
Master CCI
Langage machine

Solution du contrôle continu écrit 2020
Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Les durées servent de barême indicatif

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Les questions peuvent être traitées dans n’importe quel ordre (mais ?? et ?? portent
sur la même portion de code) et sont d’importance égale.

Du point de vue timing, la partie base 2 est la plus susceptible de déraper : soyez
attentif à ne pas perdre trop de temps dessus.

Table des matières

Conventions et contraintes
L’ordre dans lequel les variables sont déclarées doit être respecté dans la traduction

en langage d’assemblage. Les variables déclarées sans attribut register doivent être
stockées en mémoire (contenu mémoire mis à jour à chaque affectation).

Voici les types de variables entières utilisées dans le code des exercices. Par dé-
rogation, considérez pour la traduction en langage d’assemblage le type char comme
synonyme de uint8_t (entier naturel).

types d’entier relatif taille types d’entier naturel
synonyme sur ARM type bits type synonyme sur ARM

int8_t 8 uint8_t unsigned char
short int16_t 16 uint16_t unsigned short

int int32_t 32 uint32_t unsigned int

Les constantes symboliques peuvent être définies par = en langage d’assemblage
(TAILLE=2), après quoi elles peuvent être utilisées comme opérande dans une direc-
tive ou une instruction : (mov r0,#TAILLE).

Les directives de réservation de place acceptent des expressions simples composées
d’entiers, de constantes entières symboliques et d’opérateurs arithmétiques de base :
+,-,* (.skip 4*TAILLE).

1

1 Variables et accès mémoire (30mn)

1.1 Déclarations (10mn)

Traduire en langage d’assemblage les déclarations de variables suivantes :

uint8_t x = 35;
uint8_t *pt2 = &y;
uint8_t y;
register uint8_t *pt1; // utiliser le registre r0

1.2 Accès aux variables (20mn)

Traduire en code ARM chacune des affectations suivantes :
— vous pouvez utiliser d’autres registres que r0 comme temporaires
— sans factorisation de code avec celui des autres affectations
— en supposant que d’autres instructions ont pu modifier les variables depuis leur

déclaration : x et pt2 peuvent contenir autre chose que 35 et &y.

1. y=x+3 ;
2. pt1=&x ;
3. *pt1=2 ;
4. x=*pt2 ;

.data
x: .byte 35

.balign 4
pt2: .word y

.bss
y: .skip 1 @ .byte 0 à la rigueur acceptable

@ Pas réservation de mémoire pour pt1 qui est déclaré avec l’attribut register
@ pt1 EST le registre r1

@ r0 : pt1
@ r1: temporaire adresses
@ r5: copie de valeur

@ y=x+3; --> *&y = *&x
@ Mem[adresse_de_y] = Mem8[adresse_de_x] + 3

ldr r1,= x
ldrb r5, [r1]
add r5,r5,#3
ldr r1,= y
strb r5,[r2]

@ pt1=&x; registre r0 <- adresse de x

2

ldr r0,=x

@ *pt1=2; Mem8[registre r0] = 2
mov r5,#2
strb r5,[r0]

@ x=*pt2; --> x = **&pt2 Mem8[adresse[x] <- Mem8[Mem32[adresse_de_pt2]]
ldr r1,=pt2
ldr r1,[r1]
ldrb r5,[r1]
ldr r2,=x
strb r5,[r2]

2 Constructions algorithmiques (25mn)
On considère des extraits d’un programme de conversion binaire.c (code complet

détaillé en annexe), qui affiche la valeur de l’entier x en base 2. Contrairement à la
méthode classique de conversion le programme détermine et affiche les chiffres binaires
directement dans le bon ordre (chiffre des unités en dernier, affiché à droite).

Les délarations de variables dans main sont rappelées ci-dessous :

register int32_t val; // utiliser r4
register char car; // utiliser r5
register unsigned int c; // utiliser r6
register uint32_t borne; // utiliser r7

2.1 Traduction d’un if (10 mn)

Traduire en code ARM la construction if de la deuxième boucle :

if (val <0) {
c=1;

} else {
c=0;

}

if2: cmp r4,#0 @ if (val >= 0) goto endif2
bge else2

then2: mov r6,#1 @ c=1
b endif2 @ goto endif2

else2: mov r6,#0
endif2:

2.2 Traduction d’une boucle (15mn)

Traduire en code ARM la deuxième boucle. L’ensemble du if et l’appel de printf
seront remplacés chacun par un simple commentaire.

