
Master CCI

Langage machine

Contrôle continu écrit 2022
Durée 1h30, documents autorisés, calculatrices et ordinateurs interdits

Les durées servent de barême indicatif

Table des matières
1 Variables en mémoire 2

1.1 Déclarations (5points, 20mn) . 2
1.2 Accès aux variables (8 points 40mn) . 2

2 Constructions algorithmiques et base 2 (30mn) 2

Conventions et contraintes
L’ordre dans lequel les variables sont déclarées doit être respecté dans la traduction

en langage d’assemblage. Les variables déclarées sans attribut register doivent être
stockées en mémoire (contenu mémoire mis à jour à chaque affectation).

Voici les types de variables entières utilisées dans le code des exercices. Par dé-
rogation, considérez pour la traduction en langage d’assemblage le type char comme
synonyme de uint8_t (entier naturel).

types d’entier relatif taille types d’entier naturel
synonyme sur ARM type bits type synonyme sur ARM

int8_t 8 uint8_t unsigned char
short int16_t 16 uint16_t unsigned short

int int32_t 32 uint32_t unsigned int

Les constantes symboliques peuvent être définies par = en langage d’assemblage
(exemple : TAILLE=2), après quoi elles peuvent être utilisées comme opérande dans
une directive ou une instruction : (exemple : mov r0,#TAILLE).

Les directives de réservation de place acceptent des expressions simples composées
d’entiers, de constantes entières symboliques et d’opérateurs arithmétiques de base :
+,-,* (exemple : .skip 4*TAILLE).

L’instruction machine mul existe (avec une syntaxe analogue à add ou sub), mais
vous ne devriez pas avoir à l’utiliser pour des multiplications par de petites constantes

— les petites constantes sont la somme d’un nombre limité de puissances de 2.
— mul n’accepte pas d’opérande droit de type constante immédiate

1

1 Variables en mémoire

1.1 Déclarations (5points, 20mn)

int16_t x16 = 45;
int16_t y16;
char c1 = ’b’; // traiter les char comme des uint8_t
char c2;
int16_t *ptr16 = &x16;

Traduire en langage d’assemblage les déclarations précédentes.

1.2 Accès aux variables (8 points 40mn)

void calcul () {
register uint16_t *p16; // à stocker dans le registre r4
register uint16_t v16; // à stocker dans le registre r5
c2 = c1 + 1;
(*ptr16) ++; // *ptr16=*ptr16+1
p16 = ptr16;
v16 = *p16;
p16 = &y16;
*p16 = 2;

Traduire individiduellement en langage d’assemblage ARM chacune des affecta-
tions précédentes.

2 Constructions algorithmiques et base 2 (30mn)
On considère la fonction calcul suivante :

// Le paramètre x est reçu dans le registre r0
int calcul (int32_t x) {

register int nb=0; // à stocker dans r7
while (x != 0) {

if (x <0) nb++;
x = x * 2;

}
return nb;

Compléter le code ARM de la fonction ci-dessous (traduire la boucle while).
Donner deux variantes du while : l’une avec test de la condition avant le corps et
l’autre avec test de la condition après le corps.

@ x stocké dans r0
@ nb stocké dans r7
@ valeur de retour dans r0

calcul: stmfd sp!{r1-r7} @ sauvegarder r1 à r7 dans la pile

2

mov r7,#0 @ nb=0
... @ traduction de la boucle while à compléter
... @

suitew: mov r0,r7 @ return nb
ldmfd sp!{r1-r7} @ restaurer r1 à r7 depuis la pile
bx lr @ branchement retour

Que calcule la fonction ?

3

