
Master CCI

Langage machine

Solution du contrôle continu écrit 2015

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Table des matières

1 Variables et constructions algorithmiques (50mn) 1

2 Mémoire, base 2 et boucle (40mn) 6
2.1 Boucle et mémoire(30mn) . 6
2.2 Base 2 (10mn) . 9

3 Annexe 1 : tableau des types d'entiers de stdint.h 10

4 Annexe 2 : conventions little et big endian 11

Attention : ne perdez pas de temps à analyser le principe des algorithmes et
focalisez-vous sur leur traduction en langage d'assemblage ARM.

1 Variables et constructions algorithmiques (50mn)

On considère un extrait de code f et sa traduction en langage d'assemblage ARM.
Les �chiers f.c et f.s sont tous les deux incomplets. L'objectif est de les reconstituer en
entier, chaque partie de code manquant dans l'un étant présente dans l'autre.

Utiliser les registres r0 et r1 pour les variables x et y, et les registres r2 à r4 comme
stockage temporaire.

/* fichier f.c */

... a=...; /* Retrouver à quoi correspondent les ... */

... b=...;

char c;

... res;

void f (void)

{

register ... x; /* a stocker dans le registre r0 */

register ... y; /* a stocker dans le registre r1 */

x=a;

y=b;

1

...

if (x<y) {

x=x+a;

} else {

y=y+b;

}

...

res = x;

}

/* fichier f.s */

.data

a: 15 /* retrouver quelle directive de réservation utiliser */

b: 12

.bss

/* Ajouter ici la déclaration de la variable c */

res: .skip 2

.text

@ r0 : x r1 : y r2, r3, r4 : temporaires

f: stmfd sp!,{r0-r4} /* debut standard de fonction */

ldr r3,=a

ldrh r0,[r3]

ldr r4,=b

ldrh r1,[r4]

etq1: cmp r0,r1

beq etq2

@ Debut de la traduction de if omise

...

@ Fin de la traduction de if omise

b etq1

etq2: ... @ res = x

ldmfd sp!,{r0-r4} /* fin standard de fonction */

mov pc,lr

Déduire (expliquer brièvement le raisonnement) du �chier.s de quel type(parmi
les 6 du tableau 3) sont les variables a,b,res,x et y (type commun aux cinq variables).

2

L'instruction utilisée pour accéder au contenu de a et b est ldrh. On peut donc en
déduire :

1. que la taille des entiers est 16 bits (ce serait ldr ou ldrb pour 32 ou 8 bits)

2. qu'il s'agit d'entiers naturels (pour des relatifs l'instruction utilisée serait ldrsh).

Le fait que les 5 variables soient du même type permettait également de déduire
de la traduction de la déclaration de res la taille (mais pas le type naturel/unsigned
versus relatif) d'entier. La directive .skip 2 réserve 2 octets, donc res est d'un type
entier codé sur 16 bits (int16_t ou uint16_t).

Compléter leurs déclarations dans f.c et f.s.

/* Dans f.c */

unsigned short a=15;

unsigned short b=12;

unsigned short res;

/* Dans f.s */

/* Dans .data */

a: .short 15 @ variante équivalente a: .hword 15

b: .short 12

/* Dans .bss */

res: .skip 2

c: .skip 1 @ sizeof(char) = 1

@ si c est déclaré avant res, ajouter .balign2 entre

@ les deux réservations de mémoire

Traduire ensuite la déclaration de la variable c dans la section bss.

Dans la section bss, on ne donne pas de valeur initiale. On utilise la directive skip
pour réserver le nombre d'octets correspondant à la taille de l'entier. Un char occupe
un octet, d'où .skip 1 pour la déclaration de la variable c.

Voici quelques remarques relatives à certaines réponses vues dans les copies :

1. De nombreuses réponses vont totalement à l'encontre de l'indication que a,b,res,x
et y étaient du même type a été largement ignorée, avec des propositions du
genre a et b int et res unsigned short ...

