le squelette de programme C suivant :

#include <stdio.h>

#define N 10

int main (void)

{

register unsigned int s; // a stocker dans registre r7

register unsigned int i; // a stocker dans registre r6

register unsigned int j; // a stocker dans registre r5

... // instructions à retrouver

return 0;

}

ainsi que sa traduction en langage d'assemblage ARM :

@ s : r7 i : r6 j : r5

@ Ne vous souviez pas de ce qui est avant debut:

4



.global main

.text

format: .asciz "%d\n"

.balign 4

main: stmfd sp!,{r0-r7,lr}

ldr r8,= format

debut: mov r5,#0

et1: b et6

et2: mov r7,#0

mov r6,#0

et3: b et5

et4 : add r7,r7,r6

add r6,r6,#1

et5: cmp r6,r5

bls et4

fin1: @ debut de traduction de printf ("%d\n",j);

mov r0,r8

mov r1,r7

bl printf

@ fin de traduction de l'appel de printf

debut2: add r5,r5,#1

et6: cmp r5,#10

bls et2

@ Ne vous souciez pas non plus de ces instructions

fin2: ldmfd sp!,{r0-r7,lr}

mov r0,#0

mov pc,lr

Donner une séquence d'instructions C équivalente au code en langage d'assemblage
compris entre les étiquettes debut et �n.

debut: mov r5,#0 @ j=0;

et1: b et6 @ goto et6;

et2: mov r7,#0 @ s=0;

mov r6,#0 @ i=0;

et3: b et5 @ goto et5

et4 : add r7,r7,r6 @ s = s+i

add r6,r6,#1 @ i++

5



et5: cmp r6,r5 @ if (i <= j) goto et4

bls et4

@ debut de traduction de printf ("%d\n",j);

mov r0,r8 @ printf ("%d\n",j);

mov r1,r7

bl printf

@ fin de traduction de l'appel de printf

add r5,r5,#1 @ j++

et6: cmp r5,#10 @ if (j <= 10) goto et2

bls et2

fin: ldmfd sp!,{r0-r7,lr}

mov r0,#0

mov pc,lr

On reconnait à partir de l'étiquette et4 une boucle while(i<=j). A partir de l'éti-
quette et3, on reconnait une boucle while (j <= 10), dont le corps inclut la boucle
d'indice i.

j = 0;

while (j <= N)

{

s = 0;

i = 0;

while (i <= j)

{

s = s + i;

i++;

}

printf ("%d\n",s);

j++;

}

On retrouve dans la boucle intérieure un algorithme de calcul de l'élément d'indice
j de la suite de Fibonacci. La boucle sur j calcule N éléments de cette suite.

Ecrire en langage d'assemblage un code équivalent dans lequel les branchements
conditionnels sont tous des branchements en avant.

@ s : r7 i : r6 j : r5

.global main

.text

6



format: .asciz "%d\n"

.balign 4

main: stmfd sp!,{r0-r7,lr}

ldr r8,= format

debut: mov r5,#0 @@@ j = 0

testj: cmp r5,#10 @@@ while (j <= N)

bhi fin @@@ if (j > N) goto fin

corpsj: mov r7,#0 @@@ s = 0

mov r6,#0 @@@ i = 0

testi: cmp r6,r5 @@@ while (i <= j)

bhi suitei @@@ if (i > j) goto suitei

corpsi: add r7,r7,r6 @@@ s = s + i

add r6,r6,#1 @@@ i++

b testi @@@ goto testi

suitei: @ debut de traduction de printf ("%d\n",j);

mov r0,r8

mov r1,r7

bl printf

@ fin de traduction de l'appel de printf

add r5,r5,#1 @@@ j++

b testj @@@ goto testj

fin: ldmfd sp!,{r0-r7,lr}

mov r0,#0

mov pc,lr

7


