Master CCI
Langage machine

Solution du controle continu écrit 2020

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Les durées servent de baréme indicatif

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Les questions peuvent étre traitées dans n’importe quel ordre (mais 7?7 et ?? portent
sur la méme portion de code) et sont d’importance égale.

Du point de vue timing, la partie base 2 est la plus susceptible de déraper : soyez
attentif & ne pas perdre trop de temps dessus.

Table des matiéres

Conventions et contraintes

L’ordre dans lequel les variables sont déclarées doit étre respecté dans la traduction
en langage d’assemblage. Les variables déclarées sans attribut register doivent étre
stockées en mémoire (contenu mémoire mis a jour a chaque affectation).

Voici les types de variables entiéres utilisées dans le code des exercices. Par dé-
rogation, considérez pour la traduction en langage d’assemblage le type char comme
synonyme de uint8 t (entier naturel).

types d’entier relatif taille types d’entier naturel
synonyme sur ARM type | bits | type synonyme sur ARM
int8 t 8 uint8 t | unsigned char
short | intl6 t | 16 | uintl6 t | unsigned short

int | int32 t| 32 | uint32 t | unsigned int

Les constantes symboliques peuvent étre définies par = en langage d’assemblage
(TAILLE=2), aprés quoi elles peuvent étre utilisées comme opérande dans une direc-
tive ou une instruction : (mov r0,#TAILLE).

Les directives de réservation de place acceptent des expressions simples composées
d’entiers, de constantes entiéres symboliques et d’opérateurs arithmétiques de base :
+,-,% (.skip 4*TAILLE).

1 Variables et accés mémoire (30mn)

1.1 Déclarations (10mn)

Traduire en langage d’assemblage les déclarations de variables suivantes :

uint8_t x = 35;

uint8_t *pt2 = &y;

uint8_t v;

register uint8_t *ptl; // utiliser le registre r0

1.2 Accés aux variables (20mn)

Traduire en code ARM chacune des affectations suivantes :

— vous pouvez utiliser d’autres registres que r0 comme temporaires

— sans factorisation de code avec celui des autres affectations

— en supposant que d’autres instructions ont pu modifier les variables depuis leur
déclaration : x et pt2 peuvent contenir autre chose que 35 et &y.

1. y=x+3;
2. ptl=&x;
3. *ptl=2;
4. x="*pt2;
.data
x: .byte 35
.balign 4
pt2: .word y
.bss
y: .skip 1 @ .byte 0 a la rigueur acceptable

@ Pas réservation de mémoire pour ptl qui est déclaré avec 1l’attribut register
@ ptl EST le registre ril

@ r0 : ptil
@ rl: temporaire adresses
@ r5: copie de valeur

Q y=x+3; --> xgy = *&x
Q@ Mem[adresse_de_y] = Mem8[adresse_de_x] + 3
ldr rl,= x

ldrb 15, [ri]
add r5,r5,#3
ldr ri,=y
strb r5, [r2]

0@ ptl=&x; registre r0 <- adresse de x

1ldr r0,=x

Q@ *xpt1=2; Mem8[registre r0] = 2
mov r5,#2
strb 5, [r0]

Q@ x=xpt2; --> x = *x&pt2 Mem8[adresse[x] <- Mem8[Mem32[adresse_de_pt2]]
ldr ri1,=pt2
ldr r1,[r1]
ldrb 15, [r1]
1ldr r2,=x
strb 5, [r2]

2 Constructions algorithmiques (25mn)
On considere des extraits d’un programme de conversion binaire.c (code complet
détaillé en annexe), qui affiche la valeur de ’entier x en base 2. Contrairement a la

méthode classique de conversion le programme détermine et affiche les chiffres binaires
directement dans le bon ordre (chiffre des unités en dernier, affiché a droite).

Les délarations de variables dans main sont rappelées ci-dessous :

register int32_t val; // utiliser r4
register char car; // utiliser r5
register unsigned int c; // utiliser r6
register uint32_t borne; // utiliser r7

2.1 Traduction d’un if (10 mn)

Traduire en code ARM la construction if de la deuxieme boucle :

if (val <0) {

c=1;
} else {
c=0;
}
if2: cmp r4,#0 @ if (val >= 0) goto endif2
bge else2
then2: mov 16,#1 Q@ c=1
b endif2 @ goto endif2
else2: mov r6,#0
endif?2:

2.2 Traduction d’une boucle (15mn)

Traduire en code ARM la deuziéeme boucle. L’ensemble du if et l'appel de printf
seront remplacés chacun par un simple commentaire.

