Master CCI
Langage machine

Solution du contréle continu écrit 2014

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Table des matiéres

1 Modulo 3 : constructions algorithmiques (45mn) 1
2 Modulo 3 : variables et pointeurs (20mn) 4
3 Branchements, adresses et base 2, divers (25mn (sans le bonus)) 6
3.1 Traduction inverse de constructeurs algorithmiques 7
3.2 Notion de branchement et base 2 8

Attention : ne perdez pas de temps a analyser le principe des algorithmes et
focalisez-vous sur leur traduction en langage d’assemblage ARM.

1 Modulo 3 : constructions algorithmiques (45mn)

On veut calculer le reste de la division par 3 du contenu de la variable entiére x,
en n’utilisant ni x/3, ni x%3, mais des soustractions.

Traduire en langage d’assemblage ARM les déclarations de variables ainsi que les
instructions entre les appels de sscanf et printf (exclus) avec les contraintes suivantes :

1. Bien que l'instruction ARM de division (div) existe mais vous devez essayer de
ne pas l'utiliser.

2. L’ordre des déclarations de variables stockées en mémoire doit étre respecté.

unsigned short resultat;
unsigned int x;

int main (int argc, char *argv[])

{
register unsigned int delta; // a stocker dans ril
register unsigned int etapes; // a stocker dans r3
register unsigned short int mod3; // a stocker dans r2

sscanf (argv[1]," %x",&x);
// Traduire en ARM depuis ici ...

delta = 0x30000000;

mod3=x;
etapes=0;

while (mod3>=3)
{
if (mod3>=delta)
mod3 = mod3 - delta;
else
delta = delta/2;
etapest+;
}
resultat = mod3;
// ... jusqu’ici

printf ("mod3=Yd calcul en %u etapes\n",mod3,etapes);
return O;

Voici une solution, a un décalage de 3 prés des numéros de registres utilisés pour
stocker les variables locales de main, de maniére a faciliter ’écritures des appels a print
et scanf.

.global resultat
.global x
.global main

.bss
@ si quelquechose précéde resultat dans bss
@ ajouter un .balign 2 avant resultat
resultat: .skip 2

.balign 4
X: .skip 4

@ Allocation des registres
@ r0 : temporaire/format de printf/scanf
@ r1 : temporaire/varaible de printf/scanf
@ r4 : delta
@ r5 : etapes
@ r6 : mod3
.text
format_scanf: .asciz "Jx"
format_printf: .asciz "mod3=)d calcul en %u etapes\n"

main:

corps:

sinon:
finsi:

tw:

.balign 4

stmfd sp!,{r1-r6,1r}

1dr
1dr
ldr
bl

1ldr

1ldr
1ldr

mov

cmp
blo
sub

mov
add

cmp
bhs

1ldr
strh

1dr
mov
mov
bl

r0, [r1,#4]

rl,= format_scanf

r2,= x
sscanf

r4,= 0x30000000

r0,=x
6, [r0]

r5,#0
tw

r6,r4

sinon
r6,r6,rd
finsi
r4d,r4,LSR #1
r5,r5,#1

r6,#3
corps

r0,=resultat
r6, [r0]

@

e 6 ©

r0,=format_printf @

rl,r6
r2,r5
printf

mov r0,#0;

1dmfd sp!,{r1-r6,pc}

.1torg

sscanf (argv[1],"%d",&x)

delta=r4,= 0x30000000

mod3 = x

etapes = 0

goto tw

if (mod3 < delta) goto sinon
mod3 = mod3 -delta

goto finsi

delta = delta /2

etapes ++

if (mod3>=3) goto corps

resultat = mod3

printf ("...",x)

2 Modulo 3 : variables et pointeurs (20mn)

Voici un autre algorithme (trés inefficace) de calcul de modulo 3, basé sur une liste
circulaire de structures chainées entre elles : le champ suivant de ¢; repére la structure

C(i+1)%3-

unsigned int x;
unsigned short mod3;

struct cellule {
unsigned short mod;
struct cellule *suivant;

};

extern struct cellule cO; // avec extern les declarations ne définissent
extern struct cellule ci; // que le type des structures et ne reservent
extern struct cellule c2; // pas de memoire de stockage

struct cellule c0 = {0,&cl1}; // vraies declaration avec reservation
struct cellule c1 = {1,&c2}; // de mémoire et valeurs intiales
struct cellule c2 = {2,&c0};

int main (int argc, char *argv[])

