Master CCI
Langage machine

Controéle continu écrit 2012

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Table des matiéres

1 Base2 et accés 4 la mémoire (50mn) 1
1.1 Précisions et rappels sur les décalages (pas de question) 1
1.2 Accés aux variables en mémoire (35mn) 1
1.3 Base2 (15mn) oo oo 2

2 Constructions algorithmiques (40mn) 3

1 Base2 et accés a la mémoire (50mn)

1.1 Précisions et rappels sur les décalages (pas de question)

— En C, lexpression a < b signifie valeur(a) décalée a gauche de valeur(b) bits.
Réciproquement a > b signifie valeur(a) décalée a droite de valeur(b) bits. Le
décalage est de type arithmétique si Uentier a est de type relatif (int), et logique
sinon (unsigned int).

— Lorsque l'opérande droit d’un calcul est un registre, les isntructions ARM per-
mettent de lui appliquer une opération de décalage a gauche ou a droite. Le
nombre de bits du décalage peut étre une constante immeédiate ou le contenu
d’un registre. Le décalage est appliquée sur la copie du contenu du registre uti-
lisée dans I'instruction de calcul : il ne modifie pas le contenu du registre utilisé.

1.2 Accés aux variables en mémoire (35mn)

On veut traduire le programme sourcel.c en un fichier sourcel.S (langage d’assem-
blage ARM) :

#include <stdio.h>

unsigned int x = 7;
unsigned int y;
unsigned int z;

int main (void)
{

scanf ("%u",&y) ; // verification du code de retour de scanf omise

printf ("x=%u, y=ku, z=lu\n",x,y,z);

// traduire en langage d’assemblage ces deux instructions
(y<<3) +y;
x/4;

X

z

printf ("x=Y%u, y=ku, z=)u\n",x,y,z);
return O;

Traduire la déclaration des variables en supposant que la taille d’un int ou unsi-
gned int est un mot de 32 bits.

Traduire en langage d’assemblage ARM chacune des deux affectations entre les ap-
pels & printf. Traduire chaque affectation indépendament 'une de ’autre puis indiquer
les éventuelles optimisations de code possible lorsque 'on traduit les deux instructions
ensemble.

On considére a présent le programme source.c :

#include <stdio.h>
unsigned char x = ’a’;
short int y;

int z;

int main (void)

{
scanf ("%hd" ,&y) ; // verification du code de retour de scanf omise
printf ("x=Yc, y=%hd\n",x,y);
// traduire en langage d’assemblage ces deux instructions
X++;
z = y*4;
prlntf (”X=%C, y=%hd, Z=%d\n",X,y:Z);
return O;
}

Traduire en langage d’assemblage la déclaration des variables et les deux affecta-
tions en supposant que sizeof(short)=1 et sizeof(int)=4.

1.3 Base 2 (15mn)

On suppose que la machine représente les entiers relatifs selon la convention habi-
tuelle du complément a 2.

Donner en hexadécimal et en décimal le contenu de la variable x (de taille 32
bits) a la fin de cette séquence de code (expliquer pourquoi). Quelle est 'opération
arithmétique réalisée ?

int x;
0xcde12300;
X = x > 8;

>
Il

Que peut-on dire des valeurs relatives de x et y lorsque l'indicateur C (retenue
finale) est a 1 aprés calcul de x-y par addition du complément & 2 de y :

— pour x et y de type int ?

— pour x et y de type unsigned int ?
2 Constructions algorithmiques (40mn)

On considére le squelette de programme C suivant :
#include <stdio.h>

#define N 10

int main (void)

{
register unsigned int s; // a stocker dans registre r7
register unsigned int i; // a stocker dans registre r6
register unsigned int j; // a stocker dans registre r5
... // instructions & retrouver
printf ("%d\n",j);
... // instructions & retrouver
return O;

}

ainsi que sa traduction en langage d’assemblage ARM :

@s : r7 1 :1r6 j : 15

@ Ne vous souviez pas de ce qui est avant debut:
.global main
.text

format: .asciz n%d\n"
.balign 4

main: stmfd sp!,{r0-r7,1lr}
1ldr r8,= format

debut: mov r5,#0
etl: b et6
et2: mov I7,#0
mov 16,#0
et3: b etbh
etd : add r7,r7,r6
add 16,r6,#1
eth: cmp r6,rb
bls et4
fini: @ debut de traduction de printf ("%d\n",j);

mov 10,r8
mov 1rl,r7
bl printf
@ fin de traduction de 1’appel de printf

debut?2: add 1r5,r5,#1
et6: cmp rb5,#10
bls et2

@ Ne vous souciez pas non plus de ces instructions
fin2: ldmfd sp!,{r0-r7,1r}

mov 10,#0

mov pc,lr

Donner une séquence d’instructions C équivalente au code en langage d’assem-
blage compris entre les étiquettes debutl et finl d’une part, et entre debut2 et fin2
d’autre part. Vous pouvez procéder en deux étapes : traduction intermédiaire en C
avec goto, puis en C sans goto.

Ecrire en langage d’assemblage un code équivalent dans lequel les branchements
conditionnels sont tous des branchements en avant.

