Université Grenoble Alpes (UGA)

UFR en Informatique, Mathématique et Mathématiques Appliquées (IM2AG)
Département Licence Sciences et Technologies (DLST)

Unité d’Enseignement INF401 aux Parcours INF et MIN :

Introduction aux Architectures
Logicielles et Matérielles

Documentation Technique
Sujets des Travaux Dirigés
Sujets des Travaux Pratiques

Année Universitaire 2016 / 2017

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

Table des matieres

(' Documentation Technique| 5
|1 Environnement informatique pour les travaux pratiques| 7
|2 Langage machine et langage d’assemblage ARM| 11
(I Travaux Dirigés| 25
[1 TD séance 1 : Codage| 27
2 TD séance 2 : Représentation des nombres| 29
3 TD séance 3 : Langage machine] 37
[4 TD séance 4 : Langage machine (suite)| 41
5 TD séances 5 et 6 : Codage des structures de controle| 45
|6 TD séance 7 : Fonctions : parametres et résultat| 49
[7-TD séance 8 : Appels/retours de procédures, action sur la pile| 53
I8 TD séances 11 : Parametres dans la pile, parametres passés par ’adresse 57
9 TD séance 12 : Etude du code produit par le compilateur arm-eabi-gcc| 59
(10 TD séances 13 et 14 : Organisation d’un processeur : une machine a pile| 69
(III Travaux Pratiques| 75

(1 TP séance 1 : Représentation des informations (ex. : images, programmes, entiers)| 77

|2 TP séance 2 : Codage et calculs en base 2| 83
I3 TP séances 3 et 4 : Codage des données| 87
[4 TP séance 5 : Codage de structures de controle et le metteur au point gdb| 93
b TP seances 6 et 7 : Parcours de tableaux 97
|6 TP séances 8, 9 et 10 : Procédures, fonctions et parametres| 103

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 3

|7 TP séance 11 : Passage de parametres par les registres|

I8 TP séance 12 : Code en langage d’assemblage produit par un compilateur Cj

|9 TP séances 13 et 14 : Procédures et parametres|

IV _Annexes|

[1 Annexe I : Codage ASCII des caracteres|

|2 Annexe Il : Représentation des nombres en base 2|

[3 Annexe III : Spécification des fonctions d’entrée/sortie définies dans es.s

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

109

117

121

131

133

135

137

Premiere partie

Documentation Technique

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

Chapitre 1

Environnement informatique pour les
travaux pratiques

1.1 Connexion au serveur

Un serveur Linux : turing est disponible pour les TPs de 401 INF_PUBLIC.

Depuis un poste du DLST : utiliser un logiciel de connexion & distance (typiquement putty,
xming ou cygwin/X) disponible sur le pc windows pour obtenir une bannniére de connexion sur turing.

Depuis une machine de type POSIX (unixlinux,macOS) : lancer la commande ssh -X -C
turing.e.ujf-grenoble.fr dans un terminal (Xterm, Konsole, etc) pour vous connecter.

1.2 Emplacement des fichiers

Les fichiers nécessaires pour effectuer chaque TP sont situés dans le répertoire :
/Public/401_INF_PUBLIC/TP<%>, ou <i> désigne le numéro du TP.
Par exemple, les fichiers nécessaires pour la premiere séance sont situés dans le répertoire
/Public/401_INF_PUBLIC/TP1. Lorsque le TP dure plus d’une séance le nom du répertoire porte
les numéros des deux séances, comme par exemple /Public/401_INF_PUBLIC/TP3et4.

1.3 Configuration de la session de travail

Les opérations suivantes doivent étre effectuées pour configurer une fois pour toutes votre environ-
nement de travail :

1. Se connecter a turing

2. Exécuter les commandes de configuration contenues dans le fichier config.sh au moyen de la
commande : source /Public/401_INF_PUBLIC/config.sh
Vérifier que le répertoire /opt/gnu/arm/bin est bien en téte du chemin d’acces aux exécutables,
au moyen de la commande : echo $PATH
Cette opération installe une fois pour toutes I’environnement requis pour les TPs. Elle n’est a
exécuter qu’'une seule fois. Flle n’aura pas a étre ré-exécutée lors des autres séances.

Votre bindéme doit ensuite répéter la méme opération, afin que vous puissiez tous deux travailler
avec un environnement correct dans la suite du semestre :
— 11 doit se connecter a son tour a turing (depuis un autre poste ou sur le méme apres que vous
vous soyez vous-méme déconnecté).

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 7

— 11 doit ensuite exécuter sous son identité la commande :
source /Public/401_INF_PUBLIC/config.sh

1.4 Démarrage d’une session de travail

Les opérations suivantes sont a effectuer au début de chaque séance :

1. Se connecter a turing.

2. Ouvrir une deuxiéme fenétre au moyen de la commande : xterm & (Ctrl4-clic central ou droit
pour options de configuration).

3. Copier le répertoire /Public/401_INF PUBLIC/TP<%> dans votre répertoire de travail. Par
exemple, pour le 1¢" TP utilisez la commande :
cp -r /Public/401_INF_PUBLIC/TP1
(ne pas oublier le point a la fin de la commande précédente!...)

4. Effectuer les exercices décrits dans ’énoncé du TP.

1.5 TP1 : ressources disponibles

1.5.1 Fichiers

— Exo 1.1.1 : image.bm

— Exo0 1.2.1 : lignes.xpm

— Exo 2.x : prog.c

— Exo 3 : progl.s, progl.varl.s, progl.var2.s, progl.var2.s

1.5.2 Outils

— nedit : création et modification de fichiers au format texte (gedit également disponible)..

— cat et less : visualisation de fichiers texte.

— bitmap : affichage d’'une image monochrome au format bitmap.

— x11i : visualisation de fichiers contenant une image.

— hexdump : visualisation en hexadécimal d’un fichier binaire ou texte.

— arm-eabi-gcc : compilateur C et assembleur pour processeur Arm.

— arm-eabi-objdump : utilitaire permettant d’observer le contenu d’un fichier binaire ayant été
produit par arm-eabi-gcc.

1.6 Quelques commandes utiles (rappels)

— Créer une copie d’'un fichier existant (sans utiliser nedit :
cp <nom fichier original> <nom nouveau fichier>
Exemple : cp fichl.c fich2.c
ou bien :
cp <nom fichier original> <nom répertoire destination>
Exemple : cp fichl.c repA

— Renommer un fichier :

mv <nom original du fichier> <nouveau nom du fichier>
Exemple : mv fichl.c fich2.c

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 8

— Déplacer un fichier :
mv <nom du fichier> <nom du répertoire destination>
Exemple : mv fichl.c ../repB

— Afficher (sans le modifier) le contenu d’un gros fichier (inutile d’utiliser nedit) :
less <nom du fichier> Exemple : less fichl.c

— Afficher (sans le modifier) le contenu d’un petit fichier (inutile d’utiliser nedit) :
cat <nom du fichier> Exemple : cat fich2.s

1.7 Commandes raccourcies

— armas <nom du fichier source .s>
Assemblage d’un fichier source. Le résultat est un fichier binaire translatable dont le nom est
suffixé par .o (prog.o dans ’exemple).
Exemple : armas prog.s

— armcc <nom du fichier source .c>
Compilation d’un fichier en langage C. Le résultat est un fichier binaire translatable dont le
nom est suffixé par .o (prog.o dans I’exemple).
Exemple : armcc prog.c

— armbuild <nom du fichier exécutable> <nom du fichier source> [<liste de fichiers .o a
ajouter éventuellement>]
Assemblage (ou compilation, pour un fichier en langage C) et production d’un exécutable.
Exemple 1 : armbuild progl progl.s lib.o
Exemple 2 : armbuild prog2 prog2.c

— armrun <nom du fichier exécutable>
Exécution/simulation d’un fichier binaire exécutable.
Exemple : armrun prog

— armgdb <nom du fichier exécutable>
Mise au point d’un fichier binaire exécutable.
Exemple : armgdb prog

— armddd <nom du fichier exécutable>
Mise au point d’un fichier binaire exécutable (mode graphique).
Exemple : armddd prog

— armdata <mnom du fichier objet” .0>
Observation de la section .data d’un fichier binaire translatable. Le résultat est affiché a
I’écran.
Exemple : armdata prog.o

— armdisas <nom du fichier ”objet” .0>
Observation/désassemblage de la section .text d’un fichier binaire translatable. Le résultat est
affiché a I’écran.
Exemple : armdisas prog.o

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 9

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

10

Chapitre 2

Langage machine et langage
d’assemblage ARM

2.1 Résumé de documentation technique ARM

2.1.1 Organisation des registres

Dans le mode dit “utilisateur” le processeur ARM a 16 registres visibles de taille 32 bits nommés
r0, r1, ..., ri5:
— r13 (synonyme sp, comme “stack pointer”) est utilisé comme registre pointeur de pile.
— r14 (synonyme lr comme “link register”) est utilisé par 'instruction ”branch and link” (bl)
pour sauvegarder ’adresse de retour lors d’un appel de procédure.
— r15 (synonyme pc, comme “program counter”) est le registre compteur de programme.
Les conventions de programmation des procédures (ATPCS=" ARM-Thumb Procedure Call Stan-
dard, Cf. Developer Guide, chapitre 2) précisent :
— les registres r0, rl, r2 et r3 sont utilisés pour le passage des parametres (données ou
résultats)
— le registre r12 (synonyme ip) est un “intra-procedure call scratch register” ; autrement dit il
peut étre modifié par une procédure appelée.
— le compilateur arm-eabi-gcc utilise le registre r1l (synonyme fp comme ”frame pointer”)
comme base de 'environnement de définition d’une procédure.
Le processeur a de plus un registre d’état, cpsr pour “Current Program Status Register”, qui
comporte entre autres les codes de conditions arithmétiques. Le registre d’état est décrit dans la

figure

31 28 76 4 0
INZCV | [IF| [mode |

FI1GURE 2.1 — Registre d’état du processeur ARM

Les bits N, Z, C et V sont les codes de conditions arithmétiques, I et F permettent le masquage
des interruptions et mode définit le mode d’exécution du processeur (User, Abort, Supervisor, IRQ,
ete).

2.1.2 Les instructions

Nous utilisons trois types d’instructions : les instructions arithmétiques et logiques (para-
graphe[2.1.5)), les instructions de rupture de séquence (paragraphe[2.1.6) et les instructions de transfert

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 11

d’information entre les registres et la mémoire (paragraphe [2.1.7)).
Les instructions sont codées sur 32 bits.

Certaines instructions peuvent modifier les codes de conditions arithmétiques N, Z, C, Ven ajou-
tant un S au nom de l'instruction.

Toutes les instructions peuvent utiliser les codes de conditions arithmétiques en ajoutant un
mnémonique (Cf. figure [2.2) au nom de linstruction. Au niveau de 'exécution, l'instruction est
exécutée si la condition est vraie.

2.1.3 Les codes de conditions arithmétiques

La figure décrit I’ensemble des conditions arithmétiques.

code | mnémonique signification condition testée
0000 EQ égal 7z

0001 NE non égal Z

0010 CS/HS > dans N C

0011 CC/LO < dans N C

0100 MI moins N

0101 PL plus N

0110 VS débordement 1%

0111 vC pas de débordement v

1000 HI > dans N CNZ

1001 LS < dans N CvVZ

1010 GE > dans Z (NAV)V(NAV)
1011 LT < dans (NAV)V(NAV)
1100 GT > dans Z ZA(NAV)V(NAV))
1101 LE < dans ¥ ZNV(NAV)V(NAV)
1110 AL toujours

FIGURE 2.2 — Codes des conditions arithmétiques

Toute instruction peut étre exécutée sous une des conditions décrites dans la figure Le code
de la condition figure dans les bits 28 & 31 du code de l'instruction. Par défaut, la condition est AL.

2.1.4 Description de l'instruction de chargement d’un registre

Nous choisissons dans ce paragraphe de décrire en détail le codage d’une instruction.

L’instruction MOV permet de charger un registre avec une valeur immédiate ou de transférer la
valeur d’un registre dans un autre avec modification par translation ou rotation de cette valeur.

La syntaxe de I'instruction de transfert est : MOV [<COND>] [S] <rd>, <opérande> ou rd désigne
le registre destination et opérande est décrit par la table ci-dessous :

opérande commentaire
#immédiate-8 entier sur 32 bits (Cf. remarque ci-dessous)
rm registre

rm, shift #shift-imm-5 | registre dont la valeur est décalée d’'un nombre
de positions représenté sur 5 bits

rm, shift rs registre dont la valeur est décalée du nombre
de positions contenu dans le registre rs

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 12

Dans la table précédente le champ shift de 'opérande peut étre LSL, LSR, ASR, ROR qui signi-
fient respectivement “logical shift left”, “logical shift right”, “arithmetic shift right”, “rotate right”.

Une valeur immédiate est notée selon les mémes conventions que dans le langage C; ainsi elle peut
étre décrite en décimal (15), en hexadécimal (0xF) ou en octal (O17).

Le codage de I'instruction MOV est décrit dans les figures et <COND> désigne un mnémonique
de condition ; s’il est omis la condition est AL. Le bit S est mis a 1 si I’on souhaite une mise a jour des
codes de conditions arithmétiques. Le bit I vaut 1 dans le cas de chargement d’une valeur immédiate.
Les codes des opérations LSL, LSR, ASR, ROR sont respectivement : 00,01, 10, 11.