2. Une réservation de mémoire avec pour valeur initiale une constante entière néga-
tive (par exemple -15) implique une variable de type entier relatif (sans attribut
unsigned). Mais le signe + étant facultatif, il n'est pas possible de déterminer
si la constante 15 est la valeur initiale d'une variable de type entier naturel
(unsigned) ou relatif (sans unsigned).

Voici trois indices raisonnablement �ables permettant de déduire si la variable
entière est de type naturel ou relatif :

3

(a) Le format (s'il est correctement utilisé) dans les printf et scanf : %u (naturel)
ou %d (relatif)

(b) Les comparaisons d'infériorité ou supériorité : blo (naturel) versus blt (re-
latif). A noter : les branchements condtionnels beq/bz et bne/bnz testent
l'indicateur Z, qui est vrai si tous les bits du résultat apparent sont nuls. Il
s'appliquent aussi bien aux naturels qu'aux relatifs.

(c) Pour les tailles inférieures au mot, le type d'extension de format à la taille
des registres : lrb/ldrh (naturel) versus lrsb/lrsh (relatif)

3. Beaucoup d'entre vous n'ont tenu aucun compte de l'attribut register qui dans
le cadre de cette UE spéci�e que la variable est à stocker dans un registre et non
en mémoire : x et y sont donc les registres r0 et r1 et il n'y a pas de mémoire
à réserver pour x et y.

4. La traduction c : .byte 'c' correspond à la déclaration char c = 'c'. Les directives
de réservation de place (.byte,.hword,.word,.ascii,.asciz) ne sont utilisables que
dans la section data dont le contenu initial est contenu dans le �chier exécutable.
En supposant que toute la section bss soit systèmatiquement initialisé à 0 lors
du chargement du programme, c : .byte 0 pourrait à la rigueur convenir).

Traduire en langage d'assemblage l'instruction res = x.

/* Décomposition : *&res = x */

etq2: ldr r3,=res @ res = x

strh r0,[r3]

Erreurs fréquement rencontrées :

1. Traduire après décomposition en *&res =x l'étoile tout à gauche du membre
gauche par une lecture et une instruction load au lieu d'une écriture par store

2. Intervertir le contenu et adresse : strh r3,[r0] correspond à *x = r3

3. Ne pas tenir compte de la taille du type entier de res et x dans l'instruction str
(str ou lieu de strh).

Traduire en langage d'assemblage la construction algorithmique if.

cmp r0,r1 @ instruction redondante : déjà exécutée avant

bhs etq3 @ if (x<y) {

etq5: ldrh r2,[r3] @ x = x + *&a

add r0,r0,r2

b etq4 @ } else {

etq3: ldrh r2,[r4] @ y = y + *&b

add r1,r1,r2

@ }

etq4:

b etq1 @ } ce branchement fait partie de while

4

Erreurs les plus fréquentes sur la structure du if :

1. Oublier l'égalité dans l'inversion de la condition : la négation de x < y est x ≥ y
et non x > y.

2. Il faut soit inverser la condition du if dans la traduction en if . . . goto, soit
permuter l'ordre des blocs alors et sinon, mais pas les 2 à la fois !

3. Oubli de sauter à la �n du if après le premier bloc

4. Branchement conditionnels redondants : après bhs (≥) sinon, la condition in-
verse lo (<) est forcément vraie, ce genre de construction contient un branche-
ment conditionnel de trop :

cmp r0,r1 blo alors bhs sinon alors :

5. Erreur de moindre importance : ne pas respecter la nature de l'entier dans le
choix de la condition : bge au lieu de bhs pour un entier naturel.

