DESS CCI : Corrigé Langage Machine, Septembre 2006

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

1 Entiers et variables en mémoire

On considére les déclarations C suivantes.

short int s1 = -3;
long 11 = 0x12345678;
short int s2;

long 12;

On suppose que la section data début a I’adresse 0x1000 et la section bss a I’adresse
0x1100.

Question a : Donner en hexadécimal la représentation de -3.

OxfItd

Question b : Dessiner le contenu de la mémoire pour chacune des deux sections

048c 159d 26ae 37af
1000 Oxfd Oxff 00 00
< sl > < alignement >
1004 0x78 0x56 0x34 0x12
< 11 >
1100 00 00 00 00
< 82 > < alignement >
Question c : Ecrire en langage d’assemblage une suite d’instruction qui copie le

contenu de sl dans s2 et celui de 11 dans 12.

1dr r0,= si
ldrsh r1, [r0]
1dr r0, =s2

strh rl, [r0]

1dr r0,= 11
ldr rl, [r0]
1dr r0, =s2
str ri, [rO]

2 Boucle et pointeur

#define TAILLETAB 6
unsigned long tableau [TAILLETAB] = {2,4,6,8,10,0};
unsigned long s;

/***/

/* Calcul de la somme des éléments d’un tableau */
/* jusqu’au premier élément & O inclus */
/* s : adresse de 1l’emplacement de stockage de la somme */
/* t : adresse du tableau */

/***/

void somme_tab (unsigned long *s, unsigned long *t)

{
*s = 0;
while (xt !'= 0)
{
s = *g + *xt;
t++;
}
}
int main (int argc, char *argv[], charxenvpl[])
{
somme_tab (&s, tableau);
return O;
}
Question : Traduire le programme ci-dessus en langage d’assemblage en tenant en

particulier compte du fait que les variables entiéres sont de type naturel (unsigned).

.data
tableau: .word 2
tableau: .word 4
tableau: .word 6
tableau: .word 8
tableau: .word 10

.bss
S: .skip 4

.text

¢ rappel stockage premier paramétre s dans r0
Q rappel stockage deuxiéme paramétre t dans ri
@ r3, r4 utilisables comme registre de travail
somme_tab:
@ *xs =0
mov r3, #0
str r3, [r0]
@ while
ba test_while
corps: Q@ *s = *s + *xt
ldr r3, [r0] @ r3 = *s
ldr r4, [ri] @ rd4 = *t
add r3, r3, r4d Q@ *s + *t
str r3, [r0] @ *s = r3
Q t++
add rl, rl, #4
test_while: @ contenu de *t déja dans r4
@ on omet 1’instruction 1ldr r4, [ri]
cmp r4, #0
bne corps
mov pc, 1r
main:
@ somme (&s, tableau)
@ r0 = &s
1ldr r0, =s
@ r1 = tableau
1dr r1,= tableau
@ appel
bl somme_tab
Q@retour
mov pc, 1r
\end{itemize}

\section{Procédure a nombre quelconque d’arguments}

\begin{verbatim}
.global

somme_liste

somme_liste:
mov ip, sp
stmfd sp!, {r0, r1, r2, r3}
stmfd sp!, {fp, ip, 1lr, pc}

sub fp, ip, #20
add rl, fp, #8
ldr r0, [fp, #4]
bl somme_tab

ldmea fp, {fp, sp, pc}

Question a : Dessiner la pile au moment ot le premier branchement a la procédure
bl somme liste est exécuté.

Les arguments &s, 1,2 et 3 sont stockés dans les registres r0 a r3. Les suivants sont
empilés.

Sp --> 3
4
5
6
0
fp -->
Question a : Dessiner ’évolution de la pile (par rapport au dessin précédent) au

moment ol le premier branchement a la procédure bl somme tab est exécuté.
La procédure empile le bloc de registres r0 a r3, puis les 4 mots standards (fp, ip,

Ir, pe).

Sp ---> ancien fp ----——------———--- -
ancien sp ---------—————-—-————-
adresse de retour dans main

Fp ---> @ corps de somme_liste
adresse de s
1
2
3 <--- ancien sp ---————----—--—-

4
5
6
0
<--- ancien fp -------------—--——-

Question ¢ : Traduire en langage d’assemblage le premier appel de somme _liste
dans le corps de main.

@ empiler O

mov r0, #0

sub sp, sp, #4
str ro, [sp]

@ empiler 6

mov r0, #6

sub sp, sp, #4
str ro, [sp]

@ idem pour 5 et 4

mov r3, #3
mov r2, #2
mov rl, #1
1dr r0,= s

bl somme_liste

Question d : Décrire comment fonctionne la procédure bl somme liste. Com-
menter son code en langage d’assemblage : expliquer le role de chacune des sept der-
niéres instructions.

Le deuxiéme stmfd et le ldmea respectivement sauvegardent dans la pile et res-
taurent les anciens sommets de pile et 1'adresse de retour (+ l'adresse du corps de
somme pile).

Le premier stmfd empile les premiers paramétres de telle sorte que tous les para-
meétres forment un tableau contigu stocké dans la pile.

Habituellement, on trouve l'instruction sub fp, ip, #4 pour déplacer le contenu de
fp juste au-dessus du blocs des paramétres empilés par ’appelante. Ici, on se déplace
de 4 mots de plus pour tenir compte de ’empilement des 4 premiers paramétres (4
+ 4*4 donne 20). Le paramétre somme se trouve a l'adresse fp+4 et le suivant en fp+8.

L’instruction add passe dans rl (deuxiéme paramétre de comme tab) le contenu
du deuxiéme parameétre, ici 1.

L’instruction Idr calcule I'adresse du paramétre somme et le stocke dans r0 (pre-
mier paramétre de somme tab)..

L’instruction bl efectue le branchement aller vers comme tab.