3

while (borne > 0) {
// code du if
car = 0x30+c;
val = val*2;
borne = 2%*borne;
// appel de printf

}

@ Version avec condition aprés le corps

b condw?2

body2:

if2:
@ insert if code here

endif2:
add 1r5,r6,#0x30 @ car=0x30+c ou car=’0’+c
mov 1r4,r4,LSL #1 @ val = valx2 (add r4,r4,r4 possible également)
mov r7,r7,LSL #1 @ borne = bornex*2
@ add call to printf here

endbody2:

condw2: cmp r7,#0 @ if (borne > 0) goto body2

bhi body2

@ version avec condition avant le corps

condw?2: cmp r7,#0 @ if (borne <= 0) goto endw2
bls endw2

body2: . @ same body

endbody2: b condw2 @ goto condw2

3 Représentation d’informations en binaire (35mn)

3.1 Fonctionnement du programme de conversion (section 77)
(15mn)

Expliquer bricvement

1. pourquoi la valeur du chiffre courant est déterminée par la condition val<0 et
pourquot val est multiplié et non divisé par 2.

2. le critere d’arrét de la deuziéme boucle (section ?7) et préciser si lattribut
unsigned (wint32_t et non int32_t) de la variable borne est important ou non

3. la raison de l'ajout de la constante 0x30

1. Le principe consiste a extraire a chaque tour de boucle le bit de poids fort (a
écrire en premier), qui donne le signe de U'entier relatif (< 0 si le bit est a 1).
Une fois le bit affiché, la multiplication par 2 décale ’entier d’un bit a gauche
pour que le bit suivant o afficher devienne a son tour bit de signe.

4

2. Soit i le numéro du bit de x en cours d’affichage, on maintient [invariant borne
= 28171 " d’ou borne=1 pour le premier affichage. La multiplication par 2 dé-
cale d’un bit a gauche val (i décroit) et borne, ce qui maintient l'invariant. Au
dernier bit, borne = 23' et retombera & 0 lors de la multiplication, arrétant la
boucle.

St borne était déclarée comme un relatif, le bit de poids 31 a 1 de borne ferait
interpréter le contenu de borne comme < 0 et la sortie de boucle se produirait
un bit trop tot.

3. La constante 0x30 est 0’ le code ASCII du caractére zéro, le code ASCII des
chiffres décimaux n’étant pas égal a leur valeur entiére.

3.2 Addition binaire et indicateurs (20mn)

Compléter ['addition sur 4 bits ci-dessous en détaillant les retenues
Que valent les indicateurs Z,N,C et V (préciser brievement la méthode de lecture de

CetV)
D’apreés les indicateurs, le résultat apparent est-il correct ¢

Ecrire en binaire le complément a 2 du premier opérande. Quel est la signification
arithmétique du complément a 2 ¢

1 0 1 1
+ 0 1 1 0
23=1 0 1 1
+ y3:0 1 1 0
0:64:1 03:1 1 0 0
N=ress=0 0 0 1

C est la derniére retenue (cy). C vaut 1 : le résultat apparent est incorrect si [’opé-
ration représente 'addition d’entiers naturels. Le résultat apparent est le vrai résultat
(11+6=17) modulo 2%, soit 1.

N est le bit de poids fort du résultat apparent : N=res3=0. S’il s’agit d’une opéra-
tion sur les entiers relatifs, cela indique un résultat apparent > 0.

V est lindicateur de débordement en artihmétique sur les entiers relatifs. Dans
cette opération, V=0 : indique un résultat correct (-5 + +6 = +1).

V=0 au choiz :

— parce que les opérandes sont de signes différents (x3 # ys) : la valeur absolue
du résultat ne peut excéder celle des opérandes et il est donc représentable.
La formule 73.9y3.1res3 + x3.y3.7€s3 donne V=0.

— parce que les deuxr derniéres retenues sont identiques : ¢y = c3.

Z=0 parce qu’au moins un bit (resg) du résultat est a 1 : le résultat apparent est
non nul, quelle que soit l'interprétation (addition d’entier naturels ou d’entiers relatifs)

Le complément a 2 d’un entier relatif représente l’opposé pour un entier relatif (ou
2" - lentier naturel). Le complément a 2 de 1011 est 0101 (bit de droite conservés
Jusqu’au premier 1 inclus). Autre méthode : C2(x) = 2" —x : Ici 1011y représente 1144
son complément s’écrit comme Uentier naturel 2* — 11 = 5.

4 Annexe : source du programme de conversion en
binaire

Pour donner un exemple d’exécution sans utiliser scanf, la variable x est initialisée
avec une constante. La connaissance de cette constante ne peut évidement pas étre
utilisée pour simplifier le code de main.

int32_t x=0x39ab5675;

int main () {

register int32_t val; // utiliser r4
register char car; // utiliser rb
register unsigned int c; // utiliser r6
register uint32_t borne; // utiliser r7
val = x;
borne=1;

if (val==0) {
printf ("0");
} else {

while (borne >0 && val >0) {
val = 2xval;
borne = 2*borne;

3

while (borne > 0) {
if (val <0) {
c=1;
} else {
c=0;
}
car 0x30+c;
val 2xval;
borne = 2*borne;
printf ("J%c",car);
} // fin du while
+ // fin du else
printf ("\n");

return O;

mandelbrot> ./binaire
111001101010110101011001110101
mandelbrot>