Remarque concernant les valeurs immédiates : Une valeur immédiate sur 32 bits (opérande
#immediate) sera codée dans l'instruction au moyen, d’une part d’une constante exprimée sur 8 bits
(bits 7 &4 0 de I'instruction, figure 1¢" cas), et d’autre part d’une rotation exprimée sur 4 bits (bits
11 & 8) qui sera appliquée a la dite constante lors de ’exécution de I'instruction.

La valeur de rotation, comprise entre 0 et 15, est multipliée par 2 lors de 'exécution et permet
donc d’appliquer a la constante une rotation a droite d’un nombre pair de positions compris entre 0
et 30. La rotation s’applique aux 8 bits placés initialement & droite dans un mot de 32 bits (qui n’est
pas celui qui contient I'instruction).

Il en résulte que ne peuvent étre codées dans I'instruction toutes les valeurs immédiates sur 32
bits...

Une rotation nulle permettra de coder toutes les valeurs immédiates sur 8 bits.

31 28 2726 25 24 21 20 19 16 1512 11 0
’cond ‘ 00 ‘1‘1101‘ S ‘0000‘ rd ‘opérande

FI1GURE 2.3 — Codage de 'instruction mov

11 8 7 0
10000 | immediate-8 |

11 7 65 3 0
’ shift-imm-5 ‘ shift ‘ 0 ‘ rm ‘

11 8 65 3 0
’ rs ‘O‘shift‘l‘ rm ‘

FIGURE 2.4 — Codage de la partie opérande d’une instruction

Exemples d’utilisations de ’instruction mov

MOV r1, #42 @ r1 <-—- 42

MOV r3, rb5 @ r3 <—- 15

MOV r2, r7, LSL #28 @ r2 <-- r7 décalé a gauche de 28 positions
MOV r1, rO, LSR r2 @ rl <-- r0O décalé a droite de n pos., r2=n
MOVS r2, #-5 @ r2 <-- -5 + positionnement N, Z, C et V
MOVEQ ril, #42 @ si cond(EQR) alors ri1 <-- 42

MOVLTS r3, r5 @ si cond(LT) alors r3 <-- r5 + positionnement N, Z, C et V

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 13

2.1.5 Description des instructions arithmétiques et logiques

Les instructions arithmétiques et logiques ont pour syntaxe :
code-op[<cond>] [s] <rd>, <rn>, <opérande>, ou code-op est le nom de l'opération, rn et
opérande sont les deux opérandes et rd le registre destination.

Le codage d’une telle instruction est donné dans la figure opérande est décrit dans le para-

graphe figure

31 28 2726 25 24 21 20 1916 1512 11 0
’ cond \ 00 \ 1 \code—op\ S \ m \ rd \opérande

Fi1GURE 2.5 — Codage d’une instruction arithmétique ou logique

La table ci-dessous donne la liste des intructions arithmétiques et logiques ainsi que les instructions
de chargement d’un registre. Les instructions TST, TEQ, CMP, CMN n’ont pas de registre destination,
elles ont ainsi seulement deux opérandes ; elles provoquent systématiquement la mise a jour des codes
de conditions arithmétiques (dans le codage de l'instruction les bits 12 & 15 sont mis a zéro). Les
instructions MOV et MVN ont un registre destination et un opérande (dans le codage de I'instruction les
bits 16 & 19 sont mis & zéro).

Exemples d’utilisations

ADD r1, r2, rb
ADDS r0, r2, #4
SUB r3, r7, r0
SUBS r3, r7, r0

SUBGES r3, r7, r0

CMP ri1, r2
TST r3, #1

ANDS r1, r2, #0x0000f££00

rl <-—— r2 + rb
r0 <-- r2 +
r3 <-— r7 - r0

si cond(GE)

4 + positionnement NZCV

rO + positionnement NZCV
r3 <-—- r7 - rO et positionnement NZCV

calcul de rl-r2 et positionnement NZCV
calcul de r3 ET 1 et positionnement NZCV

Q
Q
Q
@ r3 <—- r7 -
Q
Q
Q
Q

rl <-- r2 ET 0x0000ff00 et positionnement NZCV

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

code-op | Nom Explication du nom Opération remarque
0000 AND AND et bit a bit
0001 EOR Exclusive OR ou exclusif bit a bit
0010 SUB SUBstract soustraction
0011 RSB Reverse SuBstract soustraction inversée
0100 ADD ADDition addition
0101 ADC ADdition with Carry addition avec retenue
0110 SBC SuBstract with Carry soustraction avec emprunt
0111 RSC | Reverse Substract with Carry | soustraction inversée avec emprunt
1000 TST TeST et bit a bit pas rd
1001 TEQ Test EQuivalence ou exclusif bit a bit pas rd
1010 CMP CoMPare soustraction pas rd
1011 CMN CoMpare Not addition pas rd
1100 ORR OR ou bit a bit
1101 Mov MOVe copie pas rn
1110 BIC BIt Clear et not bit a bit
1111 MVN MoVe Not not (complément a 1) pas rn

14

2.1.6 Description des instructions de rupture de séquence

Nous utilisons trois instructions de rupture de séquence : B[<cond>] <déplacement>, BL[<cond>]
<déplacement>, BLX[<cond>] <registre>.

a) Instruction B[<cond>] <déplacement> L’instruction B provoque la modification du compteur
de programme si la condition est vraie; le texte suivant est extrait de la documentation ARM :

if ConditionPassed(cond) then
PC <-- PC + (SignExtend(déplacement) << 2)

L’expression (SignExtend(déplacement) << 2) signifie que le déplacement est tout d’abord
étendu de facon signée a 32 bits puis mutiplié par 4. Le déplacement est en fait un entier relatif
(codé sur 24 bits comme indiqué ci-dessous) et qui représente le nombre d’instructions (en avant ou
en arriere) entre l'instruction de rupture de séquence et la cible de cette instruction.

Dans le calcul du déplacement, il faut prendre en compte le fait que lors de 'exécution d’une
instruction, le compteur de programme ne repere pas l'instruction courante mais deux instructions en
avant.

31 28 2725 24 23 0
’ cond ‘ 101 ‘ 0 ‘déplacement

FIGURE 2.6 — Codage de l'instruction de rupture de séquence b{cond}

Exemples d’utilisations

BEQ +5 @ si cond(EQ) alors pc <-- pc + 4x5
BAL -8 @ pc <-- pc - 4x8

Dans la pratique, on utilise une étiquette (Cf. paragraphe [2.2.4) pour désigner I'instruction cible
d’un branchement. C’est le traducteur (i.e. ’assembleur) qui effectue le calcul du déplacement.

La figure résume l'utilisation des instructions de branchements conditionnels apres une com-
paraison.

Conditions des instructions de branchement conditionnel
Type Entiers relatifs (£) | Naturels (N) et adresses
Instruction C Bxx Condition Bxx Condition
goto | BAL 1110 BAL 1110
if (x==y) goto | BEQ 0000 BEQ 0000
if (x != y) goto | BNE 0001 BNE 0001
if (x < y) goto | BLT 1011 BLO, BCC 0011
if (x<=y) goto | BLE 1101 BLS 1001
if (x > y) goto | BGT 1100 BHI 1000
if (x>=y) goto | BGE 1010 BHS,BCS 0010

F1cUure 2.7 — Utilisation des branchements conditionnels apres une comparaison

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 15

b) Instruction BL[<cond>] <déplacement> L’instruction BL provoque la modification du comp-
teur de programme avec sauvegarde de ladresse de linstruction suivante (appelée adresse de
retour) dans le registre 1r; le texte suivant est extrait de la documentation ARM :

1lr <-- address of the instruction after the branch instruction
PC <-- PC + (SignExtend(déplacement) << 2)

31 28 2725 24 23 0
’ cond ‘ 101 ‘ 1 ‘déplacement

Fi1GurE 2.8 — Codage de 'instruction de branchement a un sous-programme bl

Exemples d’utilisations

BL 42 @ 1lr <-- pc+4 ; pc <-- pc +4x42

c¢) Instruction BLX [<cond>] <registre> L’instruction BLX Rm provoque la modification du comp-
teur de programme avec sauvegarde de l'adresse de linstruction suivante (appelée adresse de
retour) dans le registre 1r; le texte suivant est extrait de la documentation ARM :

lr <-- address of the instruction after the branch instruction
PC <-- Rm

Attention : Dans le cadre des TP, 'adresse passée en parametre a BLX doit étre paire. En effet,
lexécution de BLX avec une adresse impaire active un mode spécial du processeur (THUMB) avec un
autre jeu d’instructions (codées sur 16 bits). Ce type d’erreur peut avoir des effets assez variés en
fonction du programme concerné : on peut obtenir un message d’erreur relatif au mode THUMB ou
un comportement arbitraire du simulateur.

Exemples d’utilisations
BLX R5 @ 1r <-- pc+4d ; pc <-- Rb

Pour désigner une procédure on utilisera une étiquette; des exemples sont donnés dans le para-

graphe

2.1.7 Description des instructions de transfert d’information entre les registres et
la mémoire

Transfert entre un registre et la mémoire

L’instruction LDR dont la syntaxe est : LDR <rd>, <mode-adressage> permet le transfert du mot
mémoire dont I’adresse est spécifiée par mode-adressage vers le registre rd. Nous ne donnons pas
le codage de l'instruction LDR parce qu’il comporte un grand nombre de cas; nous regardons ici
uniquement les utilisations les plus fréquentes de cette instruction.

Le champ mode-adressage comporte, entre crochets, un registre et éventuellement une valeur
immédiate ou un autre registre, ceux-ci pouvant étre précédés du signe 4+ ou —. Le tableau ci-dessous
indique pour chaque cas le mot mémoire qui est chargé dans le registre destination. L’instruction 1dr
permet beaucoup d’autres types de calcul d’adresse qui ne sont pas décrits ici.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 16

mode-adressage opération effectuée
[rn] rd <— mem [rn]
[rn, #offset12] | rd <- mem [rn + offset12]

[
[rn, #-offset12] | rd <— mem [rn - offset12]
[rn, rm] rd <- mem [rn + rm]
[rn, -rm] rd <— mem [rn - rm)]

Il existe des variantes de l'instruction LDR permettant d’accéder a un octet : LDRB ou a un mot
de 16 bits : LDRH. Et si 'on veut accéder a un octet signé : LDRSB ou a un mot de 16 bits signé :
LDRSH. Ces variantes imposent cependant des limitations d’adressage par rapport aux versions 32 bits
(exemple : valeur immédiate codée sur 5 bits au lieu de 12).

Pour réaliser le transfert inverse, registre vers mémoire, on trouve I'instruction STR et ses variantes
STRB et STRH. La syntaxe est la méme que celle de 'instruction LDR. Par exemple, 'instruction STR
rd, [rn] provoque l'exécution : MEM [rn] <-- rd.

Exemples d’utilisations

LDR r1, [rO]
LDR r3, [r2, #4]
LDR r3, [r2, #-8]
LDR r3, [pc, #48]
LDRB r5, [r3]

rl <-32bits-- Mem [rO]

r3 <-32bits-- Mem [r2 + 4]

r3 <-32bits-- Mem [r2 - 8]

r3 <-32bits-- Mem [pc + 48]

8bits_poids_faibles (r5) <-- Mem [r3],

extension aux 32 bits avec des O

Mem [rl + r3] <-16bits-- 16bits_poids_faibles (r2)

© © 0 © 0 © ©

STRH r2, [r1l, r3]

L’instruction LDR est utilisée entre autres pour accéder a un mot de la zone text en réalisant
un adressage relatif au compteur de programme. Ainsi, 'instruction LDR r2, [pc, #depl] permet de
charger dans le registre r2 avec le mot mémoire situé a une distance depl du compteur de programme,
c’est-a-dire de linstruction en cours d’exécution. Ce mode d’adressage nous permet de recupérer
Padresse d’un mot de données (Cf. paragraphe .

Pré décrémentation et post incrémentation

Les instructions LDR et STR offrent des adressages post-incrémentés et pré-décrémentés qui per-
mettent d’accéder a un mot de la mémoire et de mettre a jour une adresse, en une seule instruction.
Cela revient a combiner un acces mémoire et I'incrémentation du pointeur sur celle-ci en une seule
instruction.

instruction ARM équivalent ARM | équivalent C
LDR r1, [r2, #-4]! | SUB r2, r2, #4 | r1l = *--r2
LDR r1, [r2]
LDR r1, [r2], #4 LDR r1, [r2] rl = *r2++
ADD r2, r2, #4
STR r1l, [r2, #-4]! | SUB r2, r2, #4
STR r1, [r2]

STR r1, [r2], #4 STR r1, [r2]

ADD r2, r2, #4

La valeur a incrémenter ou décrémenter (4 dans les exemples ci-dessus) peut aussi étre donnée
dans un registre.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 17

Transfert multiples

Le processeur ARM possede des instructions de transfert entre un ensemble de registres et
un bloc de mémoire repéré par un registre appelé registre de base : LDM et STM. Par exemple,
STMFD r7!, {r0,r1,r5} range le contenu des registres r0, ril et r5 dans la mémoire et met a jour
le registre r7 suite le transfert (i.e. r7 = r7 - 12); apres 'exécution de l'instruction MEM[r7 & jour
1 contient r0 et MEM[r7 a jour + 8] contient r5.

Il existe 8 variantes de chacune des instructions LDM et STM selon que :

— les adresses de la zone mémoire dans laquelle sont copiés les registres croissent (Increment) ou
décroissent (Decrement).

