
Master CCI

Langage machine

Corrigé du contrôle continu écrit 2017

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Table des matières

1 Première partie : gestion des variables (45 mn) 2
1.1 Traduction des déclarations (20mn) . . . . . . . . . . . . . . . . . . . . 2
1.2 Traductions des accès aux variables (25mn) . . . . . . . . . . . . . . . . 2

2 Boucle for (30mn) 5

3 Arithmétique en base 2 (15mn) 7

Conventions et contraintes

Attention : ne perdez pas de temps à analyser le principe des algorithmes et
focalisez-vous sur leur traduction en langage d'assemblage ARM.

L'ordre dans lquel les variables sont déclarées doit être respecté dans la traduction
en langage d'assemblage. Les varioables déclarées sans attribut register doivent être
stockées en mémoire.

Voici les types de variables entières utilisées dans le code des exercices.

types d'entier relatif taille types d'entier naturel
synonyme sur ARM type bits type synonyme sur ARM

char int8_t 8 uint8_t unsigned char
short int16_t 16 uint16_t unsigned short
int int32_t 32 uint32_t unsigned int

1



1 Première partie : gestion des variables (45 mn)

1.1 Traduction des déclarations (20mn)

uint16_t a = 3;

int32_t x = 5;

uint16_t b = 16;

int32_t y = -2;

int32_t e = 120;

int32_t f = 24;

uint16_t *ptminab;

int32_t *pt32g = &x;

int32_t *pt32d = &y;

int32_t *ptminxy;

Traduire en langage d'assemblage les
déclarations de variables ci-contre.

A quelle adresse sera stockée la variable
y, en supposant que la section data débute à
l'adresse 00018fd4 (justi�er brièvement vôtre
réponse) ?

.data

a: .short 3 @ a : data + 0 adresse a 0x00018fd4 prochaine 0x00018fd6

.balign 4 @ 0x00018fd6 prochaine 0x00018fd8

x: .word 5 @ x : data + 4 adresse x 0x00018fd8 prochaine 0x00018fdc

b: .short 16 @ b : data + 8 adresse b 0x00018fdc prochaine 0x00018fde

.balign 4 @ 0x00018fde prochaine 0x00018fe0

y: .word -2 @ y : data + c adresse y 0x00018fe0 prochaine 0x00018fe4

e: .word 120 @ adresse e 0x00018fe4 prochaine 0x00018fe8

f: .word 24 @ adresse f 0x00018fe8 prochaine 0x00018fec

@ Pas de & en ARM, mais x en ARM correspond à &x en C

pt32g: .word x @ adresse pt32g 0x00018fec prochaine 0x00018ff0

@ contenu initial 0x00018fd8

pt32d: .word y @ adresse pt32d 0x00018ff0 prochaine 0x00018ff4

@ contenu initial 0x00018fe0

.bss @ En supposant que bss commence à l'adresse 0x000199c8

ptminab: .skip 4 @ adresse ptminab 0x000199c8 prochaine 0x000199cc

ptminxy: .skip 4 @ adresse ptminxy 0x000199cc prochaine 0x000199d0

Adresse de y : 0x00018fd4+ c = 0x00018fe0

1.2 Traductions des accès aux variables (25mn)

Voici deux fonctions C qui accèdent à ces variables et un squelette, à compléter,
de leur traduction en langage d'assemblage ARM.
Traduire le corps de calcul1 et calcul2, excepté l'appel de printf.
Que contiennent les variables x et y à la �n de l'exécution de main ?

2



L'a�ectation *pt32d = *pt32g + 1 stocke dans y x+1, soit 6, x restant inchangée
à 5. Puis x=y+6 a�ecte 12 = 6+6 à x, y restant inchangée à 6.

void calcul1 () {

register int32_t regint32; // dans registre r4

register int32_t regvalf; // dans registre r5

// registres r8 et suivants : temporaires

regint32=e;

regvalf=f;

if (regvalf<regint32) {

regint32=regvalf;

}

*pt32d = *pt32g + 1;

printf ("minimum (e=%d, f=%d) = %d\n",e,f,regint32);

}

void calcul2 () {

if (a<b) {

ptminab=&a;

