Master CCI

Langage machine

Controéle continu écrit 2022

Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Les durées servent de baréme indicatif

Table des matiéres

1 Variables en mémoire 2
1.1 Déclarations (5points, 20mn) 2
1.2 Acceés aux variables (8 points 40mn) 2

2 Constructions algorithmiques et base 2 (30mn) 2

Conventions et contraintes

L’ordre dans lequel les variables sont déclarées doit étre respecté dans la traduction
en langage d’assemblage. Les variables déclarées sans attribut register doivent étre
stockées en mémoire (contenu mémoire mis a jour & chaque affectation).

Voici les types de variables entiéres utilisées dans le code des exercices. Par dé-
rogation, considérez pour la traduction en langage d’assemblage le type char comme
synonyme de uint8 t (entier naturel).

types d’entier relatif taille types d’entier naturel
synonyme sur ARM type | bits | type synonyme sur ARM
int8 t 8 uint8 t | unsigned char
short | intl6_t | 16 | uintl6_t | unsigned short

int | int32 t| 32 | uint32 t | unsigned int

Les constantes symboliques peuvent étre définies par = en langage d’assemblage
(exemple : TAILLE=2), aprés quoi elles peuvent étre utilisées comme opérande dans
une directive ou une instruction : (exemple : mov r0,#TAILLE).

Les directives de réservation de place acceptent des expressions simples composées
d’entiers, de constantes entiéres symboliques et d’opérateurs arithmétiques de base :

+,-,* (exemple : .skip 4*TAILLE).

L’instruction machine mul existe (avec une syntaxe analogue a add ou sub), mais
vous ne devriez pas avoir a 1'utiliser pour des multiplications par de petites constantes
— les petites constantes sont la somme d'un nombre limité de puissances de 2.

— mul n’accepte pas d’opérande droit de type constante immédiate

1 Variables en mémoire

1.1 Déclarations (5points, 20mn)

intl6_t x16 = 45;

intl6_t yl16;

char c1 = ’b’; // traiter les char comme des uint8_t
char c2;

intl6_t *ptrl6 = &x16;

Traduire en langage d’assemblage les déclarations précédentes.

1.2 Accés aux variables (8 points 40mn)

void calcul () {
register uintl6_t *pl6; // & stocker dans le registre r4
register uintl6_t vi6; // & stocker dans le registre r5
c2 =cl +1;
(*ptrl6) ++; // *ptrl6=xptri6+1
pl6 = ptri6;
v16 = *pl6;
pl6 = &yl16;
*xpl6 = 2;

Traduire individiduellement en langage d’assemblage ARM chacune des affecta-
tions précédentes.

2 Constructions algorithmiques et base 2 (30mn)

On considére la fonction calcul suivante :

// Le paramétre x est regu dans le registre r0
int calcul (int32_t x) {
register int nb=0; // & stocker dans r7
while (x !'= 0) {
if (x <0) nb++;
X =X * 2
}

return nb;

Compléter le code ARM de la fonction ci-dessous (traduire la boucle while).
Donner deux variantes du while : I'une avec test de la condition avant le corps et
I’autre avec test de la condition aprés le corps.

@ x stocké dans r0
@ nb stocké dans r7
@ valeur de retour dans rO

calcul: stmfd sp!{rl-r7} @ sauvegarder rl a r7 dans la pile

mov r7,#0 @ nb=0
@ traduction de la boucle while a compléter
ce Q
suitew: mov r0,r7 @ return nb
ldmfd sp!{ril-r7} @ restaurer rl & r7 depuis la pile
bx 1r @ branchement retour

Que calcule la fonction ?

