
DESS CCI : Corrigé Langage Ma
hine, Septembre 2006Deux heures, tous do
uments et
al
ulatri
es autorisés. Ordinateurs (PC) interdits.
1 Entiers et variables en mémoireOn
onsidère les dé
larations C suivantes.short int s1 = -3;long l1 = 0x12345678;short int s2;long l2;On suppose que la se
tion data début à l'adresse 0x1000 et la se
tion bss à l'adresse0x1100.Question a : Donner en hexadé
imal la représentation de -3.0x�fdQuestion b : Dessiner le
ontenu de la mémoire pour
ha
une des deux se
tions048
 159d 26ae 37af1000 0xfd 0xff 00 00< s1 > < alignement >1004 0x78 0x56 0x34 0x12< l1 >1100 00 00 00 00< s2 > < alignement >Question
 : E
rire en langage d'assemblage une suite d'instru
tion qui
opie le
ontenu de s1 dans s2 et
elui de l1 dans l2.ldr r0,= s1ldrsh r1, [r0℄ldr r0, =s2strh r1, [r0℄ldr r0,= l1ldr r1, [r0℄ldr r0, =s2str r1, [r0℄ 1

2 Bou
le et pointeur#define TAILLETAB 6unsigned long tableau [TAILLETAB℄ = {2,4,6,8,10,0};unsigned long s;/***//* Cal
ul de la somme des éléments d'un tableau *//* jusqu'au premier élément à 0 in
lus *//* s : adresse de l'empla
ement de sto
kage de la somme *//* t : adresse du tableau *//***/void somme_tab (unsigned long *s, unsigned long *t){*s = 0;while (*t != 0){*s = *s + *t;t++;}}int main (int arg
,
har *argv[℄,
har*envp[℄){somme_tab (&s, tableau);return 0;}Question : Traduire le programme
i-dessus en langage d'assemblage en tenant enparti
ulier
ompte du fait que les variables entières sont de type naturel (unsigned)..datatableau: .word 2tableau: .word 4tableau: .word 6tableau: .word 8tableau: .word 10.bsss: .skip 4.text 2

� rappel sto
kage premier paramètre : s dans r0� rappel sto
kage deuxième paramètre : t dans r1� r3, r4 utilisables
omme registre de travailsomme_tab: � *s = 0mov r3, #0str r3, [r0℄� whileba test_while
orps: � *s = *s + *tldr r3, [r0℄ � r3 = *sldr r4, [r1℄ � r4 = *tadd r3, r3, r4 � *s + *tstr r3, [r0℄ � *s = r3� t++add r1, r1, #4test_while: �
ontenu de *t déjà dans r4� on omet l'instru
tion ldr r4, [r1℄
mp r4, #0bne
orpsmov p
, lrmain: � somme (&s, tableau)� r0 = &sldr r0, =s� r1 = tableauldr r1,= tableau� appelbl somme_tab�retourmov p
, lr\end{itemize}\se
tion{Pro
édure à nombre quel
onque d'arguments}\begin{verbatim}.global somme_liste 3

somme_liste:mov ip, spstmfd sp!, {r0, r1, r2, r3}stmfd sp!, {fp, ip, lr, p
}sub fp, ip, #20add r1, fp, #8ldr r0, [fp, #4℄bl somme_tabldmea fp, {fp, sp, p
}Question a : Dessiner la pile au moment où le premier bran
hement à la pro
édurebl somme_liste est exé
uté.Les arguments &s, 1,2 et 3 sont sto
kés dans les registres r0 à r3. Les suivants sontempilés.Sp --> 34560...fp -->Question a : Dessiner l'évolution de la pile (par rapport au dessin pré
édent) aumoment où le premier bran
hement à la pro
édure bl somme_tab est exé
uté.La pro
édure empile le blo
 de registres r0 à r3, puis les 4 mots standards (fp, ip,lr, p
).Sp ---> an
ien fp ----------------------------an
ien sp ---------------------adresse de retour dans mainFp ---> �
orps de somme_listeadresse de s123 <--- an
ien sp -------------4560...<--- an
ien fp ---------------------
4

Question
 : Traduire en langage d'assemblage le premier appel de somme_listedans le
orps de main.� empiler 0mov r0, #0sub sp, sp, #4str ro, [sp℄� empiler 6mov r0, #6sub sp, sp, #4str ro, [sp℄� idem pour 5 et 4mov r3, #3mov r2, #2mov r1, #1ldr r0,= sbl somme_listeQuestion d : Dé
rire
omment fon
tionne la pro
édure bl somme_liste. Com-menter son
ode en langage d'assemblage : expliquer le r�le de
ha
une des sept der-nières instru
tions.Le deuxième stmfd et le ldmea respe
tivement sauvegardent dans la pile et res-taurent les an
iens sommets de pile et l'adresse de retour (+ l'adresse du
orps desomme_pile).Le premier stmfd empile les premiers paramètres de telle sorte que tous les para-mètres forment un tableau
ontigu sto
ké dans la pile.Habituellement, on trouve l'instru
tion sub fp, ip, #4 pour dépla
er le
ontenu defp juste au-dessus du blo
s des paramètres empilés par l'appelante. I
i, on se dépla
ede 4 mots de plus pour tenir
ompte de l'empilement des 4 premiers paramètres (4+ 4*4 donne 20). Le paramètre somme se trouve à l'adresse fp+4 et le suivant en fp+8.L'instru
tion add passe dans r1 (deuxième paramètre de
omme_tab) le
ontenudu deuxième paramètre, i
i 1.L'instru
tion ldr
al
ule l'adresse du paramètre somme et le sto
ke dans r0 (pre-mier paramètre de somme_tab)..L'instru
tion bl efe
tue le bran
hement aller vers
omme_tab.5