— Dadresse contenue dans le registre de base est incrémentée ou décrémentée avant (Before) ou
apres (After) le transfert de chaque registre. Notons que 'adresse est décrémentée avant le
transfert quand le registre de base repere le mot qui a l'adresse immédiatement supérieure a
celle ot 'on veut ranger une valeur (Full); 'adresse est incrémentée apres le transfert quand
le registre de base repére le mot ot 'on veut ranger une valeur (Empty).

— le registre de base est modifié a la fin de I’exécution quand il est suivi d’un ! ou laissé inchangé
sinon.

Ces instructions servent aussi a gérer une pile. Il existe différentes fagcons d’implémenter une pile
selon que :

— le pointeur de pile repere le dernier mot empilé (Full) ou la premiere place vide (Empty).
— le pointeur de pile progresse vers les adresses basses quand on empile une information
(Descending) ou vers les adresses hautes (Ascending).

Par exemple, dans le cas ou le pointeur de pile repére 'information en sommet de pile (case pleine)
et que la pile évolue vers les adresses basses (lorsque 1'on empile 'addresse décroit), on parle de pile
Full Descending et on utilise 'instruction STMFD pour empiler et LDMFD pour dépiler.

Les modes de gestion de la pile peuvent étre caractérisés par la facon de modifier le pointeur de pile
lors de ’empilement d’une valeur ou de la récupération de la valeur au sommet de la pile. Par exemple,
dans le cas ou le pointeur de pile repere 'information en sommet de pile et que la pile évolue vers
les adresses basses, pour empiler une valeur il faut décrémenter le pointeur de pile avant le stockage
en mémoire ; on utilisera I'instruction STMDB (Decrement Before). Dans le méme type d’organisation
pour dépiler on accede a 'information au sommet de pile puis on incrémente le pointeur de pile : on
utilise alors 'instruction LDMIA (Increment After).

Selon que 'on prend le point de vue gestion d’un bloc de mémoire repéré par un registre ou gestion
d’une pile repérée par le registre pointeur de pile, on considere une instruction ou une autre ... Ainsi,
les instructions STMFD et STMDB sont équivalentes ; de méme pour les instructions LDMFD et LDMIA.

Les tables suivantes donnent les noms des différentes variantes des instructions LDM et STM, chaque
variante ayant deux noms synonymes I'un de 'autre.

nom de l'instruction ‘ synonyme ‘
LDMDA (decrement after) | LDMFA (full ascending)
LDMIA (increment after) LDMEFD (full descending)
LDMDB (decrement before) | LDMEA (empty ascending)
LDMIB (increment before) | LDMED (empty descending)

nom de l'instruction ‘ synonyme ‘
STMDA (decrement after) | STMED (empty descending)
STMIA (increment after) STMEA (empty ascending)
STMDB (decrement before) | STMFED (full descending)
STMIB (increment before) | STMFA (full ascending)

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 18

adr_esses 0 0
croissantes

|
|

r4
5
r6

r7

& &

max max

) b)

FIGURE 2.9 — Transfert multiples mémoire/registres : STMFD r7!, {r3,r4,r5,r6} ou (STMDB ...)
permet de passer de 1’état a) de la mémoire a ’état b). LDMFD r7!, {r3,r4,r5,r6} (ou LDMIA ...)
réalise I'inverse.

La figure 2.9] donne un exemple d’utilisation.

2.2 Langage d’assemblage

2.2.1 Structure d’un programme en langage d’assemblage

Un programme est composé de trois types de sections :

— données intialisées ou non (.data)

— données non initialisées (.bss)

— instructions (.text)

Les sections de données sont optionnelles, celle des instructions est obligatoire. On peut écrire des
commentaires entre le symbole @ et la fin de la ligne courante. Ainsi un programme standard a la
structure :

.data
@ déclaration de données
Q ...

.text
@ des instructions
e ...
2.2.2 Déclaration de données
Le langage permet de déclarer des valeurs entieres en décimal (éventuellement précédées de leur
signe) ou en hexadécimal ; on précise la taille souhaitée.

Exemple :

.data
.word 4536 @ déclaration de la valeur 4536 sur 32 bits (1 mot)

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 19

.hword -24 @ déclaration de la valeur -24 sur 16 bits (1 demi mot)
.byte 5 Q@ déclaration de la valeur 5 sur 8 bits (1 octet)

.word Oxfff2a3bf @ déclaration d’une valeur en hexadécimal sur 32 bits
.byte Oxab @ idem sur 8 bits

On peut aussi déclarer des chaines de caracteéres suivies ou non du caractere de code ASCII 00.
Un caractere est codé par son code ASCII (Cf. paragraphe [1)).

Exemple :

.data
.ascii "un texte" @ déclaration de 8 caractéres...
.asciz "un texte" @ déclaration de 9 caractéres, les mémes que ci-dessus
@ plus le code 0 & la fin

La définition de données doit respecter les regles suivantes, qui proviennent de I’organisation phy-
sique de la mémoire :

— un mot de 32 bits doit étre rangé & une adresse multiple de 4

— un mot de 16 bits doit étre rangé a une adresse multiple de 2

— il n’y a pas de contrainte pour ranger un octet (mot de 8 bits)

Pour recadrer une adresse en zone data le langage d’assemblage met a notre disposition la directive
.balign.

Exemple :

.data
@ on note AD 1’adresse de chargement de la zone data
@ que 1’on suppose multiple de 4 (c’est le cas avec les outils utilisés)

.hword 43 @ aprés cette déclaration la prochaine adresse est AD+2
.balign 4 Q@ recadrage sur une adresse multiple de 4

.word Oxffff1234 @ rangé & 1’adresse AD+4

.byte 3 Q@ aprés cette déclaration la prochaine adresse est AD+9
.balign 2 @ recadrage sur une adresse multiple de 2

.hword 42 @ rangé a 1’adresse AD+10

On peut aussi réserver de la place en zone .data ou en zone .bss avec la directive .skip.
.skip 256 réserve 256 octets qui ne sont pas initialisés lors de la réservation. On pourra par programme
écrire dans cette zone de mémoire.

2.2.3 La zone text

Le programmeur y écrit des instructions qui seront codées par I’assembleur (le traducteur) selon
les conventions décrites dans le paragraphe

La liaison avec le systeme (chargement et lancement du programme) est réalisée par la définition
d’une étiquette (Cf. paragraphe suivant) réservée : main.

Ainsi la zone text est :

.text
.global main
main:

@ des instructions ARM
Q ...

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 20

2.2.4 Utilisation d’étiquettes

Une donnée déclarée en zone data ou bss ou une instruction de la zone text peut étre précédée
d’une étiquette. Une étiquette représente une adresse et permet de désigner la donnée ou 'instruction
concernée.

Les étiquettes représentent une facilité d’écriture des programmes en langage d’assemblage.

Expression d’une rupture de séquence

On utilise une étiquette pour désigner I'instruction cible d’un branchement. C’est le traducteur
(i.e. Passembleur) qui effectue le calcul du déplacement. Par exemple :

etiq: MOV rO, #22
ADDS r1, r2, r0
BEQ etiq

Accés a une donnée depuis la zone text
.data
DD: .word 5
.text
@ acces au mot d’adresse DD
LDR r1, relais @ rl <-- 1’adresse DD
LDR r2, [ri] @ r2 <-- Mem[DD] c’est-a-dire 5
MOV r3, #245 @ r3 <-- 245
STR r3, [ri] @ Mem[DD] <-- r3

@ la mémoire d’adresse DD a été modifiée

@ plus loin
relais: .word DD @ déclaration de 1l’adresse DD en zone text

L’instruction LDR r1l, relais est codée avec un adressage relatif au compteur de programme :
LDR r1, [pc, #depl] (Cf. paragraphe 2.1.7).

Appel d’une procédure

On utilise 'instruction BL lorsque la procédure appelée est désignée directement par une étiquette :
ma_proc: @ corps de la procedure
mov pc, 1r

@ appel de la procedure ma_proc
BL ma_proc

On utilise l'instruction BLX lorsque l'adresse de la procédure est rangée dans un registre, par
exemple lorsqu’une procédure est passée en parametre :

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 21

LDR rl1, adr_proc @ r1 <-- adresse ma_proc
BLX ri1

adr_proc: .word ma_proc

2.3 Organisation de la mémoire : petits bouts, gros bouts

La mémoire du processeur ARM peut étre vue comme un tableau d’octets repérés par des numéros
appelés adresse qui sont des entiers naturels sur 32 bits. On peut ranger dans la mémoire des mots
de 32 bits, de 16 bits ou des octets (mots de 8 bits). Le paragraphe indique comment déclarer
de tels mots.

Dans la mémoire les mots de 32 bits sont rangés a des adresses multiples de 4. Il y a deux conventions
de rangement de mots en mémoire selon ’ordre des octets de ce mot.

Considérons par exemple le mot 0x12345678.

— convention dite ”Big endian” (Gros bouts) :

les 4 octets 12, 34, 56, 78 du mot 0x12345678 sont rangés aux adresses respectives 4x, 4x+1,
4x+2, 4x+3.

— convention dite ”Little endian” (Petits Bouts) :

les 4 octets 12, 34, 56, 78 du mot 0x12345678 sont rangés aux adresses respectives 4x+3,
4x42, 4x+1, 4x.

Le processeur ARM suit la convention ” Little endian”. La conséquence est que lorsqu’on lit le mot
de 32 bits rangé a ’adresse 4x on voit : 78563412, c’est-a-dire qu’il faut lire ”a ’envers”. Selon les
outils utilisés le mot de 32 bits est présenté sous cette forme ou sous sa forme externe, plus agréable...

En général les outils de traduction et de simulation permettent de travailler avec une des
deux conventions moyennant l'utilisation d’options particulieres lors de l’appel des outils (option
-mbig-endian).

2.4 Commandes de traduction, exécution, observation

2.4.1 Traduction d’un programme

Pour traduire un programme écrit en C contenu dans un fichier prog.c :
arm-eabi-gcc -g -o prog prog.c. L’option -o permet de préciser le nom du programme exécutable ;
o signifie “output”. L’option -g permet d’avoir les informations nécessaires a la mise au point sous
débogueur (Cf. paragraphe [2.4.2)).

Pour traduire un programme écrit en langage d’assemblage ARM contenu dans un fichier prog.s :
arm-eabi-gcc -Wa,--gdwarf2 -o prog prog.s.

Lorsque 'on veut traduire un programme qui est contenu dans plusieurs fichiers que 'on devra
rassembler (on dit “lier”), il faut d’abord produire des versions partielles qui ont pour suffixe .o, le o
voulant dire ici “objet”. Par exemple, on a deux fichiers : principal.s et biblio.s, le premier contenant
I’étiquette main. On effectuera la suite de commandes :

arm-eabi-gcc -c -Wa,--gdwarf2 biblio.s
arm-eabi-gcc -c -Wa,--gdwarf2 principal.s
arm-eabi-gcc —-g —o prog principal.o biblio.o

La premiere produit le fichier biblio.o, la seconde produit le fichier principal.o, la troisieme
les relie et produit le fichier exécutable prog.

Noter que les deux commandes suivantes ont le méme effet :
arm-eabi-gcc -c prog.s et

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 22

arm-eabi-as -o prog.o prog.s. Elles produisent toutes deux un fichier objet prog.o sans les infor-
mations nécessaires a I'exécution sous débogueur.

2.4.2 Exécution d’un programme
Exécution directe

On peut exécuter un programme directement avec :
arm-eabi-run prog. S’il n’y a pas d’entrées-sorties, on ne voit évidemment rien...

Exécution avec un débogueur

Nous pouvons utiliser deux versions du méme débogueur : gdb et ddd. On parle aussi de metteur
au point. C’est un outil qui permet d’exécuter un programme instruction par instruction en regardant
les “tripes” du processeur au cours de ’exécution : valeur contenues dans les registres, dans le mot
d’état, contenu de la mémoire, etc.

gdb est la version de base (textuelle), ddd est la méme mais graphique (avec des fenétres, des
icones, etc.), elle est plus conviviale mais plus sujette a des problemes techniques liés a l'installation
du logiciel. . .

Soit le programme objet exécutable : prog. Pour lancer gdb :
arm-eabi-gdb prog. Puis taper successivement les commandes : target sim et enfin load. Mainte-
nant on peut commencer la simulation.

Pour éviter de taper a chaque fois les deux commandes précédentes, vous pouvez créer un fichier
de nom .gdbinit dont le contenu est :

un diese débute un commentaire

commandes de demarrage pour arm-eabi-gdb
target sim

load

Au lancement de arm-eabi-gdb prog, le contenu de ce fichier sera automatiquement exécuté.

Voila un ensemble de commandes utiles :

— placer un point d’arrét sur une instruction précédée d’une étiquette, par exemple : break main.
On peut aussi demander break no avec no un numéro de ligne dans le code source. Un raccourci
pour la commande est b.

— enlever un point d’arrét : delete break numéro_du_point_d’arrét

— voir le code source : 1list

— lancer 'exécution : run

— poursuivre I’exécution apres un arrét : cont, raccourci : ¢

— exécuter l'instruction a la ligne suivante, en entrant dans les procédures : step, raccourci s

— exécuter l'instruction suivante (sans entrer dans les procédures) : next, raccourci n

— voir la valeur contenue dans les registres : info reg

— voir la valeur contenue dans le registre rl1 : info reg $ri

— voir le contenu de la mémoire & I’adresse etiquette : x &etiquette

— voir le contenu de la mémoire & ’adresse 0x3f£5008 : x 0x3ff5008

— voir le contenu de la mémoire en précisant le nombre de mots et leur taille.

x /nw adr permet d’afficher n mots de 32 bits a partir de 'adresse adr.
x /ph adr permet d’afficher p mots de 16 bits a partir de I’adresse adr.