3

while (borne > 0) {
// code du if
car = 0x30+c;
val = val*2;
borne = 2*borne;
// appel de printf

}

@ Version avec condition après le corps

b condw2
body2:
if2:

@ insert if code here
endif2:

add r5,r6,#0x30 @ car=0x30+c ou car=’0’+c
mov r4,r4,LSL #1 @ val = val*2 (add r4,r4,r4 possible également)
mov r7,r7,LSL #1 @ borne = borne*2
@ add call to printf here

endbody2:
condw2: cmp r7,#0 @ if (borne > 0) goto body2

bhi body2

@ version avec condition avant le corps

condw2: cmp r7,#0 @ if (borne <= 0) goto endw2
bls endw2

body2: ... @ same body
endbody2: b condw2 @ goto condw2

3 Représentation d’informations en binaire (35mn)

3.1 Fonctionnement du programme de conversion (section ??)
(15mn)

Expliquer brièvement
1. pourquoi la valeur du chiffre courant est déterminée par la condition val<0 et

pourquoi val est multiplié et non divisé par 2.
2. le critère d’arrêt de la deuxième boucle (section ??) et préciser si l’attribut

unsigned (uint32_t et non int32_t) de la variable borne est important ou non
3. la raison de l’ajout de la constante 0x30

1. Le principe consiste à extraire à chaque tour de boucle le bit de poids fort (à
écrire en premier), qui donne le signe de l’entier relatif (< 0 si le bit est à 1).
Une fois le bit affiché, la multiplication par 2 décale l’entier d’un bit à gauche
pour que le bit suivant à afficher devienne à son tour bit de signe.

4

2. Soit i le numéro du bit de x en cours d’affichage, on maintient l’invariant borne
= 231−i, d’où borne=1 pour le premier affichage. La multiplication par 2 dé-
cale d’un bit à gauche val (i décroît) et borne, ce qui maintient l’invariant. Au
dernier bit, borne = 231 et retombera à 0 lors de la multiplication, arrêtant la
boucle.
Si borne était déclarée comme un relatif, le bit de poids 31 à 1 de borne ferait
interpréter le contenu de borne comme < 0 et la sortie de boucle se produirait
un bit trop tôt.

3. La constante 0x30 est ’0’, le code ASCII du caractère zéro, le code ASCII des
chiffres décimaux n’étant pas égal à leur valeur entière.

3.2 Addition binaire et indicateurs (20mn)

Compléter l’addition sur 4 bits ci-dessous en détaillant les retenues
Que valent les indicateurs Z,N,C et V (préciser brièvement la méthode de lecture de
C et V)
D’après les indicateurs, le résultat apparent est-il correct ?

Ecrire en binaire le complément à 2 du premier opérande. Quel est la signification
arithmétique du complément à 2 ?

1 0 1 1
+ 0 1 1 0

x3=1 0 1 1
+ y3=0 1 1 0

C=c4=1 c3=1 1 0 0
N=res3=0 0 0 1

C est la dernière retenue (c4). C vaut 1 : le résultat apparent est incorrect si l’opé-
ration représente l’addition d’entiers naturels. Le résultat apparent est le vrai résultat
(11+6=17) modulo 24, soit 1.

N est le bit de poids fort du résultat apparent : N=res3=0. S’il s’agit d’une opéra-
tion sur les entiers relatifs, celà indique un résultat apparent ≥ 0.

V est l’indicateur de débordement en artihmétique sur les entiers relatifs. Dans
cette opération, V=0 : indique un résultat correct (-5 + +6 = +1).

V=0 au choix :
— parce que les opérandes sont de signes différents (x3 6= y3) : la valeur absolue

du résultat ne peut excéder celle des opérandes et il est donc représentable.
La formule x3.y3.res3 + x3.y3.res3 donne V=0.

— parce que les deux dernières retenues sont identiques : c4 = c3.

Z=0 parce qu’au moins un bit (res0) du résultat est à 1 : le résultat apparent est
non nul, quelle que soit l’interprétation (addition d’entier naturels ou d’entiers relatifs)

5

Le complément à 2 d’un entier relatif représente l’opposé pour un entier relatif (ou
2n - l’entier naturel). Le complément à 2 de 1011 est 0101 (bit de droite conservés
jusqu’au premier 1 inclus). Autre méthode : C2(x) = 2n−x : Ici 10112 représente 1110
son complément s’écrit comme l’entier naturel 24 − 11 = 5.

4 Annexe : source du programme de conversion en
binaire

Pour donner un exemple d’exécution sans utiliser scanf, la variable x est initialisée
avec une constante. La connaissance de cette constante ne peut évidement pas être
utilisée pour simplifier le code de main.

int32_t x=0x39ab5675;

int main () {
register int32_t val; // utiliser r4
register char car; // utiliser r5
register unsigned int c; // utiliser r6
register uint32_t borne; // utiliser r7

val = x;
borne=1;

if (val==0) {
printf ("0");

} else {

while (borne >0 && val >0) {
val = 2*val;
borne = 2*borne;

}

while (borne > 0) {
if (val <0) {

c=1;
} else {

c=0;
}
car = 0x30+c;
val = 2*val;
borne = 2*borne;
printf ("%c",car);

} // fin du while
} // fin du else
printf ("\n");

6

return 0;
}

mandelbrot> ./binaire
111001101010110101011001110101
mandelbrot>

7

