Master CCI

Langage machine

Controéle continu écrit 2020

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Les questions peuvent étre traitées dans n’importe quel ordre (mais 2.2 et 3.1

portent sur la méme portion de code) et sont d’importance égale.

Du point de vue timing, la partie base 2 est la plus susceptible de déraper : soyez

attentif & ne pas perdre trop de temps dessus.

Table des matiéres

1 Variables et accés mémoire (30mn)
1.1 Déclarations (10mn)
1.2 Accés aux variables (20mn)

2 Constructions algorithmiques (25mn)

2.1 Traduction d’un if (10 mn)
2.2 Traduction d’une boucle (15mn)

3 Représentation d’informations en binaire (35mn)

3.1 Fonctionnement du programme de conversion (section 2.2) (15mn) . . .
3.2 Addition binaire et indicateurs (20mn)

4 Annexe : source du programme de conversion en binaire

Conventions et contraintes

L’ordre dans lequel les variables sont déclarées doit étre respecté dans la traduction
en langage d’assemblage. Les variables déclarées sans attribut register doivent étre

stockées en mémoire (contenu mémoire mis a jour & chaque affectation).

Voici les types de variables entiéres utilisées dans le code des exercices. Par dé-
rogation, considérez pour la traduction en langage d’assemblage le type char comme

synonyme de uint8 t (entier naturel).

types d’entier relatif taille types d’entier naturel
synonyme sur ARM type | bits | type synonyme sur ARM
int8 t 8 uint8 t | unsigned char
short | intl6_t | 16 | uintl6_t | unsigned short
int | int32 t| 32 | uint32_t | unsigned int

Les constantes symboliques peuvent étre définies par = en langage d’assemblage
(TAILLE=2), aprés quoi elles peuvent étre utilisées comme opérande dans une direc-
tive ou une instruction : (mov r0,72 TAILLE).

Les directives de réservation de place acceptent des expressions simples composées
d’entiers, de constantes entiéres symboliques et d’opérateurs arithmétiques de base :
+,-,% (.skip 4*TAILLE).

1 Variables et accés mémoire (30mn)

1.1 Déclarations (10mn)

Traduire en langage d’assemblage les déclarations de variables suivantes :

uint8_t X
uint8_t *pt2
uint8_t v;
register uint8_t *ptl; // utiliser le registre r0

35;
&y;

1.2 Accés aux variables (20mn)

Traduire en code ARM chacune des affectations suivantes :

— vous pouvez utiliser d’autres registres que r0 comme temporaires

— sans factorisation de code avec celui des autres affectations

— en supposant que d’autres instructions ont pu modifier les variables depuis leur
déclaration : x et pt2 peuvent contenir autre chose que 35 et &y.

y=x+3;

ptl=&x;

*ptl=2;

x="*pt2;

- W o

2 Constructions algorithmiques (25mn)

On considére des extraits d’un programme de conversion binaire.c (code complet
détaillé en annexe), qui affiche la valeur de l'entier x en base 2. Contrairement a la
méthode classique de conversion le programme détermine et affiche les chiffres binaires
directement dans le bon ordre (chiffre des unités en dernier, affiché a droite).

Les délarations de variables dans main sont rappelées ci-dessous :

register int32_t val; // utiliser r4
register char car; // utiliser r5
register unsigned int c¢; // utiliser r6
register uint32_t borne; // utiliser r7

2.1 Traduction d’un if (10 mn)

Traduire en code ARM la construction if de la deuxiéme boucle :

if (val <0) {
c=1;

} else {
c=0;

2.2 Traduction d’une boucle (15mn)

Traduire en code ARM la deuxiéme boucle. L’ensemble du if et 'appel de printf
seront remplacés chacun par un simple commentaire.

while (borne > 0) {
// code du if
car = 0x30+c;
val = valx*x2;
borne = 2%*borne;
// appel de printf

3 Représentation d’informations en binaire (35mn)

3.1 Fonctionnement du programme de conversion (section 2.2)
(15mn)

Expliquer briévement,

1. pourquoi la valeur du chiffre courant est déterminée par la condition val<0 et
pourquoi val est multiplié et non divisé par 2.

2. le critére d’arrét de la deuxiéme boucle (section 2.2) et préciser si Iattribut
unsigned (uint32_t et non int32_t) de la variable borne est important ou non

3. la raison de ’ajout de la constante 0x30

3.2 Addition binaire et indicateurs (20mn)

Compléter 'addition sur 4 bits ci-dessous en détaillant les retenues
Que valent les indicateurs Z,N,C et V (préciser briévement la méthode de lecture de
CetV)
D’aprés les indicateurs, le résultat apparent est-il correct ?

Ecrire en binaire le complément & 2 du premier opérande. Quel est la signification
arithmeétique du complémen,t & 27
1 0 1 1
+ 0 1 1 0

4 Annexe : source du programme de conversion en
binaire

Pour donner un exemple d’exécution sans utiliser scanf, la variable x est initialisée
avec une constante. La connaissance de cette constante ne peut évidement pas étre
utilisée pour simplifier le code de main.

int32_t x=0x39ab5675;

int main () {

register int32_t val; // utiliser r4
register char car; // utiliser rb
register unsigned int c¢; // utiliser r6
register uint32_t borne; // utiliser r7
val = x;
borne=1;

if (val==0) {
printf ("0");
} else {

while (borne >0 && wval >0) {
val = 2*val;
borne = 2%*borne;

b

while (borne > 0) {
if (val <0) {
c=1;
} else {
¢c=0;
}
car = 0x30+c;
val = 2x*val;
borne = 2%*borne;
printf ("J%c",car);

} // fin du while
} // fin du else
printf ("\n");
return O;

mandelbrot> ./binaire
111001101010110101011001110101
mandelbrot>