— modifier le contenu du registre r3 avec la valeur 0x44 exprimée en hexadécimal : set $r3=0x44

— modifier le contenu de la mémoire d’adresse etiquette : set *etiquette = 0x44

— sortir : quit

— La touche Enter répete la derniere commande.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 23

Et ne pas oublier : man gdb sous Unix (ou Linux) et quand on est sous gdb : help
nom_de_commande. ..

Pour lancer ddd : ddd --debugger arm-eabi-gdb. On obtient une grande fenétre avec une par-
tie dite “source” (en haut) et une partie dite “console” (en bas). Dans la fenétre “console” taper
successivement les commandes : file prog, target sim et enfin load.

On voit apparaitre le source du programme en langage d’assemblage dans la fenétre “source” et
une petite fenétre de “commandes”. Maintenant on peut commencer la simulation.

Toutes les commandes de gdb sont utilisables soit en les tapant dans la fenétre “console”, soit en
les sélectionnant dans le menu adéquat. On donne ci-dessous la description de quelques menus. Pour
le reste, il suffit d’essayer.

— placer un point d’arrét : sélectionner la ligne en question avec la souris et cliquer sur 'icone

break (dans le panneau supérieur).

— démarrer 'exécution : cliquer sur le bouton Run de la fenétre “commandes”. Vous voyez ap-
paraitre une fleche verte qui vous indique la position du compteur de programme i.e. ou en est
le processeur de 'exécution de votre programme.

— le bouton Step permet 'exécution d’une ligne de code, le bouton Next aussi mais en entrant
dans les procédures et le bouton Cont permet de poursuivre ’exécution.

— enlever un point d’arrét : se positionner sur la ligne désirée et cliquer a nouveau sur l’icone
break.

— voir le contenu des registres : sélectionner dans le menu Status : Registers ; une fenétre apparait.
La valeur contenue dans chaque registre est donnée en hexadécimal (0x...) et en décimal.

— observer le contenu de la memoire étiquettée etiquette : apres avoir sélectionné memory dans
le menu Data, on peut soit donner ’adresse en hexadecimal 0x... si on la connait, soit donner
directement le nom etiquette dans la case from en le précédant du caractere &, c’est-a-dire
&etiquette.

2.4.3 Observation du code produit

Considérons un programme objet : prog.o obtenu par traduction d’un programme écrit en langage
C ou en langage d’assemblage. L’objet de ce paragraphe est de décrire 'utilisation d’un ensemble
d’outils permettant d’observer le contenu du fichier prog.o. Ce fichier contient les informations du
programme source codées et organisées selon un format appelé format ELF.

On utilise trois outils : hexdump, arm-eabi-readelf, arm-eabi-objdump.

hexdump donne le contenu du fichier dans une forme brute.
hexdump prog.o donne ce contenu en hexadécimal complété par le caractere correspondant quand
une valeur correspond a un code ascii; de plus 'outil indique les adresses des informations contenues
dans le fichier en hexadécimal aussi.

arm-eabi-objdump permet d’avoir le contenu des zones data et text avec les commandes respec-
tives :
arm-eabi-objdump -j .data -s prog.o et
arm-eabi-objdump -j .text -s prog.o. Ce contenu est donné en hexadécimal. On peut obtenir la
zone text avec le désassemblage de chaque instruction :
arm-eabi-objdump -j .text -d prog.o.

arm-eabi-readelf permet d’avoir le contenu du reste du fichier.
arm-eabi-readelf -a prog.o donne I’ensemble des sections contenues dans le fichier sauf les zones
data et text.
arm-eabi-readelf -s prog.o donne le contenu de la table des symboles.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 24

Deuxieme partie

Travaux Dirigés

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

25

Chapitre 1

TD séance 1 : Codage

1.1 Codage binaire, hexadécimal de nombres entiers naturels

Ecrire les 16 premiers entiers en décimal, binaire et hexadécimal.

1.2 Codage ASCII

Regarder la table de codes ascii qui est en annexe.
Sur combien de bits est codé un caractere ?

Soit la fonction : code_ascii : un caractére --> un entier € [0,127].
Comment passe-t-on du code d’une lettre majuscule au code d’une lettre minuscule ou l'inverse.
Quelle opération faut-il faire ?

1.3 Codage par champs : codage d’une date

On veut coder une information du style : lundi 12 janvier.
Codage du jour de la semaine : lun :0,...,dim :6, il faut 3 bits
Codage du quantieéme du jour dans le mois : 1..31, 5 bits
Codage du mois : 1..12, 4 bits

Quel est le code de la date : lundi 12 janvier?
Quelle est la date associée au code 001 00011 0001 ?
Quel est la date associée au code 111 11111 11117

1.4 Code d’une instruction ARM

C’est un autre type de codage par champs.

En utilisant la doc technique, coder en binaire les instructions ARM : MOV r5, r7,
MOV r5, #7.

Exercice a faire a la maison : codage d’une instruction add.

1.5 Codage d’un nombre entre 16 et 255

Combien faut-il de bits? Coder les valeurs 17, 67, 188 en binaire et en hexadécimal. En déduire
une méthode rapide de passage binaire vers hexadécimal ainsi que 'inverse.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 27

F1GURE 1.1 — Codage de couleurs

1.6 Codage de nombres a virgule

On représente des nombres & virgule de l'intervalle [0, 16] par un octet selon le code suivant : les 4
bits de poids forts codent la partie entiere, Les 4 bits de poids faibles codent la partie apres la virgulem

Par exemple 01101010 représente 6,625. En effet xgzozix9r_12_92x_32_4 = 01101010 donne
X=4+2+ % + % = 6,625. (Rappelons que les anglo-saxons le notent 6.625)

rang du bit 3 21 0 -1 -2 -3 4
bit 01 1.0 1 0 1 O
valeur arithmétique correspondante | 8 4 2 1 % % % 1—16

Dans le cas général on a: X = Y0, 2 x a5

Que représente le vecteur 00010100 ?
Donner I’écriture binaire de 5,125.
Quel est le plus grand nombre représentable selon ce code ?
Peut-on représenter % ou %?

1.7 Codage de couleurs

Codage des 16 couleurs sur les premiers PC couleurs : Ici, il y a un bit de rouge, un bit de vert,
un bit de bleu et un bit de clair. Ainsi on voit que cobalt est cyan pale, rose est rouge pale, mauve est
violet pale, jaune est brun pale et blanc est gris pale. La figure montre les “mélanges”.

B | b3bab1bg B | b3babi1bg B | b3bab1bg

0] 0000 | noir 51 0101 | violet 10| 1010 | vertpale

110001 | bleu 6| 0110 | brun 11 1011 | cobalt

210010 | vert 710111 | gris 121 1100 | rose

310011 |cyan | 8| 1000 | noirpale | 13| 1101 | mauve

410100 |rouge| 9| 1001 |bleupale |14 | 1110 | jaune
15| 1111 | blanc

1. on ne dit pas décimale car ce mot est impropre ici mais c’est quand méme le mot habituel

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 28

Chapitre 2

TD séance 2 : Représentation des
nombres

2.1 Ecriture des entiers naturels en base 2

2.1.1 Introduction

Les organes d’'un ordinateur sont dimensionnés a un nombre fixe n de bits. Par exemple, les
registres, les unités de calcul, le bus d’acces & la mémoire d’'un ARM?7 sont tous dimensionnés a 32
bits. Tous les calculs sont alors réalisés modulo 2" (environ quatre milliards pour n = 32 bits).

Un entier E peut étre représenté par une suite de n chiffres (ou digits) e;, tous inférieurs a la base
utilisée (0 < e; < B —1) et tels que £ = Z?:_ol e; * B'. Chaque chiffre e; représente le reste de la
division entiere de E/B' par B. La base B est éventuellement précisée en indice & droite du dernier
chiffre ou entre parentheses. Par défaut, il s’agit de la base 10.

101, = 1x224+0x2'4+1x29 = 4+1 = 5y

1019 = 1x1024+0x10'+1x10° = 100+1 = 10119
1011 = 1x1624+0x16"+1x16° = 256+1 = 25710
Adys = 10 x 16" +4 x 16° = 10x16+4 = 164y

2.1.2 Propriété remarquable

n—1 a’ — 1 n—1
D at= 1et221:2"—1
i=0 a- i=0

En effet

(@ t+a" 2+ . +ad+Da—-1)=(@"—a"+a" ' —a"%. .. +a—1)=(a"-1))

2.1.3 Compléments a 1 et a 2

Soit E = Z:‘L;ol e; *2° un entier naturel représenté sur n chiffres en base 2. . On appelle complément
a 2" —1 de E (on dit habituellement complément a 1 de E) I'entier E = Y7 ,€; obtenu en remplagant
les 1 par des 0 et les 0 par des 1 (¢; = 1 — ¢;) dans la représentation en binaire de E. Il s’écrit "E en
langage C. Ona E4+ E=3" e 2 + 3 (1 —¢)20 =Y "2 =2" — 1, dou E=2"—1 - E.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 29

On appelle complément a 2" (on dit habituellement complément & deux) de E 'entier naturel E
I’entier naturel 2" — F, noté . Par définition, E=E + 1. Soit u la position du premier un dans

. . . , . =2 . .
la représentation en binaire de E . La représentation de E~ est obtenue a partir de celle de E en
inversant les n — u bits de poids forts et en conservant les u bits de poids faibles.

2.2 Addition

On rappelle le principe de calcul dans ’addition : colonne par colonne, de droite a gauche. Les
retenues, habituellement placées au dessus de l'opérande gauche, sont placées ici en dessous de
Popérande droit. Dans chaque colonne, on fait la somme des chiffres du premier (a;) et du deuxiéme
(b;) opérande, ainsi que la retenue entrante (¢;).

Le chiffre (r;) du résultat est égal a :
— cette somme, la retenue sortante (c;4+1) étant 0, si somme < base,
— cette somme moins la base, la retenue sortante (¢;11) étant 1, si somme > base.

a3 az a1 ag opérande gauche a;
+base b3 by by by opérande droit b;
C=c4 c¢3 o ¢1 «co retenues sortante | ¢;41 ¢; | entrante
rg Tr9 11 1o résultat apparent T
3 6 4 3 3 6 4 3
+10 5 7 8 5) ﬁ K 5
C=0 1100 |[C=0 1] | «1 | <1 <0 0
9 4 2 8 9<109 14>10L 2>10L 8<10|8
0 1 1 1 0 1 1
+9 0 1 1 0 0 F F
C=01100 [C=0 1 « 1 | <1
1 1 0 1 1< 2|1 3> 2 1 2> 2 L 1<2

Dans une addition normale, la retenue entrante initiale (cq, colonne de droite) est nulle. L utilisa-
tion d’une retenue initiale & 1 permet de calculer I'expression opgauche + 0Pdroit + 1 (pour réaliser des
soustractions par addition du complément a deux).

110 1 1 1 0
+2 1.0 0 1 1 E E
C=100 11 [C=1 0|][<0 | <0 1
01 1 1 2> 20| 1<2L 1<2|1] 3>2
01 .0 0 0 1 0
+2 1.0 1 0 1 E F
C=0 0001 [C=0 0] «<0 | <0
1111 1< 2[1] 1<2L 1<2L 1<2

2.3 Conventions d’interprétation

Soit e = ZZS_Q ;2. Sur n bits, on peut coder 2" valeurs différentes. Mais l'interprétation de ce
codage n’est pas unique. En pratique, 'entier écrit e,,_1 €,_2 €,-3... €1 eg en base deux représente

1. Vi,e; =1 =14 > u, (u=0 si E=0)

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 30

la valeur E = ae,_12" 1 +e.

Les regles de calcul pour l'addition et la soustraction sont les mémes quel que soit « : seule
Iinterprétation des valeurs des opérandes et du résultat change.

2.3.1 Pour entiers naturels (N) : a=1et £ =31 "e2".

En pratique, il n’est pas rare que les entiers manipulés dans la vie courante sortent de 'intervalle
de valeurs représentables dans les formats inférieurs a 64 bits. A titre d’exemple, les capitalisations
boursieres des sociétés ne sont pas toutes représentables sur 32 bits.

Pour stocker une valeur entiere toujours positive ou nulleﬂ le programmeur peut décider
d’utiliser une variable entiére en interprétant son contenu comme un entier naturel (attribut wunsi-
gned de type entier en langage C) afin de maximiser 'intervalle de valeurs représentables : [0...2" —1].

Le bit de poids fort n’a pas de signification particuliere : il indique simplement si la valeur
représentée est supérieure a 2"~ ou pas.

2.3.2 Pour entiers relatifs (Z) : a = —1 et E = —¢, 2" + 320 % ¢,2".

Le bit de poids fort représente maintenant le signe de l'entier et le principe consiste a retrancher
2™ a la valeur associée aux entiers dont le bit de poids fort est a 1. Cette convention représente les
entiers négatifs selon la technique du complément a deuxE]

Dans les langages, cette convention d’interprétation est généralement utilisée par défaut (type int
en langage C).

Un entier E dont le bit de signe est 0 (> 0) appartient & l'intervalle [0...2" "1 — 1] et sa valeur
associée est la méme que dans la convention pour entier naturels.

