DESS CCI : examen Langage Machine, Septembre 2006

Deux heures, tous documents et calculatrices autorisés. Ordinateurs (PC) interdits.

1 Entiers et variables en mémoire

On considére les déclarations C suivantes.

short int s1 = -3;
long 11 = 0x12345678;
short int s2;

long 12;

On suppose que la section data début a I’adresse 0x1000 et la section bss & ’adresse
0x1100.

Question a : Donner en hexadécimal la représentation de -3.
Question b : Dessiner le contenu de la mémoire pour chacune des deux sections

Question c : Ecrire en langage d’assemblage une suite d’instruction qui copie le
contenu de sl dans s2 et celui de 11 dans 12.

Procédures et tableaux

Rappelons quelques points de la convention d’appel utilisée par le compilateur gcc
pour ARM :

1. L’adresse de retour dans I’appelante est stockée dans le registre Ir.

2. Les quatre premiers parameétres sont passés dans les registres r0 a r3. La procé-
dure appelée peut modifier ces paramétres.

3. Le résultat des fonctions est retourné a la place du premier paramétre, dans le
registre r0.

4. La sauvegarde des registres est a la charge de la procédure appelée, excepté pour
le registre ip.

On veut écrire une procédure capable de faire la somme d’une liste d’entiers.

2 Boucle et pointeur

Dans un premier temps, on suppose que la liste d’entiers est rangée dans un tableau
stocké dans la section data. La procédure somme_tab a deux paramétres : 'adresse
a laquelle le cumul des valeurs entiéres doit étre rangé et ’adresse du tableau.
#define TAILLETAB 6
unsigned long tableau [TAILLETAB] = {2,4,6,8,10,0};

unsigned long s;

/***/

/* Calcul de la somme des éléments d’un tableau x/
/* jusqu’au premier élément & O inclus */
/* s : adresse de 1l’emplacement de stockage de la somme */
/* t : adresse du tableau */

/***/

void somme_tab (unsigned long *s, unsigned long *t)
{
xs = 0,
while (¥t != 0)
{
s = *g + *t;
t++;
}
}

int main (int argc, char *argv[], charxenvpl[])
{

somme_tab (&s, tableau);

return O;

}

Question : Traduire le programme ci-dessus en langage d’assemblage en tenant en
particulier compte du fait que les variables entiéres sont de type naturel (unsigned).

3 Procédure & nombre quelconque d’arguments

Les entiers & sommer sont maintenant passés comme une liste d’arguments passés
a une procédure a nombre quelconque d’arguments : somme _liste.

Dans la déclaration de somme liste, la présence de ... inidque une liste d’'un
nombre quelconque de paramétres sans noms.

void somme_liste (unsigned long *somme, ...)
{

somme_tab (somme, (long *) (&somme + 1));

b

int main (int argc, char *argv[], charxenvp[])
{

unsigned long r

= 5,
somme_liste (&s,1,2,3,4,5,6,0); /* un appel & 7+1 arguments */
somme_liste (&r,2,4,6,8,0); /* un appel & 5+1 arguments */
somme_liste (&r,2,3,4,0); /* un appel & 4+1 arguments */

}
Voici la traduction en langage d’assemblage de la procédure somme liste :

.global somme_liste
somme_liste:

mov ip, sp

stmfd sp!, {r0, r1, r2, r3}

stmfd sp!, {fp, ip, 1lr, pc}

sub fp, ip, #20
add rl, fp, #8
ldr r0, [fp, #4]
bl somme_tab

ldmea fp, {fp, sp, pc}

Question a: Dessiner la pile au moment ot le premier branchement & la procédure
bl somme liste est exécuté.

Question a : Dessiner ’évolution de la pile (par rapport au dessin précédent) au
moment ou le premier branchement a la procédure bl somme_tab est exécuté.

Question ¢ : Traduire en langage d’assemblage le premier appel de somme _liste
dans le corps de main.

Question d : Décrire comment fonctionne la procédure bl somme liste. Com-
menter son code en langage d’assemblage : expliquer le role (pas la sémantique ') de
chacune des sept derniéres instructions.

Exemple avec 1dr 10, [fp #4]. Sémantique : 10 < Mem]fp +4]. Role : 10 correspond & ..., on y
charge le contenu de . ..

