Master CCI

Langage machine

Solution du controéle continu écrit 2015

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Table des matiéres

1 Variables et constructions algorithmiques (50mn) 1
2 Mémoire, base 2 et boucle (40mn) 6
2.1 Boucle et mémoire(30mn) oo 6
2.2 Base 2 (10mn)o 9
3 Annexe 1 : tableau des types d’entiers de stdint.h 10
4 Annexe 2 : conventions little et big endian 11

Attention : ne perdez pas de temps a analyser le principe des algorithmes et
focalisez-vous sur leur traduction en langage d’assemblage ARM.

1 Variables et constructions algorithmiques (50mn)

On considére un extrait de code f et sa traduction en langage d’assemblage ARM.
Les fichiers f.c et f.s sont tous les deux incomplets. L’objectif est de les reconstituer en
entier, chaque partie de code manquant dans I'un étant présente dans ’autre.

Utiliser les registres r0 et rl pour les variables x et y, et les registres r2 a r4 comme
stockage temporaire.

/* fichier f.c */

a=...; /* Retrouver & quoi correspondent les ... */
.. b=...;
char c;
res;

void f (void)

{
register ... x; /* a stocker dans le registre r0 */
register ... y; /* a stocker dans le registre ril x/
x=a;
y=b;

.if (z<y) {

X=xta;
} else {
y=y+b;
}
res = Xx;
}
/* fichier f.s */
.data
a: c 15 /* retrouver quelle directive de réservation utilis
b 12
.bss
/* Ajouter ici la déclaration de la variable c */
res: .skip 2
.text

©@r0 :x rl:y 1r2, r3, rd : temporaires
f: stmfd sp!,{r0-r4} /* debut standard de fonction */

ldr r3,=a
ldrh 0, [r3]

ldr r4,=b
ldrh ri1, [r4]

etql: cmp r0,rl
beq etqg2

@ Debut de la traduction de if omise
@ Fin de la traduction de if omise

b etql
etq2: c @ res = x

ldmfd sp!,{r0-r4} /* fin standard de fonction */
mov pc,lr

Déduire (expliquer briévement le raisonnement) du fichier.s de quel type(parmi
les 6 du tableau 3) sont les variables a,b,res,x et y (type commun aux cing variables).

L’instruction utilisée pour accéder au contenu de a et b est ldrh. On peut donc en
déduire :

1. que la taille des entiers est 16 bits (ce serait ldr ou ldrb pour 32 ou 8 bits)
2. qu'il s’agit d’entiers naturels (pour des relatifs 'instruction utilisée serait ldrsh).

Le fait que les 5 variables soient du méme type permettait également de déduire
de la traduction de la déclaration de res la taille (mais pas le type naturel /unsigned
versus relatif) d’entier. La directive .skip 2 réserve 2 octets, donc res est d’un type
entier codé sur 16 bits (int16_t ou uint16_t).

Compléter leurs déclarations dans f.c et f.s.

/* Dans f.c */

unsigned short a=15;
unsigned short b=12;
unsigned short res;

/* Dans f.s */

/* Dans .data */

a: .short 15 @ variante équivalente a: .hword 15
b: .short 12

/* Dans .bss */

res: .skip 2

c: .skip 1 @ sizeof(char) = 1
@ si ¢ est déclaré avant res, ajouter .balign2 entre
Q@ les deux réservations de mémoire

Traduire ensuite la déclaration de la variable ¢ dans la section bss.

Dans la section bss, on ne donne pas de valeur initiale. On utilise la directive skip
pour réserver le nombre d’octets correspondant a la taille de ’entier. Un char occupe
un octet, d’ou .skip 1 pour la déclaration de la variable c.

Voici quelques remarques relatives a certaines réponses vues dans les copies :

1. De nombreuses réponses vont totalement & ’encontre de 'indication que a,b,res,x
et y étaient du méme type a été largement ignorée, avec des propositions du
genre a et b int et res unsigned short ...