Un entier E dont le bit de signe est 1 (< 0) appartient a Pintervalle [—-2"~1 +27"1 — 1] et sa
valeur associée est —e2 = —(2" — e).

— Pour calculer 'opposé d’un entier, il faut prendre le complément & deux de cet entier (et non
inverser simplement le bit de signe).

— Sur n bits, I'entier —2"~! est son propre complément & deux et U'entier relatif +2"~! n’est pas
représentable.

— L’ajout d’un bit a 0 en poids fort d’un entier relatif négatif inverse son signe et change sa valeur.

2.3.3 Intervalles représentables

n Convention naturels Convention relatifs

n [0 A 2n —1 | —2n-t A I |
8 |0 a 255 | -128 a +127
16 |0 a 65535 (64K3-1) | -32768 (-32K3) a +32767 (32K3-1)
3210 a 4294967295 (4Gp-1) | -2147483648 (-2Gy) a +2147483647 (2Gy-1)
64 | 0 a 1,8 x 10"(16E, — 1) | —9 x 10'8(—4FEy) A +9 x 108(+4E, — 1)

2. Les constantes adresse et les variables pointeurs entrent dans cette actégorie.

3. La convention alternative ”signe (codé dans le bit de poids fort) et valeur absolue (codée sur les n-1 bits de poids
faibles) a l'inconvénient de définir deux zéros : +0 et -0. Rarement utilisée pour les entiers, elle peut s’appliquer a la
représentation les nombres & virgule flottante.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 31

Pour les bornes de 'intervalle sur 64 bits, le tableau mentionne 'ordre de grandeur (préfixé par) :
la valeur exacte représente une vingtaine de chiffres. Les préfixes K (kilo) et M, (méga) représentent
210 = 102419 et 229 = 104857619, dont la valeur est proche de 1000 (1K) et 1000000 (1M). Méme
principe pour Gy, (giga : 23°) et Ej, (eta : 209).

2.4 Soutraction

Dans chaque colonne, on fait la somme du chiffre du deuxieéme (b;) opérande et de l’emprunt
entrant (e;) et Pemprunt entrant initial ey est nul. Le chiffre (r;) du résultat est égal :
— au chiffre du premier opérande (a;) moins cette somme, 'emprunt sortant (e;y1) étant 0, si
somme < a;,
— au chiffre du premier opérande (a;) plus la base moins cette somme, ’emprunt sortant (e;;1)
étant 1, si somme > a;,

a3 as a1 ag opérande gauche a;
4pase b3 ba by by opérande droit b;
E=e e3 ey e e emprunts sortant | e;11 e; | entrant
rg Tr9 11 1o résultat apparent T
8 6 4 8 8 6 4 8
—10 5 7 9 5) 7 9)
E=0 1100 [E=0 1| [«1 1 <1 0 <0 0
2 8 5 3 6<8]2] 8>6[8| 9>4]5 5<81]3
1 1 0 1 1 1 0 1
—9 01 1 0 0 1 1 0
E=0 1100 [E=0 1| [«1 1 ~1 0 <0 0
0 1 1 1 0<1[0) 2>1]1] 1>0]1 0<1][1
01 0 0 0 1 0 0
—9 01 0 1 0 1 0 1
E=1 1110 [E=1 1| [«1 1 ~1 1 ~1 0
1 1 1 1 1>0]0] 2>1]1]| 1>01|1 1>0]|1

2.5 Soustraction par addition du complément a deux

En pratique, toutes les soustractions sont réalisées par addition du complément & 2. On exploite
la propriété suivante (calculs sur n bits) : z + 7% = x + 2" — y.

Les résultats étant obtenus modulo 2", on peut calculer 'expression x —y en effectuant une addition
comme suit :
— Premier opérande : x
— Deuxieme opérande : 3
— Retenue initiale : 1 (pour faire + 7+ 1)
— On observe que la ligne des retenues dans cette addition de g est le complément de la ligne des
emprunts dans la soustraction normale.

Le calcul de 13 — 6 (réalisable) et 4 — 5 (impossible pour des entiers naturels) est illustré par les
deux derniers exemples des paragraphes (soustraction normale) et (soustraction par addition
du complément a deux).

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 32

2.6 Indicateurs et débordements

Lors d’une opération (addition ou soustraction) sur les entiers, I'unité de calcul d’un processeur
synthétise quatre indicateurs booléens a partir desquels il est possible de prendre des décisions.

2.6.1 Nullité et indicateur : Z

L’indicateur Z (Zéro) et vrai si et seulement tous les bits du résultat apparent sont a 0, ce qui
signifie que ce dernier est nul.

2.6.2 Signe du résultat apparent : N

L’indicateur N est égal au bit de poids fort du résultat apparent. Si ce dernier est interprété comme
un entier relatif, N=1 signifie que le résultat apparent est négatif.

2.6.3 Débordement en convention d’entiers naturels : C

L’indicateur C' (Carry) est la derniere retenue sortante de I'addition. Il n’a de sens que dans une
interprétation de I'opération sur des entiers naturels.

Apres une addition, C' = 1 indique un débordement : le résultat de l'opération est trop grand
pour étre représentable sur n bits. Le résultat apparent est alors faux : il correspond au vrai résultat
a 2" pres.

FE est le dernier emprunt sortant d’une soustraction. £ = 1 indique que la soustraction est im-
possible parce que le deuxieéme opérande est supérieur au premier. Les soustractions sont en pratique
réalisées par addition du complément & deux. C correspond alors & E. Apres une soustraction par
addition du complément a deux, C' = 0 indique que la soustraction est impossible, C' = 1 que
opération est correcte[]]

2.6.4 Débordement en convention d’entiers relatifs : VV

Pour les entiers, la soustraction est toujours réalisée par addition de ’'opposé du deuxieme opérande.

La valeur absolue de la somme de deux entiers relatifs de signes opposés est inférieure ou égale a la
la plus grande des valeurs absolues des opérandes et le résultat est toujours représentable sur n bits.
La somme de deux entiers relatifs de méme signe peut ne pas étre représentable sur n bits, auquel cas
le résultat apparent sera faux :

— Sa valeur n’est égale a celle du vrai résultat de 'opération qu’a 2™ pres.

— Son bit de signe (bit de poids fort) est également faux : la somme de deux entiers positifs

donnera un résultat apparent négatif et la somme de deux entiers négatifs donnera un résultat
apparent positif ou nul.

L’indicateur V (oVerﬂowEl) est l'indicateur de débordement destiné a la convention d’in-
terprétation pour entiers relatifs. V' = 1 indique un débordement, auquel cas les deux dernieres
retenues sont de valeurs différentes.

4. Attention : les instructions de soustraction ou de comparaison de certains processeurs (dont le SPARC) stockent
dans C le complément de la retenue finale. Pour ces processeurs, C' = 1 indique toujours une erreur, que ce soit apres
une addition ou une soustraction.

5. L’initiale O n’a pas été retenue pour éviter une confusion avec zéro

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 33

00 1 1 +3 01 1 0 +6
1o 1011 5 +o 01 0 0 +4
V=0 0=0 1 1 0 V=1 0#£1 0 0 0
1 1 10 =2 1 010 -6
1010 -6
1o 1 100 -4
V=1 1#0 0 0 0
0 1 1 0 +6

Le signe du vrai résultat (sans erreur) de I'opération s’écrit : V& N = V.N + V.N. Ainsi, le signe
du résultat de 'opération sans erreur est N signe du résultat apparent s’il n’y a pas de débordement
(V), ou le signe opposé N de celui du résultat apparent en cas de débordement (V).

2.6.5 Expressions des conditions avec les indicateurs ZNCV

Apres synthese des indicateurs lors du calcul de x — y, il est possible de tester diverses conditions.

Par exemple ,l’expression de la condition ”strictement inférieur” (x < y) est :
— C six ety sont considérés comme des entiers naturels (la soustraction est impossible)
— V@&N sixetysont considérés comme des entiers relatifs (le vrai résultat est négatif).

2.7 Exercices

2.7.1 Addition d’entiers naturels

Quels entiers naturels peut-on représenter sur 4 bits?

Choisir deux entiers naturels représentables sur 4 bits, faire la somme en faisant apparaitre les
retenues propagées. Quand la somme n’est-elle pas représentable sur 4 bits?

On pourra reprendre ’exercice pour des nombres représentés sur 8, 16 ou 32 bits...

2.7.2 Représentation des entiers relatifs en complément a deux

Quels entiers relatifs peut-on représenter sur 4 bits? Donner pour chacun leur codage en
complément a 2.

Quels entiers relatifs peut-on représenter sur 8 bits ? Comment s’y prendre pour coder un entier
relatif en complément a 2 sur 8 bits 7 Comment passer d’un relatif négatif & son opposé?

Choisir un entier relatif positif représentable sur 4 bits. Donnez sa représentaion sur 8 bits.

Choisir un entier relatif négatif représentable sur 4 bits. Donnez sa représentation sur 8 bits.

2.7.3 Addition d’entiers relatifs

Choisir deux entiers relatifs un positif et un négatif représentables sur 4 bits, faire la somme. Quand
la somme n’est-elle pas représentable sur 4 bits?

Choisir deux entiers relatifs positifs représentables sur 4 bits, faire la somme. Identifier les cas ou
la somme n’est pas représentable sur 4 bits?

Méme question pour deux entiers relatifs négatifs.

On pourra reprendre les exercices pour des nombres représentés sur 8, 16 ou 32 bits...

2.7.4 Soustraction de naturels

Choisir deux entiers naturels représentables sur 4 bits, faire la différence. Quand la différence
n’est-elle pas représentable sur 4 bits?

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 34

Pour comparer deux nombres a et b on peut calculer la différence a —b; a > bssi a —b > 0.

Dans le tableau de la figure 2.2 de votre documentation retrouvez les lignes correspondant a des
comparaisons (>, <,<,>) de nombres dans N. Faire le lien avec la réponse que vous avez donnée
précédemment.

2.7.5 Comparaisons d’entiers relatifs

Choisir deux entiers relatifs représentables sur 4 bits, faire la différence. Exprimer quand la
différence n’est pas représentable est un peu plus complexe : on trouve les expressions logiques
nécessaire dans le tableau de la figure 2.2 de votre documentation. Prendre un exemple par

exemple le cas < et chercher des entiers relatifs correspondant & chacun des cas de ’expression
ZNV((NAV)V(NAV)).

2.7.6 Multiplier et diviser par une puissance de deux

Choisir un entier naturel n représentable sur 8 bits. Quelle est la représentation de 2 xn, de 4 x n,
de 8 xn? Quelle est la représentation de n/2, de n/4, de n/8?

Choisir un entier relatif (essayer avec un positif puis avec un négatif) = représentable sur 8 bits.
Quelle est la représentation de 2 x x, de 4 x x, de 8 x x 7 Quelle est la représentation de x/2, de x/4,
de z/87

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 35

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

36

Chapitre 3

TD séance 3 : Langage machine

3.1 Sujet du TD

On considere l'instruction : x := (a + b + ¢) - (x - a - 214).

X, a, bet csont des variables représentées sur 32 bits et rangées en mémoire aux adresses (fixées
arbitrairement) : 0x50£0 0x2fa0, 0x3804, 0x4050.

Il existe un espace mémoire libre a partir de 'adresse 0x6400.

On veut écrire un programme en langage machine qui exécute l'instruction considérée. Le pro-
gramme ne doit pas changer les valeurs des variables a, b et c (i.e. ne doit pas changer le contenu des
cases mémoire correspondantes).

Exercice : Dans chacun des langages machines décrits dans la suite, écrire systématiquement le
programme qui exécute l'instruction ci-dessus.

3.2 Un premier style de langage machine : machine dite a accumu-
lateur

La figure donne la structure de la machine. Cette machine possede un registre spécial appelé
accumulateur (on notera ACC) utilisé dans les opérations a la fois comme un des deux opérandes et
pour stocker le résultat.

Dans une telle machine une instruction de calcul est formée du code de l'opération a réaliser
(addition ou soustraction) et de la désignation d’un opérande. Il y a deux fagons de désigner une
information : on donne son adresse en mémoire ou on donne une valeur.

instruction | opération réalisée

add adr ACC <-- ACC + MEM[adr]
add# vi ACC <-- ACC + vi

sub adr ACC <-- ACC - MEM[adr]
sub# vi ACC <—- ACC - vi

Par ailleurs, on peut aussi charger une information dans 'accumulateur depuis la mémoire ou avec
une valeur appelée valeur immeédiate.

instruction | opération réalisée
load adr | ACC <-- MEM[adr]
load# vi ACC <—- vi

Et enfin, on peut ranger la valeur contenue dans ’accumulateur en mémoire :

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 37

¢ BUS DONNEES ¢

0x0000

opérande

instructions
v registre

instruction

ACC BUS ADRESSES 0x2fa0| valeur de a

H

0x3804 valeur de b

0x405(valeur de ¢ données

PROCESSEUR 0x50f0] valeur de x

0x6400 1ibre
si besoin

Oxfftf]

MEMOIRE

FIGURE 3.1 — Structure d’une machine & accumulateur

instruction | opération réalisée
store adr | MEM[adr] <-- ACC

1. Calculer la taille du programme si on suppose que les adresses sont représentées sur 16 bits (2
octets), les valeurs immédiates sont aussi représentées sur 2 octets et le code instruction est lui
codé sur 1 octet.

