Master CCI
Langage machine

Corrigé du controéle continu écrit 2017

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Table des matiéres

1 Premiére partie : gestion des variables (45 mn) 2
1.1 Traduction des déclarations (20mn) 2
1.2 Traductions des accés aux variables (25mn) 2

2 Boucle for (30mn) 5

3 Arithmétique en base 2 (15mn) 7

Conventions et contraintes

Attention : ne perdez pas de temps a analyser le principe des algorithmes et
focalisez-vous sur leur traduction en langage d’assemblage ARM.

L’ordre dans lquel les variables sont déclarées doit étre respecté dans la traduction
en langage d’assemblage. Les varioables déclarées sans attribut register doivent étre

stockées en mémoire.

Voici les types de variables entiéres utilisées dans le code des exercices.

types d’entier relatif taille types d’entier naturel
synonyme sur ARM type | bits | type synonyme sur ARM
char | int8 t 8 uint8 t | unsigned char
short | intl6 t | 16 | uintl6 t | unsigned short
int | int32 t | 32 | uint32 t | unsigned int

1 Premiére partie : gestion des variables (45 mn)

1.1 Traduction des déclarations (20mn)

uint16_t a = 3; Traduire en langage d’assemblage les
int32_t x = b; déclarations de variables ci-contre.
uintl6_t b = 16;

int32_t y = -2; A quelle adresse sera stockée la variable
int32_t e = 120; y, en supposant que la section data débute a
int32_t f = 24; I'adresse 00018fd4 (justifier briévement votre
uint16_t *ptminab; réponse) 7

int32_t *pt32g = &x;
int32_t *pt32d = &y;
int32_t *ptminxy;

.data
a: .short 3 @ a : data + 0 adresse a 0x00018fd4 prochaine 0x00018fd6
.balign 4 @ 0x00018fd6 prochaine 0x00018£d8
X: .word 5 @ x : data + 4 adresse x 0x00018fd8 prochaine 0x00018fdc
b: .short 16 @ b : data + 8 adresse b 0x00018fdc prochaine 0x00018fde
.balign 4 @ 0x00018fde prochaine 0x00018fe0
y: .word -2 @ y : data + ¢ adresse y 0x00018fe0 prochaine 0x00018fe4d
e: .word 120 ¢ adresse e 0x00018fe4 prochaine 0x00018fe8
f: .word 24 @ adresse f 0x00018fe8 prochaine 0x00018fec
@ Pas de & en ARM, mais x en ARM correspond a &x en C
pt32g: .word X © adresse pt32g 0x00018fec prochaine 0x00018ff0
Q contenu initial 0x00018fd8
pt32d: .word y Q adresse pt32d 0x00018ff0 prochaine 0x00018ff4
0 contenu initial 0x00018fe0
.bss @ En supposant que bss commence & 1l’adresse 0x000199c8

(&)

ptminab: .skip 4 adresse ptminab 0x000199¢8 prochaine 0x000199cc
ptminxy: .skip 4 Q adresse ptminxy 0x000199cc prochaine 0x000199d0

Adresse de y : 0x00018fd4+ ¢ = 0x00018fe0

1.2 Traductions des accés aux variables (25mn)

Voici deux fonctions C qui accédent a ces variables et un squelette, a compléter,
de leur traduction en langage d’assemblage ARM.
Traduire le corps de calcull et calcul2, excepté 'appel de printf.
Que contiennent les variables x et y a la fin de 'exécution de main ?

L’affectation *pt32d — *pt32g + 1 stocke dans y x+1, soit 6, x restant inchangée
a 5. Puis x=y+6 affecte 12 = 6+6 a x, y restant inchangée a 6.

void calcull () {
register int32_t regint32; // dans registre r4
register int32_t regvalf; // dans registre r5
// registres r8 et suivants : temporaires

regint32=e;
regvalf=f;
if (regvalf<regint32) {

regint32=regvalf;
}
*pt32d = *pt32g + 1;
printf ("minimum (e=%d, f=Vd) = %d\n",e,f,regint32);