2. Une réservation de mémoire avec pour valeur initiale une constante entiére néga-
tive (par exemple -15) implique une variable de type entier relatif (sans attribut
unsigned). Mais le signe + étant facultatif, il n’est pas possible de déterminer
si la constante 15 est la valeur initiale d’une variable de type entier naturel
(unsigned) ou relatif (sans unsigned).

Voici trois indices raisonnablement fiables permettant de déduire si la variable
entiére est de type naturel ou relatif :

(a) Le format (s’il est correctement utilisé) dans les printf et scanf : %u (naturel)
ou %d (relatif)

(b) Les comparaisons d’infériorité ou supériorité : blo (naturel) versus blt (re-
latif). A noter : les branchements condtionnels beq/bz et bne/bnz testent
I'indicateur Z, qui est vrai si tous les bits du résultat apparent sont nuls. Il
s’appliquent aussi bien aux naturels qu’aux relatifs.

(c) Pour les tailles inférieures au mot, le type d’extension de format a la taille
des registres : Irb/ldrh (naturel) versus lrsb/lrsh (relatif)

3. Beaucoup d’entre vous n’ont tenu aucun compte de ’attribut register qui dans
le cadre de cette UE spécifie que la variable est a stocker dans un registre et non
en mémoire : x et y sont donc les registres r0 et rl et il n’y a pas de mémoire
a réserver pour X et y.

4. La traduction c : .byte ’c’ correspond a la déclaration char ¢ = '¢’. Les directives
de réservation de place (.byte,.hword,.word,.ascii,.asciz) ne sont utilisables que
dans la section data dont le contenu initial est contenu dans le fichier exécutable.
En supposant que toute la section bss soit systématiquement initialisé a 0 lors
du chargement du programme, ¢ : .byte 0 pourrait a la rigueur convenir).

Traduire en langage d’assemblage 'instruction res = x.

/* Décomposition : *&res = x */

etq2: ldr r3,=res @ res = x
strh r0, [r3]

Erreurs fréquement rencontrées :

1. Traduire aprés décomposition en *&res —x 1’étoile tout a gauche du membre
gauche par une lecture et une instruction load au lieu d’une écriture par store

2. Intervertir le contenu et adresse : strh r3,[r0] correspond a *x = r3

3. Ne pas tenir compte de la taille du type entier de res et x dans l'instruction str
(str ou lieu de strh).

Traduire en langage d’assemblage la construction algorithmique if.

cmp 10,rl @ instruction redondante : déja exécutée ava
bhs etq3 @ if (x<y) {
etqb: ldrh r2, [r3] @ x = x + *&a
add r0,r0,r2
b etq4 @ } else {
etq3: ldrh r2, [r4] @y =y + *&b
add rl,rl,r2
Q }
etqd:
b etql @ } ce branchement fait partie de while

Erreurs les plus fréquentes sur la structure du if :

1. Oublier I’égalité dans 'inversion de la condition : la négation de x < yest z > y
et non x > y.

2. 1l faut soit inverser la condition du if dans la traduction en if ...goto, soit
permuter 'ordre des blocs alors et sinon, mais pas les 2 a la fois!

3. Oubli de sauter a la fin du if aprés le premier bloc

4. Branchement conditionnels redondants : aprés bhs (>) sinon, la condition in-
verse lo (<) est forcément vraie, ce genre de construction contient un branche-
ment conditionnel de trop :

cmp r0,r1 blo alors bhs sinon alors :

5. Erreur de moindre importance : ne pas respecter la nature de I’entier dans le
choix de la condition : bge au lieu de bhs pour un entier naturel.