2. Quelle est la différence entre sub 0x2fa0 et sub# 2147
3. Une instruction store# 6 a-t-elle une signification ?

4. Ecrire un programme qui réalise le méme calcul en commencant par évaluer la soustraction.

Les microprocesseurs des années 70/80 ressemblent a ce type de machine : type 6800, 6501 (APPLE
2), Z80. 11 en existe encore dans les petits automatismes, les cartes a puce, ... Les adresses sont souvent
sur 16 bits, les instructions sur 1,2,3,4 octets, le code opération sur 1 octet.

3.3 Machine avec instructions a plusieurs opérandes

On va s’intéresser maintenant a une machine dans laquelle on indique dans I'instruction : le code
de l'opération a réaliser, un opérande dit destination et deux opérandes source.

On pourrait imaginer une instruction de la forme : add adr1l, adr2, adr3 dont la signification
serait : mem[adrl] <-- mem[adr2] + mem[adr3].

Cela cotiterait cher en taille de codage d’une instruction (6 octets pour les adresses si une adresse
est sur 2 octets + le reste) mais surtout en temps d’exécution d’une instruction (3 acces mémoire).

Dans ce type de machine, il y a en fait des registres, proches du processeur et du coup d’acces plus
rapide. On peut y stocker les informations avec lesquelles sont faits les calculs (Cf. figure . Ilya
de plus des opérations de transfert d’information de la mémoire vers les registres (et inversement).

Les registres sont repérés par des numéros. On note regs le registre de numéro 5 par exemple. On
notera aussi regb la valeur contenue dans le registre.

Une instruction de calcul est formée du code de I'opération a réaliser, et de la désignation des
registres intervenant dans le calcul. On trouve deux formes de telles instructions :

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 38

¢ BUS DONNEES ¢

0x000(
opérandel opérande2 registre
instruction
instructions
N
R1
4 <
opérande_dest R2 BUS ADRESSES 0x2fa(} valeur de a
0x3804 valeur de b
0x4050 valeur de c| | données
PROCESSEUR 0x50f() valeur de x
0x6400 1ibre
si besoin
Oxfff
MEMOIRE

FIGURE 3.2 — Structure d’une machine générale a registres

— deux opérandes sources dans des registres (on écrira regsl et regs2) et un registre pour le
résultat du calcul (on écrira regd pour registre destination).

— un opérande source dans un registre et 'autre donné dans 'instruction (valeur immédiate) et
toujours un registre destination.

instruction opération réalisée

add regd regsl regs2 | regd <-- regsl + regs2
sub regd regsl regs2 | regd <-- regsl - regs2
add# regd regsl vi regd <-- regsl + vi
sub# regd regsl vi regd <-- regsl - vi

Au niveau du codage, il faut coder : le code de 'opération & réaliser et les numéros des registres.
Par exemple sur ARM il y a 16 registres, d’ou 4 bits pour coder leur numéro.

Nous avons besoin aussi d’effectuer des transferts entre mémoire et registres. En général, dans ce
genre de machine les adresses (et les données) sont représentées sur 32 bits (question d’époque...).
Le probleme est que pour représenter l'instruction amener le mot mémoire d’adresse 0r2fa0 dans le
registre 2, il faut : 1 codeop + 1 numéro de registre sur x bits + 1 adresse (0x2fa0) sur 32 bits pour
former l'instruction... codée elle aussi sur 32 bits.

Les opérations de transfert sont réalisées en deux étapes : mettre I’adresse du mot mémoire concerné
dans un registre (ci-dessous regl) puis charger un registre avec le contenu du mot mémoire a cette
adresse (load) ou ranger le contenu du mot mémoire a cette adresse dans un registre (store).

instruction opération réalisée
METTRE regl, adr regl <-- adr

load reg2, [regl] reg2 <-- Mem[regl]
ou
METTRE regl, adr regl <-- adr

store [regl], reg2 | Mem[regl] <-- reg?2

1. Si on suppose qu’une instruction est codée sur 4 octets, quelle est la taille du programme ?

2. Discuter de la taille de codage des numéros de registres.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 39

3. Discuter de la taille de codage des valeurs immédiates.
4. Pourquoi en général n’y a-t-il qu'une valeur immédiate 7

Les microprocesseurs des années 90 sont de ce type : machines RISC, type Sparc, ARM. Les
adresses sont en général sur 32 bits, toutes les instructions sont codées sur 32 bits, et il y a beaucoup
de registres.

Remarque : Attention, pour le processeur ARM, dans la syntaxe de linstruction store les
opérandes sont inversés par rapport au choix fait ci-dessus; on écrit str reg2, [regll]. Ainsi Uordre
d’écriture des opérandes est le méme pour U'instruction store (str) et l'instruction load (1dr).

Dans les années 70/80 il y a eu des processeurs (pas micro du tout) de type VAX (inspirés de,
avec beaucoup de variantes). Une instruction peut étre codée sur 4 mots de 32 bits et donc contenir
3 adresses.

Il a été construit dans les années 80/90 des microprocesseurs avec deux opérandes pour une ins-
truction : un opérande source servant aussi de destination (type 68000, 8086). Les adresses sont sur
16, 24 ou 32 bits, les instructions sur 1,2,3 ou 4 mots de 16 bits. Le code opération est généralement
sur 1 mot de 16 bits. Il y a 8 ou 16 registres.

3.4 Codage de METTRE ?

Il reste & comprendre comment coder : METTRE une adresse de 32 bits dans un registre?

Meéme si on n’a plus que le code de METTRE, un seul numéro de registre, ’adresse reste sur 32
bits et ¢a ne tient toujours pas...

Par exemple, on veut coder : charger reg2 avec le mot mémoire d’adresse 0x2fff2765. On
va donc coder : METTRE regl, 0x2fff2765 puis load reg2, [regl].

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 40

Chapitre 4

TD séance 4 : Langage machine (suite)

On travaille sur un programme écrit en langage d’assemblage ARM qui exécute 'instruction : x :=
(a+b+c)- (x-a-214).

Dans la pratique, ce n’est pas nous qui fixons les adresses, elles sont fixées par les outils de tra-
duction et/ou de chargement en mémoire et nous on peut utiliser des étiquettes... c’est plus agréable
a lire.

Le programme ARM :

@ programme calculant x <-- (a + b +¢c) + - (x - a - 214)

.text
.global main
main: 1ldr rl, ptr_a
1dr r1, [ri]
ldr r2, ptr_b

1dr r2, [r2]
ldr r3, ptr_c
1dr r3, [r3]

add r4, r1, r2
add r4, r4, r3
1dr r2, ptr_x
ldr r3, [r2]
sub r3, r3, ril
sub r3, r3, #214
sub r4, r4, r3
str r4, [r2]
mov pc, lr
.org 0x1000
ptr_a: .word a
ptr_b: .word b
ptr_c: .word c
ptr_x: .word x

.data

.org 0x2fa0
a: .word 10

.org 0x3804
b: .word 20

.org 0x4050
c: .word 30

.org 0x50f0
X: .word 1000

La directive .org permet de fixer I’adresse relative ol sera stockée la valeur qui suit. Par exemple,
le mot étiquetté a sera rangé a ’adresse de début de la zone data + 0x2fa0.

1. Dessiner le contenu de la zone de données en exprimant les valeurs des différentes données en
hexadécimal (en faisant apparaitre les différents octets).

2. Ajouter des commentaires au programme explicitant chacune des lignes de code.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 41

On traduit le programme en binaire en fixant les adresses de début de la zone text et de la zone

data :

arm-eabi-as -0 exp_arm.o exp_arm.s -mbig-endian

arm-eabi-1d -o exp_arm exp_arm.o -—-e main -Ttext 0x800000 -Tdata 0x0 -EB

La zone text étant stockée a partir de I’adresse 0x800000 (option -Ttext 00800000) et la zone

data a partir de adresse 00000000 (option -Tdata 0x0), on regarde la traduction obtenue.

Zone text :

$ arm-eabi-objdump -d -j .text exp_arm

exp_arm:

Disassembly of section .text:

00800000

800000:
800004 :
800008:
80000c:
800010:
800014:
800018:
80001c:
800020:
800024 :
800028:
80002c:
800030:
800034 :
800038:

00801000

801000:

00801004

801004 :

00801008

801008:

0080100c

80100c:

file format elf32-bigarm

<main>:
eb9f1ff8
e5911000
eb9f2ff4
5922000
eb9f3ff0
€5933000
0814002
0844003
eb9f2fed
€5923000
0433001
€24330d6
e0444003
5824000
e1a0f00e

<ptr_a>:
00002fa0

<ptr_b>:
00003804

<ptr_c>:
00004050

<ptr_x>:
0000500

Zone data :

$ arm-eabi-objdump -s -j

exp_arm:

1ldr rl,
1ldr rl,
1ldr r2,
ldr r2,
1ldr r3,
1ldr r3,
add r4d,
add r4,
1ldr r2,
1ldr r3,
sub r3,
sub r3,
sub rd,
str r4d,
mov pc,
andeq r2,
andeq r3,
andeq r4,
streqd

[pc, #4088] ; 801000 <ptr_a>
[r1]

[pc, #4084] ; 801004 <ptr_b>
[r2]

[pc, #4080] ; 801008 <ptr_c>
[r3]

rl, r2

r4, r3

[pc, #4068] ; 80100c <ptr_x>
[r2]

r3, ril

r3, #214 ; 0xd6

r4d, r3

[r2]

1r

r0, rO, lsr #31

r0, r4, 1lsl #16

r0, r0, asr rO

r5, [r0], -r0

.data exp_arm

file format elf32-bigarm

Contents of section .data:
0000 00000000 00000000

2£90 00000000 00000000
2fa0 0000000a 00000000
2fb0 00000000 00000000

2fc0 00000000 00000000

37£0 00000000 00000000
3800 00000000 00000014
3810 00000000 00000000

4040 00000000 00000000
4050 0000001e 00000000

00000000 00000000

00000000
00000000
00000000

00000000

00000000
00000000
00000000

00000000
00000000

00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

42

4060 00000000 00000000 00000000 00000000
4070 00000000 00000000 00000000 00000000

50e0 00000000 00000000 00000000 00000000
50£0 000003e8

1. En fin de zone text on trouve le binaire correspondant aux déclarations des adresses en zone
data. Repérez les valeurs (attention : ce sont des adresses) associées aux étiquettes ptr_a,
ptr_b, ptr_c et ptr_x.

2. Retrouvez les valeurs rangées a ces adresses dans la zone data.

3. Quelle est la traduction de l'instruction 1dr r1, ptr_a? Etudiez le codage binaire de cette
instruction et retrouvez-y les différents éléments : le code de 1dr, le code des registres rl et pc
et la valeur du déplacement.

4. Quelle est la traduction de l'instruction ldr r1, [r1]? Etudiez le codage binaire de cette
instruction et retrouvez-y les différents éléments : le code de 1dr, le code des registres ri et r1
et la valeur du déplacement.

5. Comprendre le déplacement codé dans instruction 1dr ri, ptr_a?

6. Recommencer le méme travail avec I'instruction 1dr r2, ptr_x?

Codage des instructions 1dr et str : La figure donne un sous-ensemble des reégles de codage
des instructions 1dr et str, suffisant pour traiter les exercices précédents. On peut par exemple coder :
ldr rd, [rn, +/-déplacement]; le bit U code le signe du déplacement (1 pour +, 0 pour —) et le
bit L vaut 1 pour 1dr et 0 pour str.

31 28 27 24 23 2221 20 1916 1512 11 0
’cond ‘OIOl‘U‘ 00 ‘L‘ m ‘ rd ‘deplacement‘

FIGURE 4.1 — Codage des instructions 1dr et str

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 43

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

44

Chapitre 5

TD séances 5 et 6 : Codage des
structures de controle

5.1 Codage d’une instruction conditionnelle

On veut coder l'algorithme suivant : si a = b alors ¢ <-- a-b sinon ¢ <-- a+b.

L’évaluation de I’expression booléenne a = b est réalisée par une soustraction a-b dont le résultat
ne nous importe guere; on veut juste savoir si le résultat est 0 ou non. Pour cela on va utiliser
I'indicateur Z du code de condition arithmétique positionné apres une opération :
Z = 1 si et seulement si le résultat est nul
Z = 0 si et seulement si le résultat n’est pas nul.

De plus nous allons utiliser I'instruction de rupture de séquence Bcc qui peut étre conditionnée
par les codes de conditions arithmétiques cc.

On peut proposer beaucoup de solutions dont les deux suivantes assez classiques :

@ a dans rO, b dans ri

CMP r0, r1 @ a-b 77 CMP r0, rl1 @ a-b 77
BNE sinon BEQ alors

alors: @ a=b : ¢ <-- a-b sinon: Q@ a!=b : c <-- a+tb
BAL finsi BAL finsi

sinon: @ al!=b : c <-- a+b alors: @ a=b : ¢ <-- a-b

finsi: finsi:

Exercices :

1. Comprendre I’évolution du controle (compteur de programme, valeur des codes de conditions
arithmétiques) pour chacune des deux solutions.

2. Quel est 'effet du programme suivant :

CMP r0, r1

BNE sinon

SUB r2, r0, ri1
sinon: ADD r2, rO, ril

3. Coder en langage d’assemblage ARM l'algorithme suivant :
si x est pair alors x <-- x div 2 sinon x <-- 3 * x + 1

la valeur de la variable x étant rangée dans le registre r5.