} else {

ptminab=&b;

}

x= y + 6;

}

void main () {

calcul1();

calcul2();

}

.text

@ registres temporaires : r8 et r8

calcul1: stmfd sp!,{r0,r5,r8,r9,lr}

@ regint = e = *&e

ldr r8,=e @ r8 = &e = 0x00018fe4

ldr r4,[r8] @ regint32 = *r8 = Mem[r8] = Mem[0x00018fe4] = 120

@ regvalf = f = *&f

ldr r8,=f @ r8= &f = 0x00018fe8

ldr r5,[r8] @ regvalf = *r8 = mem[r8] = Mem[0x00018fe8] = 24

testif: cmp r5,r4 @ if (regvalf >= regint32) goto finsi

bge finsi @ entiers relatifs : bge (bhs si naturels)

alors: mov r4,r5 @ regint32=regvalf;

@ pt32g en mémoire : synonyme de *&pt32g

@ r9 = *pt32g + 1 = **&t32g + 1

3



finsi: ldr r8,=pt32g @ r8 = &pt32g = 0x00018fec adresse du pointeur

ldr r8,[r8] @ r8 =*r8=*&pt32g=Mem[0x00018fec](= 0x00018fd8)

@ r8 =contenu du pointeur=adresse var pointée (&x)

ldr r9,[r8] @ r9 = *r8 = **&pt32g = Mem[0x00018fd8] (=5)

@ r9 = contenu de la variable pointée par pt32g

add r9,r9,#1 @ r9 = **&pt32g+1

@ r8 = pt32d = *&32d

ldr r8,=pt32d @ r8 =&pt32d=0x00018ff0=adresse du pointeur pt32d

ldr r8,[r8] @ r8 = *r8 = *&pt32d = Mem[0x00018ff0] (=0x00018fe0)

@ r8 = contenu du pointeur=adresse var pointée (&y)

@ **&pt32d=*&pt32g+1

str r9,[r8] @ *r8 = r9 : Mem[r8] = r9

@ 1ère * tout à gauche du membre gauche = écriture

@ r8 : adresse de var pointée par pt32d

@ r9 : contenu de var pointée par pt32g + 6

callprintf:adr r0,format

ldr r1,=e;ldr r1,[r1]

ldr r2,=f;ldr r2,[r2]

mov r3,r4

bl printf

ldmfd sp!,{r0,r5,r8,r9,,lr}

mov pc,lr

format: .asciz "minimum (e=%d, f=%d) = %d\n"

.balign 4

@ r0 : &a, r1 copie contenu a, r2: &b, r3 : copie contenu b, r4 : &ptminab

@ r5 : &x,, r6 : &y, r7 : copie contenu de y

calcul2: stmfd sp!,{r0-r5}

@ r1 = a = *&a

ldr r0,=a @ r0 = &a

ldrh r1,[r0] @ r1 =*r0=Mem_16_unsigned[r0]=Mem_16_unsigned[&a]

@ r3 = b = *&b

ldr r2,=b @ r2 = &b

ldrh r3,[r2] @ r3 =*r2=Mem_16_unsigned[r2]=Mem_16_unsigned[&b]

4



testif2: cmp r1,r3 @ if (a>=b) goto sinon

bhs sinon2 @ entiers naturels, bge si relatifs

@ ptminab en Mem : ptminab = *&ptminab

alors2: ldr r4,=ptminab @ r4 = &ptminab = adresse du pointeur

str r0,[r4] @ *r4 = r0 : *&ptminab = &a

@ adresse de var (&a) devient contenu du pointeur

b finsi2 @ goto finsi

sinon2: ldr r4,=ptminab @

str r2,[r4] @ *r4 = r2 : *&ptminab = &b

b finsi2 @ goto finsi

finsi2:

@ r7 = y + 6 = *&y + 6

ldr r6,=y @ r6 = &y

ldr r7,[r6] @ r7 = *r6 = *&y = Mem[&y] = (contenu de) y (= -2)

add r7,r7,#6 @ r7 = *&y + 6 = y + 6

ldr r5,=x @ r5 = &x

str r7,[r5] @ *r5 = r7 : x (ou *&x = Mem[&x]) = y + 6

ldmfd sp!,{r0-r5}

mov pc,lr

2 Boucle for (30mn)

La fonction somme calcule itérativement
∑N−1

i=0 2i, pour N=8.

