
Master CCI

Langage machine

Solution du contrôle continu écrit 2014

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Table des matières

1 Modulo 3 : constructions algorithmiques (45mn) 1

2 Modulo 3 : variables et pointeurs (20mn) 4

3 Branchements, adresses et base 2, divers (25mn (sans le bonus)) 6
3.1 Traduction inverse de constructeurs algorithmiques 7
3.2 Notion de branchement et base 2 . 8

Attention : ne perdez pas de temps à analyser le principe des algorithmes et
focalisez-vous sur leur traduction en langage d'assemblage ARM.

1 Modulo 3 : constructions algorithmiques (45mn)

On veut calculer le reste de la division par 3 du contenu de la variable entière x,
en n'utilisant ni x/3, ni x%3, mais des soustractions.

Traduire en langage d'assemblage ARM les déclarations de variables ainsi que les
instructions entre les appels de sscanf et printf (exclus) avec les contraintes suivantes :

1. Bien que l'instruction ARM de division (div) existe mais vous devez essayer de
ne pas l'utiliser.

2. L'ordre des déclarations de variables stockées en mémoire doit être respecté.

unsigned short resultat;

unsigned int x;

int main (int argc, char *argv[])

{

register unsigned int delta; // a stocker dans r1

register unsigned int etapes; // a stocker dans r3

register unsigned short int mod3; // a stocker dans r2

sscanf (argv[1]," %x",&x);

// Traduire en ARM depuis ici ...

delta = 0x30000000;

1

mod3=x;

etapes=0;

while (mod3>=3)

{

if (mod3>=delta)

mod3 = mod3 - delta;

else

delta = delta/2;

etapes++;

}

resultat = mod3;

// ... jusqu'ici

printf ("mod3=%d calcul en %u etapes\n",mod3,etapes);

return 0;

}

Voici une solution, à un décalage de 3 près des numéros de registres utilisés pour
stocker les variables locales de main, de manière à faciliter l'écritures des appels à print
et scanf.

.global resultat

.global x

.global main

.bss

@ si quelquechose précède resultat dans bss

@ ajouter un .balign 2 avant resultat

resultat: .skip 2

.balign 4

x: .skip 4

@ Allocation des registres :

@ r0 : temporaire/format de printf/scanf

@ r1 : temporaire/varaible de printf/scanf

@ r4 : delta

@ r5 : etapes

@ r6 : mod3

.text

format_scanf: .asciz "%x"

format_printf: .asciz "mod3=%d calcul en %u etapes\n"

2

.balign 4

main: stmfd sp!,{r1-r6,lr}

ldr r0,[r1,#4] @ sscanf (argv[1],"%d",&x)

ldr r1,= format_scanf

ldr r2,= x

bl sscanf

ldr r4,= 0x30000000 @ delta=r4,= 0x30000000

ldr r0,=x @ mod3 = x

ldr r6,[r0]

mov r5,#0 @ etapes = 0

b tw @ goto tw

corps: cmp r6,r4 @ if (mod3 < delta) goto sinon

blo sinon

sub r6,r6,r4 @ mod3 = mod3 -delta

b finsi @ goto finsi

sinon: mov r4,r4,LSR #1 @ delta = delta /2

finsi: add r5,r5,#1 @ etapes ++

tw: cmp r6,#3 @ if (mod3>=3) goto corps

bhs corps

ldr r0,=resultat @ resultat = mod3

strh r6,[r0]

ldr r0,=format_printf @ printf ("...",x)

mov r1,r6

mov r2,r5

bl printf

mov r0,#0;

ldmfd sp!,{r1-r6,pc}

.ltorg

3

2 Modulo 3 : variables et pointeurs (20mn)

Voici un autre algorithme (très ine�cace) de calcul de modulo 3, basé sur une liste
circulaire de structures chaînées entre elles : le champ suivant de ci repère la structure
c(i+1)%3.

unsigned int x;

unsigned short mod3;

struct cellule {

unsigned short mod;

struct cellule *suivant;

};

extern struct cellule c0; // avec extern les declarations ne définissent

extern struct cellule c1; // que le type des structures et ne reservent

extern struct cellule c2; // pas de memoire de stockage

struct cellule c0 = {0,&c1}; // vraies declaration avec reservation

struct cellule c1 = {1,&c2}; // de mémoire et valeurs intiales

struct cellule c2 = {2,&c0};

int main (int argc, char *argv[])