Erreur fréquente sur les a�ectations : dans les a�ectations, les variables a et b sont
en mémoire. Il faut donc ramener une copie de leur contenu de la mémoire dans un
registre temporaire, puis additionner ce dernier à la variable x ou y qui est un registre :

ldr r3,=a @ r3 = &a

ldrh r2,[r3] @ r2 = &r3 = *&a (a)

add r0,r0,r2 @ x = x + *&a

L'a�ectation de l'adresse de a était déjà présente dans le début de calcul, on pou-
vait donc omettre la première des 3 instructions, mais pas la deuxième. L'instruction
add r0,r0,r3 ajouterait à x non pas une copie du contenu de a, mais l'adresse de l'em-
placement auquel a est placée, ce qui est dépourvu de sens 1

Retrouver la partie de code de f.c qui englobe la construction if. L'objectif est de
reconstituer un code C standard dépourvu d'instruction goto.

etq1: cmp r0,r1 @ if (x==y) goto etq2

beq etq2

... @ corps composé du if

b etq1

Du fait du branchement conditionnel à etq2, l'exécution ne se poursuit dans le
corps (composé uniquement du if) que si x est di�érent de y. La construction est donc
à priori de la forme if (x != y) ou while/do . . . while (x != y).

A la �n du corps, on trouve un branchement inconditionnel à l'instruction de com-
paraison pour réexécuter le corps si la condition est encore vraie. Il s'agit donc d'une
boucle, dans une traduction avec test avant le corps en inversant la condition, comme
un if sans else avec un branchement de retour au test à la �n du corps. Le corps n'est
pas exécuté si la condition est initialement fausse : il s'agit donc de while et non de do

1. Notons qu'une telle opération aurait un sens si r3 contenait l'adresse d'un tableau de char et r0

un indice dans ce tableau : l'addition représenterait alors le calcul de l'adresse de l'élément d'indice

r0.

5

. . . while.

Il n'y a pas clairement de variable de boucle utilisée dans la condition et incrémen-
tée ou décrémentée à chaque tour de boucle : il n'y a donc pas de conversion de la
boucle while en boucle for classique à formuler.

while (x != y) {

if (x<y) {

x=x+a;

} else {

y=y+b;

}

Remarque : l'explication (même brève) de ce qui fait qu'on reconnait une boucle
while brille par son absence dans la quasi-totalité des copies, et la condition du while
a été souvent reconstituée à l'envers.

Au cas où vous n'auriez pas reconnu l'algorithme, ce programme calcul le ppmc
(plus petit multiple commun) de x et y.

2 Mémoire, base 2 et boucle (40mn)

2.1 Boucle et mémoire(30mn)

On considère la fonction calcul suivante et sa traduction partielle (sans la gestion
de la boucle) :

unsigned int x = 0x12345678;

unsigned int calcul (void)

{

register int i;

register unsigned int valeur;

register unsigned int lu;

register unsigned char *pc;

/* (unsigned char *) ne spécifie aucun accès mémoire */

/* C'est un forceur de type pour dire au compilateur de considérer */

/* &x comme si x avait été déclarée de type unsigned char */

pc = (unsigned char *) &x;

valeur = 0;

i = 3;

while (i>=0) {

lu = *(pc+i);

valeur = lu + (valeur << 8);

6

i--;

}

return valeur;

}

.data

x: .word 0x12345678

@ r1 : pc r2: valeur r3 : lu r4 : i

@ valeur de retour de calcul dans r0

calcul: stmfd sp!, {r1,r4}

ldr r1,=x @ pc = &x

mov r2, #0 @valeur = 0

mov r4,#3 @ i = 3

... @ à compléter

corps: ldrb r3,[r1,r4] @ lu = *(pc+i)

add r2,r3,r2, LSL #8 @ valeur = lu + valeur << 8

fincorps: sub r4,r4,#1 @ i--

... @ à compléter

mov r0,r2 @ return valeur

ldmfd sp!, {r1,r4}

mov pc,lr

.ltorg

Compléter la traduction de calcul en langage d'assemblage

La traduction classique avec test après le corps sans inversion de la condition ne
présente pas de di�culté particulière. La variable i n'ayant pas l'attribut unsigned, il
faut utiliser le branchement conditionnel destiné aux entiers relatifs (donc bge et non
bhs).