©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 45

5.2 Notion de tableau et acceés aux éléments d’un tableau

Considérons la déclaration de tableau suivante :
TAB : un tableau de 5 entiers représentés sur 32 bits.
Il s’agit d’un ensemble d’entiers stockés dans une zone de mémoire contigué de taille 5 x 32 bits (ou
5 x 4 octets). La déclaration en langage d’assemblage d’une telle zone pourrait étre :
debutTAB: .skip 5%4
ol debutTAB représente ’adresse du premier élément du tableau (considéré comme 1’élément numéro
0). debutTAB est aussi appelée adresse de début du tableau.

Quelle est I'adresse du 2°€ élément de ce tableau? du 3¢™€? du ¢¢™¢, 0 <1 <47

On s’intéresse a l'algorithme suivant :

TAB[0] <-- 11
TAB[1] <-- 22
TAB[2] <-- 33
TAB[3] <-- 44
TAB[4] <-- 55

Les deux premieres affectations peuvent se traduire :

.data
debutTAB: .skip 5%4

.text
.global main
main:
ldr rO, ptr_debutTAB
mov rl, #11

str r1, [rO]
mov rl, #22
add r0, rO, #4 @ *
str r1, [rO] Q@ *
@ a completer
fin: bal fin
ptr_debutTAB : .word debutTAB

A la place des lignes marquées (*) on peut écrire une des deux solutions suivantes :
— str r1l, [r0, #4]: le registre r0 n’est alors pas modifié.
— oumov r2, #4 puis str r1, [r0, r2]; le registre r0O n’est pas modifié.

Exercices : Compléter ce programme de fagon a réaliser la derniere affectation. Reprendre le méme
probleme avec un tableau de mots de 16 bits. Reprendre le méme probleme avec un tableau d’octets.

5.3 Codage d’une itération

Si notre tableau était formé de 10000 éléments, la méthode précédente serait bien laborieuse ... On
utilise alors un algorithme comportant une itération.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 46

lexique local
i1 : un entier compris entre O et 4
val : un entier
algorithme :
val <—- 11
i parcourant O..4
TAB[i] <- val
val <- val + 11

ce qui peut aussi s’écrire :

val <-- 11

i<--20

tant que 1 <> 5 @ ou bien : tant que i <= 4 ou encore i < 5
TAB[i] <- wval
val <- val + 11
i<—1+1

A noter : si i était mal intialisé avant le tant que (par exemple i = 6), on obtiendrait une boucle
infinie avec le test #, et une terminaison sans exécuter le corps du tant que avec les conditions < ou <.

Nous exprimons le méme algorithme en faisant apparaitre explicitement ’adresse d’acces au mot
de la mémoire : TAB[i].

val <-- 11

i<-—-0

tant que i <> 5
MEM [debutTAB + 4*i] <-- val
val <- val + 11
i<—1i+1

Exercices :

1. Coder cet algorithme en langage d’assemblage, en installant les variables val, i et debutTAB
respectivement dans les registres : r3, r2 et r0.
Pour évaluer I'expression booléenne i <> 5, on calcule i-5, ce qui nous permet de tester la
valeur de i <> 5 en utilisant I'indicateur Z code de condition arithmétique : si Z = 1, i-5 est
égal A 0 et si Z = 0, i-5 est différent de 0.

2. Dérouler ’exécution en donnant le contenu des registres & chaque itération.

3. Modifier le programme si le tableau est un tableau de mots de 16 bits?

4. Lors de ’exécution du programme précédent on constate que la valeur contenue dans le registre
r0 reste la méme durant tout le déroulement de I'exécution; il s’agit d’un calcul constant de
la boucle. On va chercher a l'extraire de facon a ne pas le refaire a chaque fois. Pour cela on
introduit une variable AdE1t qui contient & chaque itération l’adresse de 1’élément accédé.

val <-—- 11; i <——- 0
AdE1t <- debutTAB
tant que i <= 4
{ invariant : AdElt = debutTAB + 4 * i }
MEM [AdE1t] <-- val
i<-—13i+1
val <- val + 11
AdElt <- AdElt + 4

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 47

On peut alors supprimer la variable d’itération i en modifiant le test d’arrét de l'itération.
D’une boucle de parcours de tableau par indice on passe a une boucle de parcours par pointeur
(la variable indice i peut étre supprimée) :

— multiplication des deux membres de I'inéquation par 4 : 4 %7 < 4 x4

— ajout de debutTAB : debutT AB + 4 xi < debutT AB + 4 x4

— remplacement de debutTAB-+4*i par AdElt

{i=01}
val <-- 11; AdElt <- debutTAB; finTAB <- debutTAB+4x4
tant que AdElt <= finTAB

{ invariant : AdElt = debutTAB + 4 * i }

MEM [AdE1t] <-- val

val <- val + 11

AdE1lt <- AdElt + 4

Remarques :

— On peut aussi utiliser les conditions AdFEIlt # finTAB ou AdElt < finTAB avec
finTAB < —debutT AB + 4 % 5, en transformant la condtion de départ i # 5 ou i < 5.

— dans le corps du tant que, d’apreés 'invariant, on pourrait recalculer i a partir de AdEIlt
(i = (AdEIlt — debutT AB)/4).

Apres avoir compris chacune de ces transformations, traduire la derniére version de ’algorithme
en langage d’assemblage.

5.4 Calcul de la suite de “Syracuse”

La suite de Syracuse est définie par :

Uy = wun entier naturel >0

U, = Uyn-1/2siU,_1 est pair

= U,—1 x3+1 sinon
Cette suite converge vers 1 avec un cycle.
Calculer les valeurs de la suite pour Uy = 15.
Pour calculer les différentes valeurs de cette suite, on peut écrire I'algorithme suivant (a traduire
en langage d’assemblage) :

lexique :
X : un entier naturel
algorithme :
tant que x <> 1
si x est pair
alors x <-- x div 2
sinon x <-—- 3 *x x + 1

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 48

Chapitre 6

TD séance 7 : Fonctions : parametres
et résultat

6.1 Appel de fonction ou procédure en ARM

L’instruction permettant ’appel de fonction ou de procédure est nommée bl. Son effet est de
sauvegarder l'adresse de l'instruction qui suit l'instruction bl ... (on parle de l'adresse de retour)
dans le registre r14 aussi nommé 1r (Link Register) avant de réaliser le branchement a la fonction ou
procédure. Le retour se fait alors par I'instruction mov pc, 1r.

Le schéma standard d’un programme P appelant une fonction ou procédure Q peut s’écrire :

P: ... Q: ... Pbis : mov 1lr,pc @ equivalent de bl

bl Q e b Q Q@ en 2 instructions
ce @ 1r repére ici (pc+2 instr)
mov pc, 1r

6.2 Codage d’une fonction avec parametres passés par les registres

On considere une fonction qui retourne un code pour un caractere donné.

fonction code (c: caractére, n: entier naturel) --> caractére

{ code(c, n) est le caractére obtenu par une translation de n caractéres
a4 partir de c en considérant 1’ordre alphabétique usuel.

Par exemple code(’a’, 3) est le caractére ’d’.

préconditions : c est une lettre minuscule, O <= n <= 26 }

On donne ci-dessous un algorithme pour la fonction code. On donne aussi la version correspondante
en langage C et en langage Ada.

Pseudocode :

code (ascii_c, n)
si ascii_c + n <= 122 alors acsii_c + n sinon acsii_c + n - 26

Lors de l'appel, le (code ASCII du) caractere est étendu au format 32 bits et déposé dans un
registre. Le (code ASCII du) caractere résultat occupe l'octet de poids faible du registre contenant la
valeur retournée par la fonction. Ceci correspond aux conversions de types explicites du code ADA (et
implicites en C).

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 49

Langage C :

char code (char ascii_c, unsigned int n) {

int res; /* utiliser de preference r5 pour stocker res */
res = ascii_c + n; /* conversion implicite de ascii_c en int */
if (res > ’z’) res = res - 26;

return res; /* conversion implicite de res en char */

}

Langage Ada :

function code (ascii_c: in Character; n: in Natural) return Character is
res Character;
begin
res := Character’Pos (ascii_n) + n;
if (res > Character’Pos (’z’)) -- Character’Pos (’°z’) : Ascii(z) = 122
then res := res - 26;
endif
return Character’Val (res);
end code;

Exercice 1 : On convient que le code ascii du caractere c est dans le registre rO, que l'entier n
est dans le registre rl et que le résultat de la fonction est dans le registre r2. Traduire en langage
d’assemblage ARM la fonction code.

On considere le programme suivant :

ccl : caractére; rrl : caractére; /* char ccl,rrl; */

LireCar(ccl); /* LireCar (&ccl); ou scanf ("%c",&ccl); */

rrl = code (ccl, 3); /* rrl = code (cc1,3); */

EcrCar (rrl); /* EcrCar(rrl); ou printf ("%c",rrl); */
Exercice 2 : On donne ci-dessous un squelette de traduction en langage d’assemblage ARM de

ce programme, avec en particulier les parties de code correspondants a Lire(ccl) et Ecrire(rrl).
Compléter le programme en langage d’assemblage ARM .
On précise les spécifications suivantes :
— la procédure LireCar lit un caractere dans le mot mémoire dont ’adresse est donnée en pa-
rametre, dans le registre rl.
— la procédure Ecrcar prend en parametre d’entrée le caracteére a écrire, dans le registre rl.

.data
ccl: .byte O
rrl: .byte O

.text
main:
@ Lire(ccl)
ldr r1, ptr_ccl
bl Lirecar

@ le caractére lu est dans la zone data a 1’adresse ccl
@ appel de code (ccl, 3)

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 50

@ nA COMPLETER
@ on range le resultat dans rril
@ A COMPLETER
@ EcrCar(rrl) : le caractére a écrire doit &tre dans ril
@ A COMPLETER
bl EcrCar
ptr_ccl: .word ccl
ptr_rrl: .word rril

6.3 Un autre exemple : factorielle

6.3.1 Utilisation d’une fonction de calcul du produit de deux entiers

On considere le programme suivant qui calcule la factorielle d’'un entier en utilisant un algorithme
itératif.

res, X, n : entiers @ n est 1l’entier dont on veut calculer la factorielle
Lire (n)
res = 1
X =n
tantque x !=1
res = res * X
x=x-1
Ecrire (res)

Exercice : donner une traduction de ce programme en langage d’assemblage ARM. Les variables res,
x et n seront rangées respectivement dans les registres : r5, r6, r7 (voir le squelette de programme
ci-dessous). On utilise une fonction mul qui calcule le produit de deux entiers. Vous en trouverez une
réalisation au paragraphe mais vous n’avez pas besoin d’en comprendre le fonctionnement pour
faire I'exercice. La spécification est la suivante :

@ fonction mul (a,b : entiers) --> un entier

@ calcule le produit des deux entiers donnés a et b
@ paramétres données : a<-->r0 b<-->rl

Q@ résultat dans r2

.data
n: .skip 4
res: .skip 4

.text

main:

@ Lire(n)

ldr rl, ptr_n

bl Lire32

@ 1’entier lu est dans la zone data a l’adresse n
@ Ecrire(res), l’entier a écrire est dans rl

ldr r12, ptr_res

1dr r1, [ri12]

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 51

bl EcrNdecimal32

ptr_n: .word n
ptr_res: .word res

6.3.2 Une fonction en appelle une autre

On reprend 'exercice précédent en définissant une fonction qui calcule la factorielle, cette fonction
étant appelée dans le programme principal.

fonction factO (n : entier) --> entier {
int res, x
res =1; x =n
tantque (x != 1)
res = res * X;
X =x-1;
retour res;

}

n, fO: entier
Lire (n)
f0 = fact0 (n)
Ecrire (£0);

Exercice 1 : transformer le programme précédent pour donner un code ARM de la fonction factO
et écrire le programme principal ci-dessus en rangeant les variables n et f0 dans la zone data.

On convient des conventions suivantes pour la fonction factO : le parametre n est passé dans le
registre r0, le résultat de la fonction est rangé dans le registre ri.

Exercice 2 : imaginez ’exécution : le programme appelle la fonction factO qui appelle la fonc-
tion mul. Quelles sont les adresses que 'on trouve successivement dans le registre 1r. Conclure...

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 52

Chapitre 7

TD séance 8 : Appels/retours de
procédures, action sur la pile

7.1 Meécanisme de pile

La pile est une zone de la mémoire. Elle est accessible par un registre particulier appelé pointeur
de pile (noté sp, pour stack pointer) : le registre sp contient une adresse qui repeére un mot de la
zone mémoire en question.

On veut effectuer les actions suivantes :

— empiler : on range une information (en général le contenu d’un registre) au sommet de la pile.
— dépiler : on "prend” le mot en sommet de pile pour le ranger par exemple dans un registre.

Le tableau ci-dessous décrit les différentes facons de mettre en oeuvre une pile en fonction des
conventions possibles pour le sens de progression (vers les adresses croissantes ou décroissantes) et
pour la contenu de la case mémoire pointée (vide ou pleine).

sens croissant croissant décroissant décroissant
pointage 1" vide dernier plein 1" vide dernier plein
empiler reg | M[sp|«—reg sp«sp+1 M][sp|«reg sp <sp-1
sp+sp+1 M][sp|<+reg sp<—sp-1 M[sp|«reg
dépiler reg | sp<—sp-1 reg<«M]sp] sp<—sp+1 reg«M/|sp]
reg<—M][sp] sp<—sp-1 reg<—M|sp] sp<sp+1

Dans le TD et dans tout le semestre, on travaille avec un type de mise en oeuvre. On choisit celle qui
est utilisée dans le compilateur arm-eabi-gcc c’est-a-dire ”décroissant, dernier plein” (Cf. figure [7.1)).

