Master CCI

Solution du controle continu Langage
machine 2022

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Les durées servent de baréme indicatif

Table des matiéres

1 Variables en mémoire 2
1.1 Déclarations 2
1.2 Accés aux variables 2

2 Constructions algorithmiques et base 2 3

Conventions et contraintes

L’ordre dans lequel les variables sont déclarées doit étre respecté dans la traduction
en langage d’assemblage. Les variables déclarées sans attribut register doivent étre
stockées en mémoire (contenu mémoire mis a jour a chaque affectation).

Voici les types de variables entiéres utilisées dans le code des exercices. Par dé-
rogation, considérez pour la traduction en langage d’assemblage le type char comme
synonyme de uint8 t (entier naturel).

types d’entier relatif taille types d’entier naturel
synonyme sur ARM type | bits | type synonyme sur ARM
int8 t 8 uint8 t | unsigned char
short | intl6 t | 16 | uintl6 t | unsigned short

int | int32 t| 32 | uint32 t | unsigned int

Les constantes symboliques peuvent étre définies par = en langage d’assemblage
(exemple : TAILLE=2), aprés quoi elles peuvent étre utilisées comme opérande dans
une directive ou une instruction : (exemple : mov r0,#TAILLE).

Les directives de réservation de place acceptent des expressions simples composées

d’entiers, de constantes entieres symboliques et d’opérateurs arithmétiques de base :
+,-,% (.skip 4*TAILLE).

L’instruction machine mul existe (avec une syntaxe analogue a add ou sub), mais
vous ne devriez pas avoir a 1'utiliser pour des multiplications par de petites constantes
— les petites constantes sont la somme d'un nombre limité de puissances de 2.

— mul n’accepte pas d’opérande droit de type constante immédiate

1 Variables en mémoire

1.1 Déclarations (5points, 20mn)

intl6_t x16 = 45;
intl6_t yl16;

char c1 = ’b?;

char c2;

intl6_t *ptrl6 = &x16;

Traduire en langage d’assemblage les déclarations précédentes.

.data

x16: .hword 45 @ uintl6_t x16 = 45;

cl: .byte ’b? Q@ char cl1 = ’b’;
.balign 4

ptri6: .word x16 @ uintl6_t *ptrl6 = &x16;
.bss

y16: .skip 2 @ uintl6_t yi16;

c2: .skip 1 @ char c2;

1.2 Accés aux variables (8 points 40mn)

void calcul () {
register uintl6_t *pl6; // & stocker dans le registre r4
register uinti6_t vi6; // & stocker dans le registre r5
c2 =cl +1;
(xptri6) ++; // *ptrl6=xptri6+1
pl6é = ptri6;
v16 *pl6;
pl6 = &yl16;
*p16 = 2;

(V]

Traduire individiduellement en langage d’assemblage ARM chacune des affecta-
tions précédentes.

@ pl6 : r4
@ vi16 : 15
1ldr rl,=c2 Q@ c2=-cl +1;

ldrb 10, [r1]
add r0,r0,#1
ldr rl,=c2
strb r0,{r1]

ldr r2,=ptrl6 Q@ *ptrl6++
ldr r2, [r2]
ldrsh rO0, [r2]

add r0,r0,#1
strh 0, [r2]

ldr rl,=ptri6 @ pl6 = ptril6
ldr r4, [r1]

ldrsh 15, [r4] @ v1i6 = *pl6
ldr r4,=y16 @ pl6=kyl6
mov r0,#2 @ *pl6=2

strh 0, [r4]

2 Constructions algorithmiques et base 2 (30mn)

On considére la fonction calcul suivante :

// Le paramétre x est regu dans le registre r0
int calcul (int32_t x) {
register int nb=0; // & stocker dans r7
while (x != 0) {
if (x <0) nb++;
X =X * 2
}

return nb;

Compléter le code ARM de la fonction ci-dessous (traduire la boucle while).
Donner deux variantes du while : I'une avec test de la condition avant le corps et
I’autre avec test de la condition aprés le corps.

@ x stocké dans r0
@ nb stocké dans r7
@ valeur de retour dans rO

calcul: stmfd sp!{rl-r7} @ sauvegarder rl a r7 dans la pile
mov r7,#0 @ nb=0
@ traduction de la boucle while a compléter
ce ©
suitew: mov r0,r7 @ return nb
1dmfd sp!{ril-r7} @ restaurer rl & r7 depuis la pile
bx 1r @ branchement retour

@ x stocké dans r0
@ nb stocké dans r7
@ valeur de retour dans rO

calcul: stmfd sp!{rl-r7} @ sauvegarder rl a r7 dans la pile
mov r7,#0 @ nb=0
b condw @ traduction de la boucle while a compléter

COrpsw: cmp r0,#0 @ redondant

blt finsi @ if (x <0)
add r7,r7,#1 Q nb ++
finsi: mov rO,r0,LSL #1 @ x = x *2
condw: cmp r0,#0
bne corpsw
suitew: mov r0,r7 @ return nb
ldmfd sp!{r1-r7} @ restaurer rl a r7 depuis la pile
bx 1r @ branchement retour
calcul: stmfd sp!{rl-r7} @ sauvegarder rl a r7 dans la pile
mov r7,#0 @ nb=0
condw : cmp r0,#0 ¢
bne suitew
xmp r0,#0 @ redonant
blt finsi @ if (x <0)
add r7,r7,#1 @ nb ++
finsi: mov rO,r0,LSL #1 @ x = x *2
b condw
suitew: mov r0,r7 @ return nb
ldmfd sp!{ril-r7} @ restaurer rl & r7 depuis la pile
bx 1r @ branchement retour

Que calcule la fonction ?

La fonction calcule le nombre de puissances de 2 composant (autrement dit le
nombre de 1 dans la représentation binaire de x).