Erreur fréquente sur les affectations : dans les affectations, les variables a et b sont
en mémoire. Il faut donc ramener une copie de leur contenu de la mémoire dans un
registre temporaire, puis additionner ce dernier & la variable x ou y qui est un registre :

1dr r3,=a Q@ r3 = &a
1drh r2,[r3] @ r2 = &r3 = x&a (a)
add r0,r0,r2 0 x = x + *&a

L’affectation de I'adresse de a était déja présente dans le début de calcul, on pou-
vait donc omettre la premiére des 3 instructions, mais pas la deuxiéme. L’instruction
add r0,r0,r3 ajouterait & x non pas une copie du contenu de a, mais I’adresse de I’em-
placement auquel a est placée, ce qui est dépourvu de sens '’

Retrouver la partie de code de f.c qui englobe la construction if. L’objectif est de
reconstituer un code C standard dépourvu d’instruction goto.

etql: cmp r0,rl @ if (x==y) goto etq2
beq etqg2

ce @ corps composé du if

b etql

Du fait du branchement conditionnel a etq2, I'exécution ne se poursuit dans le
corps (composé uniquement du if) que si x est différent de y. La construction est donc
a priori de la forme if (x!= y) ou while/do ... while (x!=y).

A la fin du corps, on trouve un branchement inconditionnel & I'instruction de com-
paraison pour réexécuter le corps si la condition est encore vraie. Il s’agit donc d’une
boucle, dans une traduction avec test avant le corps en inversant la condition, comme
un if sans else avec un branchement de retour au test a la fin du corps. Le corps n’est
pas exécuté si la condition est initialement fausse : il s’agit donc de while et non de do

1. Notons qu’une telle opération aurait un sens si r3 contenait ’adresse d’un tableau de char et r0
un indice dans ce tableau : I’addition représenterait alors le calcul de ’adresse de I’élément d’indice
r0.

... while.
Il n’y a pas clairement de variable de boucle utilisée dans la condition et incrémen-

tée ou décrémentée a chaque tour de boucle : il n’y a donc pas de conversion de la
boucle while en boucle for classique a formuler.

while (x !=y) {

if (x<y) {
X=xta;
} else {
y=y+b;
}

Remarque : I'explication (méme bréve) de ce qui fait qu’on reconnait une boucle
while brille par son absence dans la quasi-totalité des copies, et la condition du while
a été souvent reconstituée a l’envers.

Au cas ou vous n’auriez pas reconnu l’algorithme, ce programme calcul le ppmc
(plus petit multiple commun) de x et y.

2 Mémoire, base 2 et boucle (40mn)

2.1 Boucle et mémoire(30mn)

On considére la fonction calcul suivante et sa traduction partielle (sans la gestion
de la boucle) :

unsigned int x = 0x12345678;

unsigned int calcul (void)

{
register int i,
register unsigned int valeur;
register unsigned int lu;
register unsigned char *pc;

/* (unsigned char *) ne spécifie aucun accés mémoire */
/* C’est un forceur de type pour dire au compilateur de considérer */
/* &x comme si x avait été déclarée de type unsigned char */

pc = (unsigned char *) &x;
valeur = 0;

i=3;
while (i>=0) {
lu = *(pct+i);
valeur = lu + (valeur << 8);

i--5
¥

return valeur;

}

.data
X: .word 0x12345678

@rl : pc r2: valeur r3 : 1lu r4 : 1
@ valeur de retour de calcul dans rO

calcul: stmfd sp!, {ri,r4}
ldr rl,=x @ pc = &x
mov r2, #0 @valeur = 0
mov rd ,#3 @i=3

@ 3 compléter

corps: 1ldrb r3, [r1,r4] @ lu = *(pc+i)
add r2,r3,r2, LSL #8 @ valeur = lu + valeur << 8
fincorps: sub rd,r4,#1 Q@ i--

@ 3 compléter
mov r0,r2 @ return valeur
1dmfd sp!, {ri,r4}
mov pc,lr
.1ltorg

Compléter la traduction de calcul en langage d’assemblage

La traduction classique avec test aprés le corps sans inversion de la condition ne
présente pas de difficulté particuliére. La variable i n’ayant pas l'attribut unsigned, il
faut utiliser le branchement conditionnel destiné aux entiers relatifs (donc bge et non
bhs).

