
Master CCI

Langage machine

Contrôle continu écrit 2015

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Table des matières

1 Variables et constructions algorithmiques (45mn) 1

2 Mémoire, base 2 et boucle (45mn) 3
2.1 Boucle et mémoire(35mn) . 3
2.2 Base 2 (10mn) . 5

3 Annexe 1 : tableau des types d'entiers de stdint.h 5

4 Annexe 2 : conventions little et big endian 5

Attention : ne perdez pas de temps à analyser le principe des algorithmes et
focalisez-vous sur leur traduction en langage d'assemblage ARM.

1 Variables et constructions algorithmiques (45mn)

On considère un extrait de code f et sa traduction en langage d'assemblage ARM.
Les �chiers f.c et f.s sont tous les deux incomplets. L'objectif est de les reconstituer en
entier, chaque partie de code manquant dans l'un étant présente dans l'autre.

Utiliser les registres r0 et r1 pour les variables x et y, et les registres r2 à r4 comme
stockage temporaire.

/* fichier f.c */

... a=...; /* Retrouver à quoi correspondent les ... */

... b=...;

char c;

... res;

void f (void)

{

register ... x; /* a stocker dans le registre r0 */

register ... y; /* a stocker dans le registre r1 */

x=a;

y=b;

1

...

if (x<y) {

x=x+a;

} else {

y=y+b;

}

...

res = x;

}

/* fichier f.s */

.data

a: 15 /* retrouver quelle directive de réservation utiliser */

b: 12

.bss

/* Ajouter ici la déclaration de la variable c */

res: .skip 2

.text

@ r0 : x r1 : y r2, r3, r4 : temporaires

f: stmfd sp!,{r0-r4} /* debut standard de fonction */

ldr r3,=a

ldrh r0,[r3]

ldr r4,=b

ldrh r1,[r4]

etq1: cmp r0,r1

beq etq2

@ Debut de la traduction de if omise

...

@ Fin de la traduction de if omise

b etq1

etq2: ... @ res = x

ldmfd sp!,{r0-r4} /* fin standard de fonction */

mov pc,lr

Déduire (expliquer brièvement le raisonnement) du �chier.s de quel type(parmi
les 6 du tableau 3) sont les variables a,b,res,x et y (type commun aux cinq variables).
Compléter leurs déclarations dans f.c et f.s. Traduire ensuite la déclaration de la

2

variable c dans la section bss.

Traduire en langage d'assemblage l'instruction res = x.

Traduire en langage d'assemblage la construction algorithmique if.

Retrouver la partie de code de f.c qui englobe la construction if. L'objectif est de
reconstituer un code C standard dépourvu d'instruction goto.

2 Mémoire, base 2 et boucle (45mn)

2.1 Boucle et mémoire(35mn)

On considère la fonction calcul suivante et sa traduction partielle (sans la gestion
de la boucle) :

unsigned int x = 0x12345678;

unsigned int calcul (void)

{

register int i;

register unsigned int valeur;

register unsigned int lu;

register unsigned char *pc;

/* (unsigned char *) ne spécifie aucun accès mémoire */

/* C'est un forceur de type pour dire au compilateur de considérer */

/* &x comme si x avait été déclarée de type unsigned char */

pc = (unsigned char *) &x;

valeur = 0;

i = 3;

while (i>=0) {

lu = *(pc+i);

/* valeur << 8 : prendre une copie du contenu de valeur et le décaler */

/* de 8 bits vers la gauche */

valeur = lu + (valeur << 8);

i--;

}

return valeur;

}

.data

3

x: .word 0x12345678

@ r1 : pc r2: valeur r3 : lu r4 : i

@ valeur de retour de calcul dans r0

calcul: stmfd sp!, {r1,r4}

ldr r1,=x @ pc = &x

mov r2, #0 @valeur = 0

mov r4,#3 @ i = 3

... @ à compléter

ldrb r3,[r1,r4]

... @ à compléter

sub r4,r4,#1

... @ à compléter

mov r0,r2 @ return valeur

ldmfd sp!, {r1,r4}

mov pc,lr

.ltorg

Compléter la traduction de calcul en langage d'assemblage

La valeur retournée par la fonction dans r0 est celle de x : 0x12345678. En dé-
duire (avec explications) si la machine est de type big ou little endian (cf dé�nition
en annexe).

Proposer une séquence d'instructions ARM n'utilisant aucune variante de ldr et
qui charge la constante 0xabcdef1234 dans le registre r0.

Que peut-on a�rmer à propos du saut en �n de calcul (expliquer brièvement
vos choix) :

1. (a) conditionnel

(b) inconditionnel

(c) propriété impossible à déterminer

2. (a) absolu

(b) relatif

(c) propriété impossible à déterminer

3. (a) saut en avant

(b) saut en arrière

(c) propriété impossible à déterminer

4

2.2 Base 2 (10mn)

Soient r0 et r2 deux variables de type entier naturel et la séquence de code suivante :

mvn r1,r0

add r1,r1,#1

add r2,r0,r1

Donner la valeur de r2 en �n de séquence pour les valeurs suivantes (écrites en
base 10) de r0 : 10, 260, 1040 et 1054632.

3 Annexe 1 : tableau des types d'entiers de stdint.h

Après utilisation de la directive #include <stdint.h>, on peut utiliser les types
C d'entiers de taille certaine intxx_t et uintxx_t regroupés dans le tableau ci-dessous,
avec leurs synonymes classiques 1 pour un processeur ARM 32 bits.

types d'entier naturel taille types d'entier relatif
synonyme sur ARM type bits type synonyme sur ARM

char int8_t 8 uint8_t unsigned char
short int16_t 16 uint16_t unsigned short
int int32_t 32 uint32_t unsigned int

4 Annexe 2 : conventions little et big endian

Un entier E stocké sur plus de 8 bits en mémoire occupe des octets d'adresses
consécutives (A,A+1,A+2 et A+3 pour un entier codé sur 32 bits). L'adresse A de
l'entier est celle de son premier octet.

La représentation de l'entier en binaire est donc découpée en paquets de 8 bits
stockés chacun dans un octet de mémoire selon un ordre croissant ou décroissant.

Dans la convention Big Endian, l'ordre est décroissant : le premier octet (A)
contient les bits de poids forts de l'entier et le dernier octet (A+3) les bits de poids
faibles de E.

La convention opposée est dite Little Endian : les bits de poids faibles occupe le
premier octet (A) et ceux de poids forts le dernier (A+3).

1. dont la taille e�ective peut varier d'une machine à l'autre

5

