
Master CCI

Langage machine

Contrôle continu écrit 2012

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Table des matières

1 Base2 et accès à la mémoire (50mn) 1
1.1 Précisions et rappels sur les décalages (pas de question) . . . . . . . . . 1
1.2 Accès aux variables en mémoire (35mn) . . . . . . . . . . . . . . . . . . 1
1.3 Base 2 (15mn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Constructions algorithmiques (40mn) 3

1 Base2 et accès à la mémoire (50mn)

1.1 Précisions et rappels sur les décalages (pas de question)

� En C, l'expression a � b signi�e valeur(a) décalée à gauche de valeur(b) bits.
Réciproquement a � b signi�e valeur(a) décalée à droite de valeur(b) bits. Le
décalage est de type arithmétique si l'entier a est de type relatif (int), et logique
sinon (unsigned int).

� Lorsque l'opérande droit d'un calcul est un registre, les isntructions ARM per-
mettent de lui appliquer une opération de décalage à gauche ou à droite. Le
nombre de bits du décalage peut être une constante immédiate ou le contenu
d'un registre. Le décalage est appliquée sur la copie du contenu du registre uti-
lisée dans l'instruction de calcul : il ne modi�e pas le contenu du registre utilisé.

1.2 Accès aux variables en mémoire (35mn)

On veut traduire le programme source1.c en un �chier source1.S (langage d'assem-
blage ARM) :

#include <stdio.h>

unsigned int x = 7;

unsigned int y;

unsigned int z;

int main (void)

{

scanf("%u",&y); // verification du code de retour de scanf omise

1



printf ("x=%u, y=%u, z=%u\n",x,y,z);

// traduire en langage d'assemblage ces deux instructions

x = (y<<3) + y;

z = x/4;

printf ("x=%u, y=%u, z=%u\n",x,y,z);

return 0;

}

Traduire la déclaration des variables en supposant que la taille d'un int ou unsi-
gned int est un mot de 32 bits.

Traduire en langage d'assemblage ARM chacune des deux a�ectations entre les ap-
pels à printf. Traduire chaque a�ectation indépendament l'une de l'autre puis indiquer
les éventuelles optimisations de code possible lorsque l'on traduit les deux instructions
ensemble.

On considère à présent le programme source2.c :

#include <stdio.h>

unsigned char x = 'a';

short int y;

int z;

int main (void)

{

scanf("%hd",&y); // verification du code de retour de scanf omise

printf ("x=%c, y=%hd\n",x,y);

// traduire en langage d'assemblage ces deux instructions

x++;

z = y*4;

printf ("x=%c, y=%hd, z=%d\n",x,y,z);

return 0;

}

Traduire en langage d'assemblage la déclaration des variables et les deux a�ecta-
tions en supposant que sizeof(short)=1 et sizeof(int)=4.

1.3 Base 2 (15mn)

On suppose que la machine représente les entiers relatifs selon la convention habi-
tuelle du complément à 2.

2



Donner en hexadécimal et en décimal le contenu de la variable x (de taille 32
bits) à la �n de cette séquence de code (expliquer pourquoi). Quelle est l'opération
arithmétique réalisée ?

int x;

x = 0xcde12300;

x = x >> 8;

Que peut-on dire des valeurs relatives de x et y lorsque l'indicateur C (retenue
�nale) est à 1 après calcul de x-y par addition du complément à 2 de y :

� pour x et y de type int ?
� pour x et y de type unsigned int ?

2 Constructions algorithmiques (40mn)

On considère le squelette de programme C suivant :

#include <stdio.h>

#define N 10

int main (void)

{

register unsigned int s; // a stocker dans registre r7

register unsigned int i; // a stocker dans registre r6

register unsigned int j; // a stocker dans registre r5

... // instructions à retrouver

printf ("%d\n",j);

... // instructions à retrouver

return 0;

}

ainsi que sa traduction en langage d'assemblage ARM :

@ s : r7 i : r6 j : r5

@ Ne vous souviez pas de ce qui est avant debut:

.global main

.text

format: .asciz "%d\n"

.balign 4

3



main: stmfd sp!,{r0-r7,lr}

ldr r8,= format

debut: mov r5,#0

et1: b et6

et2: mov r7,#0

mov r6,#0

et3: b et5

et4 : add r7,r7,r6

add r6,r6,#1

et5: cmp r6,r5

bls et4

fin1: @ debut de traduction de printf ("%d\n",j);

mov r0,r8

mov r1,r7

bl printf

@ fin de traduction de l'appel de printf

debut2: add r5,r5,#1

et6: cmp r5,#10

bls et2

@ Ne vous souciez pas non plus de ces instructions

fin2: ldmfd sp!,{r0-r7,lr}

mov r0,#0

mov pc,lr

Donner une séquence d'instructions C équivalente au code en langage d'assem-
blage compris entre les étiquettes debut1 et �n1 d'une part, et entre debut2 et �n2
d'autre part. Vous pouvez procéder en deux étapes : traduction intermédiaire en C
avec goto, puis en C sans goto.

Ecrire en langage d'assemblage un code équivalent dans lequel les branchements
conditionnels sont tous des branchements en avant.

4