+
void calcul2 () {
if (a<b) {
ptminab==&a;
} else A
ptminab=&b;
}
X=y + 6;
}
void main () {
calcull();
calcul2();
+
.text

@ registres temporaires : r8 et r8

calcull: stmfd sp!,{r0,r5,r8,r9,1r}
@ regint = e = *&e

1ldr r8,=e @ r8 = &e = 0x00018fe4
ldr r4, [r8] @ regint32 = *r8 = Mem[r8] = Mem[0x00018fe4] = 120
@ regvalf = f = *x&f

ldr r8,=f @ r8= &f = 0x00018fe8

ldr r5, [r8] Q@ regvalf = *r8 = mem[r8] = Mem[0x00018fe8] = 24
testif: cmp r5,r4 @ if (regvalf >= regint32) goto finsi

bge finsi Q entiers relatifs : bge (bhs si naturels)
alors: mov r4,rb5 @ regint32=regvalf;

@ pt32g en mémoire : synonyme de *&pt32g
@ r9 = *pt32g + 1 = **&t32g + 1

finsi:

callprintf:

format:

calcul?2:

ldr r8,=pt32g @ r8 = &pt32g = 0x00018fec adresse du pointeur
ldr r8, [r8] @ r8 =*r8=x&pt32g=Mem[0x00018fec] (= 0x00018£d8)
@ r8 =contenu du pointeur=adresse var pointée (&x)

ldr r9, [r8] Q@ r9 = *xr8 = **&pt32g = Mem[0x00018£fd8] (=5)
@ r9 = contenu de la variable pointée par pt32g
add r9,r9,#1 @ r9 = **x&pt32g+l
@ r8 = pt32d = *&32d
ldr r8,=pt32d @ r8 =&pt32d=0x00018ff0=adresse du pointeur pt32d
ldr r8, [r8] @ r8 = *r8 = *&pt32d = Mem[0x00018£ff0] (=0x00018fe0)
@ r8 = contenu du pointeur=adresse var pointée (&y)
Q@ **x&pt32d=*&pt32g+1
str r9, [r8] @ *xr8 = r9 : Mem[r8] = r9
@ 1ére * tout & gauche du membre gauche = écriture
@ r8 : adresse de var pointée par pt32d
@ r9 : contenu de var pointée par pt32g + 6
adr r0,format
ldr rl,=e;ldr ri,[ri1]
ldr r2,=f;ldr r2,[r2]
mov r3,r4
bl printf
ldmfd sp!,{r0,r5,r8,r9,,1r}
mov pc,lr
.asciz "minimum (e=%d, f=%d) = %d\n"
.balign 4

@ rO : &a, rl copie contenu a, r2: &b, r3 : copie contenu b, r4 : &ptminab
@ r5 : &x,, r6 : &y, r7 : copie contenu de y

stmfd sp!,{r0-r5}

@ rl = a = *&a

1ldr r0,=a @ r0 = &a

ldrh rl, [r0] @ r1 =*rO=Mem_16_unsigned[r0]=Mem_16_unsigned [&a]
@ r3 = b = %&b

1ldr r2,=b @ r2 = &b

ldrh r3, [r2] @ r3 =*r2=Mem_16_unsigned[r2]=Mem_16_unsigned[&b]

testif2: cmp rl,r3
bhs sinon2
alors2: ldr r4,=ptminab
str r0, [r4]
b finsi2
sinon2: ldr r4,=ptminab
str r2, [r4]
b finsi2
finsi2:
ldr ré,=y
1dr r7, [ré]
add r7,r7,#6
ldr r5,=x
str r7, [r5]
ldmfd sp!,{r0-r5}
mov pc,lr

2 Boucle for (30mn)

@ if (a>=b) goto sinon

(@ entiers naturels, bge si relatifs
@ ptminab en Mem : ptminab = *&ptminab
@ r4 = &ptminab = adresse du pointeur

@ xr4d = rO0 : *&ptminab = &a

Q

@ goto finsi

@ *xrd = r2 : *&ptminab = &b
@ goto finsi

@ r7 =y +6=x*xky + 6

Q 16 = &y
@ r7 = *#r6 = *&y = Mem[&y] = (contenu de) y
Qr7 =%y + 6 =y + 6

@ r5 = &x

@ *r5 = r7

La fonction somme calcule itérativement 2:2261 2!, pour N=8.

