
Master CCI

Langage machine

Contrôle continu écrit 2020

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Les questions peuvent être traitées dans n'importe quel ordre (mais 2.2 et 3.1
portent sur la même portion de code) et sont d'importance égale.

Du point de vue timing, la partie base 2 est la plus susceptible de déraper : soyez
attentif à ne pas perdre trop de temps dessus.

Table des matières

1 Variables et accès mémoire (30mn) 2
1.1 Déclarations (10mn) . 2
1.2 Accès aux variables (20mn) . 2

2 Constructions algorithmiques (25mn) 2
2.1 Traduction d'un if (10 mn) . 3
2.2 Traduction d'une boucle (15mn) . 3

3 Représentation d'informations en binaire (35mn) 3
3.1 Fonctionnement du programme de conversion (section 2.2) (15mn) . . . 3
3.2 Addition binaire et indicateurs (20mn) 3

4 Annexe : source du programme de conversion en binaire 4

Conventions et contraintes

L'ordre dans lequel les variables sont déclarées doit être respecté dans la traduction
en langage d'assemblage. Les variables déclarées sans attribut register doivent être
stockées en mémoire (contenu mémoire mis à jour à chaque a�ectation).

Voici les types de variables entières utilisées dans le code des exercices. Par dé-
rogation, considérez pour la traduction en langage d'assemblage le type char comme
synonyme de uint8_t (entier naturel).

types d'entier relatif taille types d'entier naturel
synonyme sur ARM type bits type synonyme sur ARM

int8_t 8 uint8_t unsigned char
short int16_t 16 uint16_t unsigned short
int int32_t 32 uint32_t unsigned int

1

Les constantes symboliques peuvent être dé�nies par = en langage d'assemblage
(TAILLE=2), après quoi elles peuvent être utilisées comme opérande dans une direc-
tive ou une instruction : (mov r0,#TAILLE).

Les directives de réservation de place acceptent des expressions simples composées
d'entiers, de constantes entières symboliques et d'opérateurs arithmétiques de base :
+,-,* (.skip 4*TAILLE).

1 Variables et accès mémoire (30mn)

1.1 Déclarations (10mn)

Traduire en langage d'assemblage les déclarations de variables suivantes :

uint8_t x = 35;

uint8_t *pt2 = &y;

uint8_t y;

register uint8_t *pt1; // utiliser le registre r0

1.2 Accès aux variables (20mn)

Traduire en code ARM chacune des a�ectations suivantes :
� vous pouvez utiliser d'autres registres que r0 comme temporaires
� sans factorisation de code avec celui des autres a�ectations
� en supposant que d'autres instructions ont pu modi�er les variables depuis leur

déclaration : x et pt2 peuvent contenir autre chose que 35 et &y.

1. y=x+3 ;

2. pt1=&x ;

3. *pt1=2 ;

4. x=*pt2 ;

2 Constructions algorithmiques (25mn)

On considère des extraits d'un programme de conversion binaire.c (code complet
détaillé en annexe), qui a�che la valeur de l'entier x en base 2. Contrairement à la
méthode classique de conversion le programme détermine et a�che les chi�res binaires
directement dans le bon ordre (chi�re des unités en dernier, a�ché à droite).

Les délarations de variables dans main sont rappelées ci-dessous :

register int32_t val; // utiliser r4

register char car; // utiliser r5

register unsigned int c; // utiliser r6

register uint32_t borne; // utiliser r7

2

2.1 Traduction d'un if (10 mn)

Traduire en code ARM la construction if de la deuxième boucle :

if (val <0) {

c=1;

} else {

c=0;

}

2.2 Traduction d'une boucle (15mn)

Traduire en code ARM la deuxième boucle. L'ensemble du if et l'appel de printf
seront remplacés chacun par un simple commentaire.

while (borne > 0) {

// code du if

car = 0x30+c;

val = val*2;

borne = 2*borne;

// appel de printf

}

3 Représentation d'informations en binaire (35mn)

3.1 Fonctionnement du programme de conversion (section 2.2)
(15mn)

Expliquer brièvement

1. pourquoi la valeur du chi�re courant est déterminée par la condition val<0 et
pourquoi val est multiplié et non divisé par 2.

2. le critère d'arrêt de la deuxième boucle (section 2.2) et préciser si l'attribut
unsigned (uint32_t et non int32_t) de la variable borne est important ou non

3. la raison de l'ajout de la constante 0x30

3.2 Addition binaire et indicateurs (20mn)

Compléter l'addition sur 4 bits ci-dessous en détaillant les retenues
Que valent les indicateurs Z,N,C et V (préciser brièvement la méthode de lecture de
C et V)
D'après les indicateurs, le résultat apparent est-il correct ?

Ecrire en binaire le complément à 2 du premier opérande. Quel est la signi�cation
arithmétique du complémen,t à 2 ?

1 0 1 1
+ 0 1 1 0

3

4 Annexe : source du programme de conversion en

binaire

Pour donner un exemple d'exécution sans utiliser scanf, la variable x est initialisée
avec une constante. La connaissance de cette constante ne peut évidement pas être
utilisée pour simpli�er le code de main.

int32_t x=0x39ab5675;

int main () {

register int32_t val; // utiliser r4

register char car; // utiliser r5

register unsigned int c; // utiliser r6

register uint32_t borne; // utiliser r7

val = x;

borne=1;

if (val==0) {

printf ("0");

} else {

while (borne >0 && val >0) {

val = 2*val;

borne = 2*borne;

}

while (borne > 0) {

if (val <0) {

c=1;

} else {

c=0;

}

car = 0x30+c;

val = 2*val;

borne = 2*borne;

printf ("%c",car);

} // fin du while

} // fin du else

printf ("\n");

return 0;

}

mandelbrot> ./binaire

111001101010110101011001110101

mandelbrot>

4