calcul: stmfd sp!, {r1,r4}

ldr r1,=x @ pc = &x

mov r2, #0 @valeur = 0

mov r4,#3 @ i = 3

b testw

7

corps: ldrb r3,[r1,r4] @ lu = *(pc+i)

add r2,r3,r2, LSL #8 @ valeur = lu + valeur << 8

sub r4,r4,#1 @ i--

testw: cmp r4,#0 @ while (i>=0)

bge corps

finw: mov r0,r2 @ return valeur

ldmfd sp!, {r1,r4}

mov pc,lr

Si l'on préfère tester avant le corps, il faut prendre soin d'inverser la condition
d'une part et d'ajouter après le corps un branchement inconditionnel vers le test pour
réxécuter éventuellement le corps si la condition est restée vraie.

mov r4,#3 @ i = 3

testw: cmp r4,#0

blt finw

corps: ldrb r3,[r1,r4] @ lu = *(pc+i)

add r2,r3,r2, LSL #8 @ valeur = lu + valeur << 8

sub r4,r4,#1 @ i--

b testw

finw: mov r0,r2 @ return valeur

La valeur retournée par la fonction dans r0 est celle de x : 0x12345678. En dé-
duire (avec explications) si la machine est de type big ou little endian (cf dé�nition
en annexe).

Le contenu de valeur (r2) est bien identique à la valeur initiale de x dans sa décla-
ration.

L'octet de poids fort de r2 est le même que celui de x : 0x12. Il s'agit de l'octet
d'adresse &x+3 octets, qui est lu en premier et sera décalé trois fois à gauche dans le
registre.

L'octet de poids faible de r2 est égal à celui de x : 0x78. Il s'agit du dernier octet
lu, d'adresse &x, qui ne sera pas décalé à gauche.

En parcourant les octets de x par ordre croissant des adresses, on rencontre donc
des bits de x de poids croissant : poids faible en tête à l'adresse de x, poids fort en
dernier à l'adresse de x plus 3 octets. Cet ordre de rangement correspond à la conven-
tion de représentation Little Endian.

8

Avec la convention Big Endian, on trouverait 0x12 à l'adresse de x, et 0x78 à
l'adresse de x + 3 octets, et valeur vaudrait 0x78563412.

Proposer une séquence d'instructions ARM n'utilisant aucune variante de ldr et
qui charge la constante 0xabcdef12 dans le registre r0.

Il su�t de décomposer la constante en tranches de 8 bits à assembler par décalage :

mov r0,#0xab

mov r0,r0,LSL #8

add r0,r0,#0xcd

mov r0,r0,LSL #8

add r0,r0,#0xef

mov r0,r0,LSL #8

add r0,r0,#0x12

Que peut-on a�rmer à propos du saut en �n de calcul (expliquer brièvement
vos choix) :

1. (a) conditionnel

(b) inconditionnel

(c) propriété impossible à déterminer

2. (a) absolu

(b) relatif

(c) propriété impossible à déterminer

3. (a) saut en avant

(b) saut en arrière

(c) propriété impossible à déterminer

Si l'instruction mov pc,lr était conditionnelle, elle serait suivie d'un signe de condi-
tion, par exemple movne pc,lr. Sans su�xe, il s'agit de la condition implicite ALways,
toujours vraie, donc d'un branchement inconditionnel.

L'instruction mov est un branchement absolu puisqu'il s'agit d'une a�ectation de
l'adresse fournie dans lr à pc et non de l'addition d'un déplacement au compteur ordi-
nal (dans ce cas la destination serait alors dé�nie relativement à l'instruction courante
mov pc,lr).

Il est impossible de déterminer le sens du branchement : l'adresse du branchement
dépend de la position de la ou les fonctions qui appelle(nt) calcul, qui dépendra de
l'ordre dans lequel les �chiers seront fusionnés lors de l'édition de liens.