#tdefine N 8
uint32_t somme ()

{

register unsigned int sigma;
register unsigned int i;
register unsigned int ajout;

ajout=1;

sigma=0;

for(i=0;i<N;i++) {
sigma = sigma + ajout;
ajout = ajout * 2;

b

return sigma;

// utiliser le registre r0
// utiliser le registre ri
// utiliser le registre r2

: x (ou *&x = Mem[&x]) =y + 6

adresse de var (&a) devient contenu du pointeur

(= -2)

Traduire somme en langage d’assemblage ARM. Donner 2 versions différentes :
test de la condition de boucle aprés, puis avant le corps de la boucle.

.text

N=8
somme : stmfd sp!,{r1-r2} @ sauvegarde registres

. & compléter ... Q@ corps de somme a écrire

suite_for: 1ldm sp!,{r1-r2} @ restauration registres

mov pc,1lr Q@ return sigma (déja dans r0)

.text

N=8

@ Version avec test aprés

somme : stmfd sp!,{rl-r2}
mov r2,#1 @ ajout =1
mov r0,#0 @ sigma = 0
mov rl,#0 @i=20
b cond_for @ goto cond_for
corps_for: add r0,r0,r2 @ sigma = sigma + ajout
mov r2,r2,LSL #1 @ ajout = ajout *2
corps_for_end: add rl,rl,#1 Q@ i++
cond_for: cmp rl,#N @ if (i<N) goto corps_for
blo corps_for

1dm sp!,{r1-r2} @ return sigma (déja dans r0)
mov pc,lr

Remarque : b cond_for est nécessaire dans la traduction d’un while(i<N) seul.
Dans la traduction de la boucle for, on pourrait 'omettre en tenant compte des deux
informations suivantes qui permettent de déduire que le premier test de la condition
sera toujours vrai :

— 1 est initialisé a 0 juste avant la boucle while

— On connait la constante N et on sait qu’elle est > 0.

@ Version avec test avant

somme : stmfd sp!,{rl-r2}
mov r2,#1 @ ajout =1
mov r0,#0 @ sigma = 0
mov rl,#0 @i=20

cond_for: cmp rl,#N Q@ if (i>=N) goto suite_for

bhs suite_for
corps_for: add r0,r0,r2 @ sigma = sigma + ajout
mov r2,r2,LSL #1 @ ajout = ajout *2
corps_for_end: add rl,rl,#1 Q@ i++
b cond_for @ goto cond_for
suite_for: 1ldm sp!,{ri-r2} Q@ return sigma (déja dans r0)
mov pc,lr

Quelle serait la traduction en une seule instruction ARM de I'affectation suivante :
ajout = ajout *87

mov 12,12, LST, #3

3 Arithmétique en base 2 (15mn)

On considére une machine fictive travaillant sur 5 bits.

Compléter et interpréter ’addition binaire suivante :
1. Compléter les lignes des retenues et du résultat apparent
2. Indiquer quels bits sont les indicateurs C et N — C=1 et N=0

3. Que vaut lindicateur V (expliquer brévement comment vous déterminez sa
valeur) 7

4. A partir des indicateurs, déduire si 'opération est correcte en aupposant les
entiers de type
— naturel
— relatif

5. Donner les valeurs décimales des opérandes et du résutat pour les deux types

d’entier
1 1 01 1 a
+ 0 1 01 0 b
C=1 1 0 1 0 0 retenues
0 0 1 0 1 résultat apparent
N=0 1

L’indicateur de débordement pour entiers relatifs V vaut 0, chacun des 2 arguments
suivant suffit & lui seul & Iaffirmer :
— Les 2 derniéres retenues sont égales.
— Les bits de poids fort nous indiquent que nous n’avons pas deux opérandes de
méme signe et un résultat apparent de type opposé.

C=1 : addition sur entiers naturels fausse

V=0 : addition sur entiers naturels correcte

Addition de naturels : 27 + 10 — 5

Addition de relatifs : -5 + 10 = 5