#define N 8

uint32_t somme ()

{

register unsigned int sigma; // utiliser le registre r0

register unsigned int i; // utiliser le registre r1

register unsigned int ajout; // utiliser le registre r2

ajout=1;

sigma=0;

for(i=0;i<N;i++) {

sigma = sigma + ajout;

ajout = ajout * 2;

}

return sigma;

}

5



Traduire somme en langage d'assemblage ARM. Donner 2 versions di�érentes :
test de la condition de boucle après, puis avant le corps de la boucle.

.text

N=8

somme: stmfd sp!,{r1-r2} @ sauvegarde registres

... à compléter ... @ corps de somme à écrire

suite_for: ldm sp!,{r1-r2} @ restauration registres

mov pc,lr @ return sigma (déjà dans r0)

.text

N=8

@ Version avec test après

somme: stmfd sp!,{r1-r2}

mov r2,#1 @ ajout = 1

mov r0,#0 @ sigma = 0

mov r1,#0 @ i = 0

b cond_for @ goto cond_for

corps_for: add r0,r0,r2 @ sigma = sigma + ajout

mov r2,r2,LSL #1 @ ajout = ajout *2

corps_for_end: add r1,r1,#1 @ i++

cond_for: cmp r1,#N @ if (i<N) goto corps_for

blo corps_for

ldm sp!,{r1-r2} @ return sigma (déjà dans r0)

mov pc,lr

Remarque : b cond_for est nécessaire dans la traduction d'un while(i<N) seul.
Dans la traduction de la boucle for, on pourrait l'omettre en tenant compte des deux
informations suivantes qui permettent de déduire que le premier test de la condition
sera toujours vrai :

� i est initialisé à 0 juste avant la boucle while
� On connaît la constante N et on sait qu'elle est > 0.

@ Version avec test avant

somme: stmfd sp!,{r1-r2}

mov r2,#1 @ ajout = 1

mov r0,#0 @ sigma = 0

mov r1,#0 @ i = 0

6



cond_for: cmp r1,#N @ if (i>=N) goto suite_for

bhs suite_for

corps_for: add r0,r0,r2 @ sigma = sigma + ajout

mov r2,r2,LSL #1 @ ajout = ajout *2

corps_for_end: add r1,r1,#1 @ i++

b cond_for @ goto cond_for

suite_for: ldm sp!,{r1-r2} @ return sigma (déjà dans r0)

mov pc,lr

Quelle serait la traduction en une seule instruction ARM de l'a�ectation suivante :
ajout = ajout *8 ?

mov r2,r2,LSL #3

3 Arithmétique en base 2 (15mn)

On considère une machine �ctive travaillant sur 5 bits.

Compléter et interpréter l'addition binaire suivante :

1. Compléter les lignes des retenues et du résultat apparent

2. Indiquer quels bits sont les indicateurs C et N → C=1 et N=0

3. Que vaut l'indicateur V (expliquer brèvement comment vous déterminez sa
valeur) ?

4. A partir des indicateurs, déduire si l'opération est correcte en aupposant les
entiers de type
� naturel
� relatif

5. Donner les valeurs décimales des opérandes et du résutat pour les deux types
d'entier

1 1 0 1 1 a
+ 0 1 0 1 0 b

C=1 1 0 1 0 0 retenues
0 0 1 0 1 résultat apparent

N=0 ↑

L'indicateur de débordement pour entiers relatifs V vaut 0, chacun des 2 arguments
suivant su�t à lui seul à l'a�rmer :

� Les 2 dernières retenues sont égales.
� Les bits de poids fort nous indiquent que nous n'avons pas deux opérandes de

même signe et un résultat apparent de type opposé.

C=1 : addition sur entiers naturels fausse

V=0 : addition sur entiers naturels correcte

7



Addition de naturels : 27 + 10 → 5

Addition de relatifs : -5 + 10 → 5

8