{

register struct cellule *p; // un pointeur de ce genre de structure

sscanf (argv[1]," %x",&x);

printf ("x=0x%8x (%11d)i, mod3(x) = %u\n",x,x,x%3);

p=&c0;

while (x>0)

{

p = (*p).suivant;

x--;

}

mod3 = (*p).mod;

printf ("%u\n",mod3);

return 0;

}

Traduire en langage d'assemblage ARM

1. les réservations de place associées aux déclaration des variables x,mod, c0 à c2.

2. l'instruction p=&c0

3. l'instruction p = (*p).suivant

4. l'instruction mod3 = (*p).mod

4

.global mod3

.global x

.global c0

.global c1

.global c2

.global main

.bss

@ si quelquehcose precede x dans bss (dans 1 autre fichier)

@ ajouter .balign 4 avant la reservation de place pour x

x: .skip 4

mod3: .skip 2

.data

@ si quelquehcose precede c0 dans data (dans 1 autre fichier)

@ ajouter .balign 2 avant la reservation de place pour c0

c0: .hword 0

.balign 4

.word c1

c1: .hword 1

.balign 4

.word c2

c2: .hword 2

.balign 4

.word c0

@ Allocation des registres :

@ r0 : temporaire/format de printf/scanf

@ r1 : temporaire/varaible de printf/scanf

@ r4 : p

DELTA_MOD = 0

DELTA_SUIVANT = 4

.text

format_scanf: .asciz "%x"

.balign 4

main: stmfd sp!,{r1-r4,lr}

ldr r0,[r1,#4] @ sscanf (argv[1],"%d",&x)

ldr r1,= format_scanf

ldr r2,= x

bl sscanf

5

@ printf omis : cf solution exercice precedent

ldr r4,=c0 @ p = &c0

b tw @ goto tw

corps: ldr r4, [r4,#DELTA_SUIVANT] @ p = (*p).suivant

ldr r0,= x @ x--

ldr r1,[r0]

sub r1,r1,#1

str r1,[r0]

tw: ldr r0,=x @ if (x > 0) goto corps

ldr r1,[r0]

cmp r1, #0

bhi corps

ldr r0,[r4,#DELTA_MOD] @ mod3 = (*p).mod

ldr r1,= mod3

strh r0,[r1]

mov r0,#0;

ldmfd sp!,{r1-r6,pc}

.ltorg

3 Branchements, adresses et base 2, divers (25mn

(sans le bonus))

Un programme C gère trois variables entières sur 32 bits : a, b et niter. Ce pro-
gramme contient deux constructeurs algorithmiques classiques imbriqués. Voici un
squelette de sa traduction en langage d'assemblage ARM :

@ Associations variables <-> registres : a <-> r0, b <-> r1, niter <-> r2

@ En cas de besoin de temporaire, utiliser r3

main: ... @ code d'initialisation de a et b omis

mov r3,#0

b etiq4 @ b est synonyme de bal (branch always)

etiq1: blo etiq2

sub r1,r1,r2 /* A */

b etiq3 /* B */

etiq2: sub r2,r2,r1 /* C */

etiq3: add r3,r3,#1 /* D */

6

etiq4: cmp r1,r2

bne etiq1

mov r0,#0 @ ces 2 isntructions mov sont la traduction

mov pc,lr @ de return 0 en fin de main

3.1 Traduction inverse de constructeurs algorithmiques

(Question bonus) Quelle(s) séquence(s) de 2 instructions sera ou seront
exécutée(s) avant l'instruction blo ? Par quelle instruction seront positionnés les indi-
cateurs Z,N,C,V utilisés dans l'évaluation de la condition lower ?

On ne peut arriver à l'étiquette etiq1 que via l'instruction de branchement bne
etiq1, elle-même précédée de l'instruction cmp r1,r2. Ces 2 instructions forment la sé-
quence exécutée avant blo etiq2, et les indicateurs sont positionnés par l'instruction
cmp.