{
register struct cellule *p; // un pointeur de ce genre de structure
sscanf (argv[1]," %x",&x);
printf ("x=0x%8x (%11d)i, mod3(x) = %u\n",x,x,x%3);
p=&cO;
while (x>0)
{
p = (xp).suivant;
X--;
}
mod3 = (*p) .mod;
printf ("%u\n",mod3);
return O;
}

Traduire en langage d’assemblage ARM

1. les réservations de place associées aux déclaration des variables x,mod, c0 a c2.
2. linstruction p—&c0

3. linstruction p = (*p).suivant

*

4. Pinstruction mod3 = (*p).mod

mod3:

cO:

cl:

c2:

r0
ril

e © © ©

.global mod3
.global x
.global cO
.global ci
.global c2
.global main

.bss

@ si quelquehcose precede x dans bss (dans 1 autre fichier)
@ ajouter .balign 4 avant la reservation de place pour x

.skip 4
.skip 2

.data

@ si quelquehcose precede cO dans data (dans 1 autre fichier)
@ ajouter .balign 2 avant la reservation de place pour cO

.hword O
.balign 4
.word ci

.hword 1
.balign 4
.word c2

.hword 2
.balign 4
.word cO

DELTA_MOD = O
DELTA_SUIVANT = 4

format_scanf:

main:

Allocation des registres

: temporaire/format de printf/scanf

: temporaire/varaible de printf/scanf
r4d

.text
.asciz "%x"
.balign 4

stmfd sp!,{ril-r4,1r}

ldr
ldr
1ldr
bl

r0, [r1,#4] @ sscanf (argv[1],"%d",&x)
rl,= format_scanf

r2,= x

sscanf

@ printf omis : cf solution exercice precedent
ldr 1r4,=cO @ p = &cO
b tw @ goto tw
corps: ldr 14, [r4,4DELTA_SUIVANT] @ p = (*p).suivant
ldr r0,= x Q@ x--
ldr ri1,[r0]
sub ri1,ri1,#1
str ri1,[r0]
tw: ldr 1r0,=x @ if (x > 0) goto corps
ldr ri,[r0]
cmp rl, #0
bhi corps

ldr rO, [r4,#DELTA_MOD] @ mod3 = (*p).mod

1dr ri1,= mod3
strh ro0, [r1]

mov r0,#0;
1dmfd sp!,{r1-r6,pc}

.1ltorg

3 Branchements, adresses et base 2, divers (25mn

(sans le bonus))

Un programme C gére trois variables entiéres sur 32 bits : a, b et niter. Ce pro-
gramme contient deux constructeurs algorithmiques classiques imbriqués. Voici un
squelette de sa traduction en langage d’assemblage ARM :

@ Associations variables <-> registres :

a <->r0, b <->rl, niter <-> r2

@ En cas de besoin de temporaire, utiliser r3

main: . @ code d’initialisation de a et b omis
mov r3,#0
b etiq4 @ b est synonyme de bal (branch always)
etiql: blo etig2
sub rl,rl,r2 /*x A */
b etiq3 /* B */
etiq2: sub r2,r2,r1 /* C */
etiq3: add r3,r3,#1 /¥ D */

etig4: cmp rl,r2

bne etiql
mov r0,#0 @ ces 2 isntructions mov sont la traduction
mov pc,lr @ de return 0 en fin de main

3.1 Traduction inverse de constructeurs algorithmiques

(Question bonus) Quelle(s) séquence(s) de 2 instructions sera ou seront
exécutée(s) avant I'instruction blo? Par quelle instruction seront positionnés les indi-
cateurs Z,N,C,V utilisés dans I’évaluation de la condition lower ?

On ne peut arriver a I'étiquette etiql que via l'instruction de branchement bne
etiql, elle-méme précédée de l'instruction cmp r1,r2. Ces 2 instructions forment la sé-
quence exécutée avant blo etiq2, et les indicateurs sont positionnés par 'instruction
cmp.

(Question bonus) Donner une suite d’instructions C équivalente a ce pro-
gramme, (d’abord avec, puis sans if ... goto) !