2.2 Base 2 (10mn)

Soient r0 et r2 deux variables de type entier naturel et la séquence de code suivante :

9

mvn r1,r0

add r1,r1,#1

add r2,r0,r1

Donner la valeur de r2 en �n de séquence pour les valeurs suivantes (écrites en
base 10) de r0 : 10, 260, 1040 et 1054632.

La description de l'instruction mvn (move not) page 5 de la documentation arm
simpli�ée indique que cette instruction copie le complément à 1 de l'opérande droit
(r0) dans le registre destination (r1). L'instruction suivante ajoute 1, ce qui calcule le
complément à 2 (autrement dit l'opposé) de l'opérande initialement dans r0.

Rappel : la représentation du complément à 1 x de x est obtenue en inversant tous
les bits de x (xi = 1 − xi) et on a la propriété x = 2n − 1 − x (n étant la taille de la
représetation, exprimée en nombre de bits). Le complément à 2 de x x + 1 est égal à
2n − x, assimilable à -x puisque sur n bits le résultat d'une addition est obtenu à 2n

près.
On pourrait obtenir le même résultat avec la soustraction inversée :

rsb r1, r0, #0

La dernière instruction ajoute donc le nombre présent dans r0 et son opposé calculé
dans r1. Le résultat apparent est donc 0 quelque soit le nombre r0 de départ. Le vrai
résultat serait 2n, ce qui transparait dans le fait que la dernière retenue de l'addtition
sera à 1.

Le choix de grands entiers di�ciles à convertir manuellement en binaire était vo-
lontaire pour vous dissuader de le faire. L'entier 10 était un exemple facile à traiter et
permettait de comprendre le fonctionnement.

10 sur 32 bits 0000 0000 0000 0000 0000 0000 0000 1010 = 0x0000000A

/10 1111 1111 1111 1111 1111 1111 1111 0101 = 0xFFFFFFF5 mvn r1,r0

+1 0000 0000 0000 0000 0000 0000 0000 0001 = 0x00000001

---> 1111 1111 1111 1111 1111 1111 1111 0110 = 0xFFFFFFF6 add r1,r1,#1

+10 0000 0000 0000 0000 0000 0000 0000 1010 = 0x0000000A

--> C=1 0000 0000 0000 0000 0000 0000 0000 0000 = 0x00000000 add r2,r0,r1

Remarque : je regrette que dans presque toutes les copies ayant abordé la question,
l'instruction mvn (move not) ait été interprétée comme synonyme de mov.

3 Annexe 1 : tableau des types d'entiers de stdint.h

Après utilisation de la directive #include <stdint.h>, on peut utiliser les types
C d'entiers de taille certaine intxx_t et uintxx_t regroupés dans le tableau ci-dessous,
avec leurs synonymes classiques 2 pour un processeur ARM 32 bits.

2. dont la taille e�ective peut varier d'une machine à l'autre

10

types d'entier naturel taille types d'entier relatif
synonyme sur ARM type bits type synonyme sur ARM

char int8_t 8 uint8_t unsigned char
short int16_t 16 uint16_t unsigned short
int int32_t 32 uint32_t unsigned int

4 Annexe 2 : conventions little et big endian

Un entier E stocké sur plus de 8 bits en mémoire occupe des octets d'adresses
consécutives (A,A+1,A+2 et A+3 pour un entier codé sur 32 bits). L'adresse A de
l'entier est celle de son premier octet.

La représentation de l'entier en binaire est donc découpée en paquets de 8 bits
stockés chacun dans un octet de mémoire selon un ordre croissant ou décroissant.

Dans la convention Big Endian, l'ordre est décroissant : le premier octet (A)
contient les bits de poids forts de l'entier et le dernier octet (A+3) les bits de poids
faibles de E.

La convention opposée est dite Little Endian : les bits de poids faibles occupe le
premier octet (A) et ceux de poids forts le dernier (A+3).

11