calcul: stmfd sp!, {ri,r4}
ldr rl,=x @ pc = &x
mov r2, #0 Q@valeur = 0
mov rd,#3 @i=3
b testw

corps: 1drb r3, [r1,r4] @ lu = *(pc+i)
add r2,r3,r2, LSL #8 @ valeur = lu + valeur << 8
sub r4d,rd,#1 Q@ i--
testw: cmp rd,#0 @ while (i>=0)
bge corps
finw: mov r0,r2 @ return valeur
ldmfd sp!, {r1,r4}
mov pc,lr

Si 'on préfére tester avant le corps, il faut prendre soin d’inverser la condition
d’une part et d’ajouter aprés le corps un branchement inconditionnel vers le test pour
réxécuter éventuellement le corps si la condition est restée vraie.

mov r4d,#3 @i=3
testw: cmp r4,#0
blt finw
corps: 1ldrb r3, [rl,r4] @ lu = *(pc+i)
add r2,r3,r2, LSL #8 @ valeur = lu + valeur << 8
sub rd,r4,#1 Q@ i--
b testw
finw: mov r0,r2 @ return valeur

La valeur retournée par la fonction dans rQ est celle de x : 0x12345678. En dé-
duire (avec explications) si la machine est de type big ou little endian (cf définition
en annexe).

Le contenu de valeur (r2) est bien identique & la valeur initiale de x dans sa décla-
ration.

L’octet de poids fort de r2 est le méme que celui de x : 0x12. Il s’agit de 'octet
d’adresse &x+3 octets, qui est lu en premier et sera décalé trois fois & gauche dans le
registre.

L’octet de poids faible de r2 est égal a celui de x : 0x78. Il s’agit du dernier octet
lu, d’adresse &x, qui ne sera pas décalé a gauche.

En parcourant les octets de x par ordre croissant des adresses, on rencontre donc
des bits de x de poids croissant : poids faible en téte a I'adresse de x, poids fort en
dernier a ’adresse de x plus 3 octets. Cet ordre de rangement correspond a la conven-
tion de représentation Little Endian.

Avec la convention Big Endian, on trouverait 0x12 a l'adresse de x, et 0x78 &
Iadresse de x + 3 octets, et valeur vaudrait 0x78563412.

Proposer une séquence d’instructions ARM n’utilisant aucune variante de 1dr et
qui charge la constante Oxabcdefl2 dans le registre r0.

Il suffit de décomposer la constante en tranches de 8 bits a assembler par décalage :

mov r0,#0xab

mov r0,r0,LSL #8
add r0,r0,#0xcd

mov r0,r0,LSL #8
add r0,r0,#0xef

mov r0,r0,LSL #8
add r0,r0,#0x12

Que peut-on affirmer a propos du saut en fin de calcul (expliquer briévement
vos choix) :

1. (a) conditionnel
(b)
()
2. (a)
b) relatif
)
(a)
)
)

inconditionnel
propriété impossible & déterminer

absolu

(

(c) propriété impossible a déterminer
3.

(

a) saut en avant

b
(c

Si I'instruction mov pc,lr était conditionnelle, elle serait suivie d’un signe de condi-
tion, par exemple movne pc,lr. Sans suffixe, il s’agit de la condition implicite ALways,
toujours vraie, donc d’un branchement inconditionnel.

saut en arriére

propriété impossible & déterminer

L’instruction mov est un branchement absolu puisqu’il s’agit d'une affectation de
I’adresse fournie dans Ir a pc et non de 'addition d’un déplacement au compteur ordi-
nal (dans ce cas la destination serait alors définie relativement a l'instruction courante
mov pc,lr).

Il est impossible de déterminer le sens du branchement : I'adresse du branchement

dépend de la position de la ou les fonctions qui appelle(nt) calcul, qui dépendra de
Iordre dans lequel les fichiers seront fusionnés lors de I’édition de liens.