@ Le commentaire sur les associations registres <-> variables était
Q@ erroné dans le sujet : c’aurait di &tre
@rl : a, r2 : b et r3 : niter, r0 : temporaire

0
main:
mov r3,#0 Q@ niter = 0
b etiq4 @ goto etiq4d
etiql: blo etig2 @ if (a<b) goto etiqg2
sub rl,rl,r2 Q a=a-b>b
b etiq3 @ goto etiqg3
etiq2: sub r2,r2,ri Q b=>b-a
etiq3: add r3,r3,#1 Q@ niter ++
etiqé: cmp ri,r2 @ if (a !'= b) goto etiql
bne etiql

On retrouve une structure si ...alors ...sinon imbriquée dans une boucle tant
que avec test aprés le corps. Une seule comparaison est effectuée parce que les deux
consitions comparent les méme variables.

niter = 0;
while (a !'= b)
{

1. Toute ressemblance avec un algorithme de calcul connu n’est absolument pas fortuite.

if (a >= b)

a=a-b;
else

b=D>b - a;
niter++;

+

Il s’agit d’un algorithme classique de calcul de pged par soustractions successives,
auquel on a ajouté un comptage du nombre de soustractions.

3.2 Notion de branchement et base 2

Quelle est 'instruction de branchement conditionnel & utiliser pour que la condi-
tion de saut soit 'inverse de celle testée par blo?

L’inverse est une condition supérieur ou égal, pour entier naturel tout comme blo,
donc bhs.

Ecrire en C la déclaration des variables a et b.

unsigned int a,b;

Le type de condition utilisé indique que les variables sont des entiers naturels, d’oiu
le unsigned. Si ces variables avaient été stockées en mémoire, le suffixe de ldr/str uti-
lisé pour accéder a leur contenu aurait donné de plus une indication sur leur taille

(int,short ou char).

Supposons que 'instruction blo etiq2 soit stockée a 'adresse 0x00100010. A quelle
adresse hexadécimale correspond 1'étiquette etiq2 ?

Etiq2 est a etiql +3 instructions, soit 12 (0xc) octets plus loin, d’ott 0x0010001c.

L’instruction blo est un branchement relatif. Son parameétre etiq2 sera traduit en
un entier relatif Delta inclus dans 'intruction blo. Delta, encodé sur 24 bits suivant la
méthode classique du complement & 2, est exprimé en nombre d’instructions dont il
faut se déplacer.

Calculer Delta.

De combien (environ) d’instructions au maximum pourrait-on se déplacer vers
I’avant avec une instruction telle que b ou blo?

Delta est ’écart en nombre d’instructions - 2 pour tenir compte du fait que pc est
en avance de 2 instructions, d’ou Delta=3-2=1.

A une unité et Pavance de pc prés, 22, soit environ 8 millions d’instructions.

Considérez la proposition suivante : on peut substituer a I'instruction b etiq3 une
pseudo-instruction ldr (forme ,=) sans modifier le comportement du programme. ?
— Si elle vraie, écrire cette pseudo-instruction (avec une courte explication du
pourquoi)
— Sinon expliquez pourquoi c’est impossible
Il s’agit d’une instruction de saut inconditionnel, donc d’affecter 1’adresse destina-

tion au compteur ordinal, ce qui peut étre réalisé avec une instruction classique de
chargement de constantes sur 32 bits : 1dr pc,=etiq3.

Il manque une directive de section a ce squelette de traduction en langage d’as-
semblage ARM. Donner cette directive

text
Quelle est la différence de comportement entre les instructions add et addS ?

La version addS met a jour les indicateurs ZNCV dans le registre d’état cpsr. Ceci
permet entre autre de tester si le résultat apparent est strictement négatif ou s’il est nul.

Par quelle instruction? pourrait-on remplacer 'instruction cmp sans changer le
comportement du programme ?

Lisntruction cmp est une soustraction qui ne stocke pas son résultat dans un
registre, mais positionne les indicateurs ZNCV. On peut donc utiliser a la place I'ins-
truction subS r0,r1,r2. Le résulta peut étre stocké dans n’importe quel registre tem-
poraire qui ne contient aucune donnée importante (ici r0).

2. en langage d’assemblage ARM

