
Master CCI

Langage machine

Contrôle continu écrit 2014

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Table des matières

1 Modulo 3 : constructions algorithmiques (45mn) 1

2 Modulo 3 : variables et pointeurs (20mn) 2

3 Branchements, adresses et base 2, divers (25mn (sans le bonus)) 3
3.1 Traduction inverse de constructeurs algorithmiques 3
3.2 Notion de branchement et base 2 . 4

Attention : ne perdez pas de temps à analyser le principe des algorithmes et
focalisez-vous sur leur traduction en langage d'assemblage ARM.

1 Modulo 3 : constructions algorithmiques (45mn)

On veut calculer le reste de la division par 3 du contenu de la variable entière x,
en n'utilisant ni x/3, ni x%3, mais des soustractions.

Traduire en langage d'assemblage ARM les déclarations de variables ainsi que les
instructions entre les appels de sscanf et printf (exclus) avec les contraintes suivantes :

1. Bien que l'instruction ARM de division (div) existe mais vous devez essayer de
ne pas l'utiliser.

2. L'ordre des déclarations de variables stockées en mémoire doit être respecté.

unsigned short resultat;

unsigned int x;

int main (int argc, char *argv[])

{

register unsigned int delta; // a stocker dans r1

register unsigned int etapes; // a stocker dans r3

register unsigned short int mod3; // a stocker dans r2

sscanf (argv[1]," %x",&x);

// Traduire en ARM depuis ici ...

delta = 0x30000000;

1

mod3=x;

etapes=0;

while (mod3>=3)

{

if (mod3>=delta)

mod3 = mod3 - delta;

else

delta = delta/2;

etapes++;

}

resultat = mod3;

// ... jusqu'ici

printf ("mod3=%d calcul en %u etapes\n",mod3,etapes);

return 0;

}

2 Modulo 3 : variables et pointeurs (20mn)

Voici un autre algorithme (très ine�cace) de calcul de modulo 3, basé sur une liste
circulaire de structures chaînées entre elles : le champ suivant de ci repère la structure
c(i+1)%3.

unsigned int x;

unsigned short mod3;

struct cellule {

unsigned short mod;

struct cellule *suivant;

};

extern struct cellule c0; // avec extern les declarations ne définissent

extern struct cellule c1; // que le type des structures et ne reservent

extern struct cellule c2; // pas de memoire de stockage

struct cellule c0 = {0,&c1}; // vraies declaration avec reservation

struct cellule c1 = {1,&c2}; // de mémoire et valeurs intiales

struct cellule c2 = {2,&c0};

int main (int argc, char *argv[])

{

register struct cellule *p; // un pointeur de ce genre de structure

sscanf (argv[1]," %x",&x);

printf ("x=0x%8x (%11d)i, mod3(x) = %u\n",x,x,x%3);

2

p=&c0;

while (x>0)

{

p = (*p).suivant;

x--;

}

mod3 = (*p).mod;

printf ("%u\n",mod3);

return 0;

}

Traduire en langage d'assemblage ARM

1. les réservations de place associées aux déclaration des variables x,mod, c0 à c2.

2. l'instruction p=&c0

3. l'instruction p = (*p).suivant

4. l'instruction mod3 = (*p).mod

3 Branchements, adresses et base 2, divers (25mn

(sans le bonus))

Un programme C gère trois variables entières sur 32 bits : a, b et niter. Ce pro-
gramme contient deux constructeurs algorithmiques classiques imbriqués. Voici un
squelette de sa traduction en langage d'assemblage ARM :

@ Associations variables <-> registres : a <-> r0, b <-> r1, niter <-> r2

@ En cas de besoin de temporaire, utiliser r3

main: ... @ code d'initialisation de a et b omis

mov r3,#0

b etiq4 @ b est synonyme de bal (branch always)

etiq1: blo etiq2

sub r1,r1,r2 /* A */

b etiq3 /* B */

etiq2: sub r2,r2,r1 /* C */

etiq3: add r3,r3,#1 /* D */

etiq4: cmp r1,r2

bne etiq1

mov r0,#0 @ ces 2 isntructions mov sont la traduction

mov pc,lr @ de return 0 en fin de main

3

3.1 Traduction inverse de constructeurs algorithmiques

(Question bonus) Quelle(s) séquence(s) de 2 instructions sera ou seront
exécutée(s) avant l'instruction blo ? Par quelle instruction seront positionnés les indi-
cateurs Z,N,C,V utilisés dans l'évaluation de la condition lower ?

(Question bonus) Donner une suite d'instructions C équivalente à ce pro-
gramme, (d'abord avec, puis sans if . . . goto) 1

3.2 Notion de branchement et base 2

Quelle est l'instruction de branchement conditionnel à utiliser pour que la condi-
tion de saut soit l'inverse de celle testée par blo ?

Ecrire en C la déclaration des variables a et b.

Supposons que l'instruction blo etiq2 soit stockée à l'adresse 0x00100010. A quelle
adresse hexadécimale correspond l'étiquette etiq2 ?

L'instruction blo est un branchement relatif. Son paramètre etiq2 sera traduit en
un entier relatif Delta inclus dans l'intruction blo. Delta, encodé sur 24 bits suivant la
méthode classique du complement à 2, est exprimé en nombre d'instructions dont il
faut se déplacer.

Calculer Delta.

De combien (environ) d'instructions au maximum pourrait-on se déplacer vers
l'avant avec une instruction telle que b ou blo ?

Considérez la proposition suivante : on peut substituer à l'instruction b etiq3 une
pseudo-instruction ldr (forme ,=) sans modi�er le comportement du programme. ?

� Si elle vraie, écrire cette pseudo-instruction (avec une courte explication du
pourquoi)

� Sinon expliquez pourquoi c'est impossible

Il manque une directive de section à ce squelette de traduction en langage d'as-
semblage ARM. Donner cette directive

Quelle est la di�érence de comportement entre les instructions add et addS ?

Par quelle instruction 2 pourrait-on remplacer l'instruction cmp sans changer le
comportement du programme ?

1. Toute ressemblance avec un algorithme de calcul connu n'est absolument pas fortuite.

2. en langage d'assemblage ARM

4