2.2 Base 2 (10mn)

Soient r0 et r2 deux variables de type entier naturel et la séquence de code suivante :

mvn rl,r0
add ri,rl,#1
add r2,r0,rl

Donner la valeur de r2 en fin de séquence pour les valeurs suivantes (écrites en
base 10) de r0 : 10, 260, 1040 et 1054632.

La description de I'instruction mvn (move not) page 5 de la documentation arm
simplifiée indique que cette instruction copie le complément & 1 de 'opérande droit
(r0) dans le registre destination (rl). L'instruction suivante ajoute 1, ce qui calcule le
complément & 2 (autrement dit 'opposé) de Popérande initialement dans r0.

Rappel : la représentation du complément a 1 * de x est obtenue en inversant tous
les bits de x (T; = 1 — ;) et on a la propriété T = 2" — 1 — z (n étant la taille de la
représetation, exprimée en nombre de bits). Le complément & 2 de x T 4 1 est égal a
2" — x, assimilable a -x puisque sur n bits le résultat d’'une addition est obtenu a 2"
pres.

On pourrait obtenir le méme résultat avec la soustraction inversée :

rsb rl, rO, #0

La derniére instruction ajoute donc le nombre présent dans r0 et son opposé calculé
dans rl. Le résultat apparent est donc 0 quelque soit le nombre r0 de départ. Le vrai
résultat serait 2", ce qui transparait dans le fait que la derniére retenue de I'addtition
sera a 1.

Le choix de grands entiers difficiles & convertir manuellement en binaire était vo-

lontaire pour vous dissuader de le faire. L’entier 10 était un exemple facile a traiter et
permettait de comprendre le fonctionnement.

10 sur 32 bits 0000 0000 0000 0000 0000 0000 0000 1010 = 0x0000000A

/10 1111 1111 1111 1111 1111 1111 1111 0101 = OxFFFFFFFb
+1 0000 0000 0000 0000 0000 0000 0000 0001 = 0x00000001
-——=> 1111 1111 1111 1111 1111 1111 1111 0110 = OxFFFFFFF6
+10 0000 0000 0000 0000 0000 0000 0000 1010 = 0x0000000A
-—> C=1 0000 0000 0000 0000 0000 0000 0000 0000 = 0x00000000

Remarque : je regrette que dans presque toutes les copies ayant abordé la question,
'instruction mvn (move not) ait été interprétée comme synonyme de mov.

3 Annexe 1 : tableau des types d’entiers de stdint.h

Aprés utilisation de la directive #include <stdint.h>, on peut utiliser les types
C d’entiers de taille certaine intxx t et uintxx t regroupés dans le tableau ci-dessous,
avec leurs synonymes classiques? pour un processeur ARM 32 bits.

2. dont la taille effective peut varier d’'une machine & ’autre

10

mvn rl,r0

add ril,ri,#1

add r2,r0,r1

types d’entier naturel | taille | types d’entier relatif
synonyme sur ARM type | bits | type synonyme sur ARM
char | int8 t 8 uint8 t | unsigned char
short | int16_t | 16 | uintl6_t | unsigned short
int | int32 t| 32 | uint32 t | unsigned int

4 Annexe 2 : conventions little et big endian

Un entier E stocké sur plus de 8 bits en mémoire occupe des octets d’adresses
consécutives (A,A+1,A+2 et A+3 pour un entier codé sur 32 bits). L’adresse A de

I’entier est celle de son premier octet.

La représentation de I'entier en binaire est donc découpée en paquets de 8 bits
stockés chacun dans un octet de mémoire selon un ordre croissant ou décroissant.

Dans la convention Big Endian, I'ordre est décroissant :
contient les bits de poids forts de lentier et le dernier octet (A+3) les bits de poids

faibles de E.

La convention opposée est dite Little Endian :

les bits de poids faibles occupe le

premier octet (A) et ceux de poids forts le dernier (A+3).

11

le premier octet (A)