(Question bonus) Donner une suite d'instructions C équivalente à ce pro-
gramme, (d'abord avec, puis sans if . . . goto) 1

@ Le commentaire sur les associations registres <-> variables était

@ erroné dans le sujet : c'aurait dû être

@ r1 : a, r2 : b et r3 : niter, r0 : temporaire

@

main: ...

mov r3,#0 @ niter = 0

b etiq4 @ goto etiq4

etiq1: blo etiq2 @ if (a<b) goto etiq2

sub r1,r1,r2 @ a = a - b

b etiq3 @ goto etiq3

etiq2: sub r2,r2,r1 @ b = b - a

etiq3: add r3,r3,#1 @ niter ++

etiq4: cmp r1,r2 @ if (a != b) goto etiq1

bne etiq1

On retrouve une structure si . . . alors . . . sinon imbriquée dans une boucle tant
que avec test après le corps. Une seule comparaison est e�ectuée parce que les deux
consitions comparent les même variables.

niter = 0;

while (a != b)

{

1. Toute ressemblance avec un algorithme de calcul connu n'est absolument pas fortuite.

7

if (a >= b)

a = a - b;

else

b = b - a;

niter++;

}

Il s'agit d'un algorithme classique de calcul de pgcd par soustractions successives,
auquel on a ajouté un comptage du nombre de soustractions.

3.2 Notion de branchement et base 2

Quelle est l'instruction de branchement conditionnel à utiliser pour que la condi-
tion de saut soit l'inverse de celle testée par blo ?

L'inverse est une condition supérieur ou égal, pour entier naturel tout comme blo,
donc bhs.

Ecrire en C la déclaration des variables a et b.

unsigned int a,b ;

Le type de condition utilisé indique que les variables sont des entiers naturels, d'où
le unsigned. Si ces variables avaient été stockées en mémoire, le su�xe de ldr/str uti-
lisé pour accéder à leur contenu aurait donné de plus une indication sur leur taille
(int,short ou char).

Supposons que l'instruction blo etiq2 soit stockée à l'adresse 0x00100010. A quelle
adresse hexadécimale correspond l'étiquette etiq2 ?

Etiq2 est à etiq1 +3 instructions, soit 12 (0xc) octets plus loin, d'où 0x0010001c.

L'instruction blo est un branchement relatif. Son paramètre etiq2 sera traduit en
un entier relatif Delta inclus dans l'intruction blo. Delta, encodé sur 24 bits suivant la
méthode classique du complement à 2, est exprimé en nombre d'instructions dont il
faut se déplacer.

Calculer Delta.

De combien (environ) d'instructions au maximum pourrait-on se déplacer vers
l'avant avec une instruction telle que b ou blo ?

Delta est l'écart en nombre d'instructions - 2 pour tenir compte du fait que pc est
en avance de 2 instructions, d'où Delta=3-2=1.

A une unité et l'avance de pc près, 223, soit environ 8 millions d'instructions.

8

Considérez la proposition suivante : on peut substituer à l'instruction b etiq3 une
pseudo-instruction ldr (forme ,=) sans modi�er le comportement du programme. ?

� Si elle vraie, écrire cette pseudo-instruction (avec une courte explication du
pourquoi)

� Sinon expliquez pourquoi c'est impossible

Il s'agit d'une instruction de saut inconditionnel, donc d'a�ecter l'adresse destina-
tion au compteur ordinal, ce qui peut être réalisé avec une instruction classique de
chargement de constantes sur 32 bits : ldr pc,=etiq3.

Il manque une directive de section à ce squelette de traduction en langage d'as-
semblage ARM. Donner cette directive

.text

Quelle est la di�érence de comportement entre les instructions add et addS ?

La version addS met à jour les indicateurs ZNCV dans le registre d'état cpsr. Ceci
permet entre autre de tester si le résultat apparent est strictement négatif ou s'il est nul.

Par quelle instruction 2 pourrait-on remplacer l'instruction cmp sans changer le
comportement du programme ?

L'isntruction cmp est une soustraction qui ne stocke pas son résultat dans un
registre, mais positionne les indicateurs ZNCV. On peut donc utiliser à la place l'ins-
truction subS r0,r1,r2. Le résulta peut être stocké dans n'importe quel registre tem-
poraire qui ne contient aucune donnée importante (ici r0).

2. en langage d'assemblage ARM

9