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 53

Mem Mem
0 0
sommet de pile
% %
apres
avant P
SP — =X
SP — =—#T1-------------°
R’, R
max max
empiler
—

FIGURE 7.1 — Mise en oeuvre de la pile. La pile progresse vers les adresses décroissantes, le pointeur de
pile repére la derniére information empilée

Exercices : utilisation de la pile

Supposons que la pile soit comprise entre les adresses 3000 comprise et 30F0 exclue. Le pointeur
de pile est initialisé avec I’adresse 30F0. Dans cet exercice on empile des informations de taille 1 octet.

Questions :

— Quelle est la valeur de sp quand la pile est pleine ?

— De combien de mots de 32 bits dispose-t-on dans la pile ?

— De combien d’octets dispose-t-on dans la pile ?

— Ecrire en ARM les deux instructions permettant d’empiler le contenu d’un octet du registre
r0. Dans la suite du TD on ecrira : empiler rO.

— Ecrire en ARM les deux instructions permettant de depiler le sommet de pile dans le registre
r0. Dans la suite du TD on ecrira : depiler rO.

— Dessiner 1’état de la mémoire apres chacune des étapes du programme suivant : mov rO,#
7; empiler r0O; mov rO, # 2; empiler rO; mov rO, # 5; empiler r0O; mov rO, # 47;
depiler r0O; depiler r0O; mov rO, # 9; empiler rO

— Reprendre I'exercice si on travaille avec des informations codées sur 4 octets. Comment modifier
le code de empiler et depiler?

7.2 Appel et retours de procédures

On travaille avec le programme ci-dessous ; les procédures " A”, ”B” et ”C” sont rangés aux adresses
10, 60 et 80.

Remarque : il s’agit du programme donné en cours dans lequel on a remplacé les Ai, Bi et Ci par
des vraies instructions.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 54

10 Al=mov r0, # 0 || 60 Bl= empiler r0 80 Cl=mov r0, # 47
14 A2= empiler r0 | 68 B2=add r0, r0, # 1 | 84 bl 60 (B)

lc bl 60 (B) 6c B3= depiler r0 88 (2= empiler r0
20 A3=mov r5, #28 || 74 mov pc, 1r 90 bl si condX 80 (C)
24 bl 80 (C) 94 C3=mov r2, rb
28 A4= depiler r0 98 (4= depiler r0

a0 mov pc, 1r

Questions : Le programme C est incorrect. Expliquer pourquoi et le corriger en conséquence.
Donner une trace de ’exécution du nouveau programme en indiquant apres chaque instruction le
contenu des registres et de la pile.

H pc inst ‘ Sp r0 H m|[30£0] [SOeC] m[30e8] m|[30e4] m[30e0] ‘
77 30£0 ? ? ? ?
10 mov r0, # 0 | 30f0 O ? ? ? ?
14 empiler rO | 30ec ? ? ? ?

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 55

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

56

Chapitre 8

TD séances 11 : Parametres dans la
pile, parametres passés par ’adresse

8.1 Gestion des parametres et des variables dans la pile

Reprendre la fonction code programmée au paragraphe et les fonctions factO et mul du para-

graphe

Exercices :
— transformer la traduction de ces fonctions en langage ARM pour gérer le passage des parametres
et les variables locales dans la pile. Ecrire les appels qui correspondent.
— reprendre les exemples traités précédemment dans ce TD et effectuer les sauvegardes nécessaires
de temporaires dans la pile.

8.2 Parametre passé par adresse

8.2.1 Un premier exemple

On transforme la fonction code du paragraphe en procédure avec un parametre résultat.

procedure coder (c : in caractére, n: in entier, cres: out caractére)
{ aprés 1’appel coder(c, n, cres), cres est le caractére c translaté de n
positions }

On donne ci-dessous un algorithme pour la procédure coder. On donne aussi la version correspon-
dante avec un passage de parametre par adresse.

coder (ascii_c, n, cres)
si ascii_c + n <= 122 alors cres <-- acsii_c + n
sinon cres <-- acsii_c + n - 26

procedure coder (données ascii_c: caractére, entier : entier naturel,
adresse cres: caractére) {
si (ascii_c + n <= 122)
alors mem[cres] = ascii_c + n;
sinon mem[cres] = ascii_c + n - 26;

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 57

/* La méme procédure écrite en C */
void coder (char ascii_c, unsigned int n, char *cres) {

unsigned int res; /* utiliser de preference r5 pour stocker res */

res = ascii_c + n;
if (res > ’z’) res = res - 26;
*cres = res;

Exercice : On convient que le parameétre ascii_c est dans le registre r0, que ’entier n est dans le
registre r1 et que 'adresse cres est dans le registre r2. Traduire en langage d’assemblage ARM la
procédure coder.

Exercice : On consideére le programme suivant :

cc, rr: entier /* char cc, rr; *x/
LireCar (cc) /* LireCar(&cc); ou scanf ("%c",&cc); */
coder (cc, 3, adresse de rr) /* coder (cc,&rr); */
EcrCar (rr) /* EcrCar(rr); ou printf ("ju",rr); */

Traduire ce programme en langage d’assemblage ARM. Les variables cc et rr sont dans la zone
data ou bss.

Exercice : reprendre la procédure et le programme précédent en passant les parametres ascii_c,
n et cres dans la pile. On pourra si nécessaire écrire une premieére version en passant les parametres
dans la zone data ou bss.

8.2.2 Une version récursive de procédure calculant factorielle

On considere la version suivante du calcul de la factorielle d’un entier :

procedure fact2 (donnée n: entier, adresse fn: entier) {
int fnmoinsi;

si (n == 1)

alors mem[fn] = 1;

sinon
fact2 (n-1, &fnmoinsl);
mem[fn] = n * fnmoinsi;

n, fn : entier
Lire (n)
fact2 (n, adresse de fn)
Ecrire (fn)

Exercice : donner une traduction en langage d’assemblage ARM de cette procédure.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 58

Chapitre 9

TD séance 12 : Etude du code produit
par le compilateur arm-eabi-gcc

9.1

Un premier exemple

Soit un programme écrit en langage C dans le fichier premier.c.

-
O O 00N O WN -

e e el
g WwN -
[}

#include "stdio.h"
#include "string.h"

#define N 10
int main () {

char chaine [N] ;
int i ;

printf ("Donner une chaine de longueur inferieure a %d:\n", N);
fgets (chaine, N, stdin);

printf ("la chaine lue est : %s\n",chaine);

i = strlen (chaine) ;

printf ("la longueur de la chaine lue est : %d\n", 1i);

Nous le compilons sans optimisations (option -00) et produisons le code en langage d’assemblage
ARM (option -8) avec la commande suivante : arm-aebi-gcc -00 -S premier.c. Le code en langage
d’assemblage est produit dans le fichier premier.s (Cf. Annexe [9.4)).

Questions :

1.

Le premier appel a la fonction printf a 2 parametres : une chaine de caracteéres et un entier.
Ces parametres sont passés dans des registres, lesquels ?

. Observez maintenant ’appel a la fonction fgets. Retrouvez ses parametres dans le code.

. La fonction strlen a un parametre et un résultat. Ou sont rangées ces informations dans le

code?

. Déduire du code la convention utilisée par le compilateur pour le passage des parametres et le

retour des résultats de fonctions.

. Quel est 'effet des 3 premieres instructions du code assembleur de main ?

. Quel est leffet des 3 dernieres instructions du code assembleur de main ?

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 59

9.2 Programme avec une procédure qui a beaucoup de parametres
Considérons le programme bcp_param.c écrit en langage C suivant :

1 include "stdio.h"
2
3 static long int Somme (long int al, long int a2, long int a3, long int a4, long int a5,
4 long int a6, long int a7, long int a8, long int a9, long int alld) {
5 long int x1,x2,x3,x4,x5,x6,x7,x8,x9,x10;
6
7
8

long int y;

x1=al+1; x2=a2+1; x3=a3+1; x4=a4+1; xb5=ab+1;

9 x6=a6+1; x7=a7+1; x8=a8+1; x9=a9+1; x10=al0+1;
10 y = x1+x2+x3+x4+x5+x6+x7+x8+x9+x10;

11 return (y);

12 }

13

14 int main () {
15 long int z;

16

17 z = Somme (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

18 printf("La somme des entiers de 1 a 10 plus 10 vaut %d\n", z);
19 }

Le code produit dans le fichier bcp_param.s par la commande : arm-aebi-gcc -00 -S
bcp_param. c est dans le paragraphe

Questions :

1. Observez le code du main. Etudier le contenu de la pile avant 'appel bl Somme. Comment sont
passés les parametres a la fonction Somme 7

2. Ou est rangé le résultat rendu par la fonction Somme 7
3. Ou est rangée la variable locale z 7

4. Observez le code de la fonction Somme. Dessiner la pile et retrouvez comment sont récupérés les
parametres. Ou sont rangées les variables locales : x1,x2,x3,%x4,x5,%x6,x7,x8,x9,x10 et y 7
9.3 Les variables locales peuvent prendre beaucoup de place
Considérons le programme var_pile.c écrit en langage C suivant :
#include "stdio.h"

#define N 100

char *pl, *p2 ;

pl = s1 ; p2 = 52 ;

1

2

3

4

5 short int Compare2Chaines (char #*sl, char *s2) {
6

7

8

9 while (*pl && *p2 && (*pl == *p2)) {

10 pl++ ; p2++

11 b

12 return (xpl == 0) && (*p2 == 0) ;
13 }

14

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 60

15 int main () {

’

[N], chaine2[N] ;

e 1, de moins de 99 caracteres : \n");
1, N, stdin);
e 2, de moins de 99 caracteres : \n");
2, N, stdin);

r = Compare2Chaines (chainel,chaine?2);

16 short int r
17 char chainel
18

19 printf ("Chain
20 fgets (chaine
21 printf ("Chain
22 fgets (chaine
23

24

25

26 printf ("Sont-
27

elles egales 7 %s !\n", (r ? "oui" : "mnon"));

Le code produit dans le fichier var_pile.s par la commande : arm-aebi-gcc -00 -S var_pile.c
est dans le paragraphe

Questions :

1.
2.
3.

Dans le main le compilateur réserve 208 octets. Comment sont-ils utilisés ?

Quels sont les parametres de la fonction Compare2Chaines ?

Observez le code suivant le retour de ’appel & Compare2Chaines. Commentez précisément les

lignes entre mov r3, r0 et mov rl, r3. Quels sont les parametres passés a la fonction printf

qui suit ?

truction while

9.4 Annexe :

© 0 NO O WN -

NN NNDNER R R BB s e
OO H WNEFE O O NOOPd WN - O

.Cpu arm
.fpu sof
.eabi_at
.eabi_at
.eabi_at
.eabi_at
.eabi_at
.eabi_at
.eabi_at
.eabi_at
.file
.section
.align

.LCO:

.ascii
.align

.LC1:

.ascii
.align

.LC2:

.ascii
.text
.align
.global
.type

?

premier.s

7tdmi
tvip
tribute 20,
tribute 21,
tribute 23,
tribute 24,
tribute 25,
tribute 26,
tribute 30,
tribute 18,
"premier.c"
.rodata

dPORP R, RPRP W

2

"Donner une chaine de longueur inferieure a %d:\012\000"
2

"la chaine lue est : %s\012\000"

2

"la longueur de la chaine lue est : %d\012\000"
2

main

main, %function

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

Commentez le code de la fonction Compare2Chaines. Comment est généré le code d’une ins-

61

26 main:

27 @ Function supports interworking.
28 @ args = 0, pretend = 0, frame = 16
29 @ frame_needed = 1, uses_anonymous_args = 0
30 stmfd sp!, {fp, 1r}
31 add fp, sp, #4

32 sub sp, sp, #16
33 ldr r0, .L2

34 mov ri, #10

35 bl printf

36 ldr r3, .L2+4

37 1dr r3, [r3, #0]
38 ldr r3, [r3, #4]
39 sub r2, fp, #20
40 mov r0, r2

41 mov rl, #10

42 mov r2, r3

43 bl fgets

44 sub r3, fp, #20
45 ldr r0, .L2+8

46 mov rl, r3

47 bl printf

48 sub r3, fp, #20
49 mov r0, r3

50 bl strlen

51 mov r3, r0

52 str r3, [fp, #-8]
53 ldr r0, .L2+12

54 1dr rl, [fp, #-8]
55 bl printf

56 mov r0, r3

57 sub sp, fp, #4

58 ldmfd sp!, {fp, 1r}
59 bx 1r

60 .L3:

61 .align 2

62 .L2:

63 .word .LCO

64 .word _impure_ptr
65 .word .LC1

66 .word .LC2

67 .size main, .-main
68 .ident "GCC: (GNU) 4.5.3"

9.5 Annexe : bcp param.s

.cpu arm7tdmi

.fpu softvfp

.eabi_attribute 20,
.eabi_attribute 21,
.eabi_attribute 23,
.eabi_attribute 24,
.eabi_attribute 25,
.eabi_attribute 26,
.eabi_attribute 30,
.eabi_attribute 18,

©O© 0N Ok WN -
M OR, PP WRE

-
o

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

11 .file "bcp_param.c"

12 .text

13 .align 2

14 .type Somme, %function

15 Somme:

16 @ Function supports interworking.

17 @ args = 24, pretend = 0, frame = 64

18 @ frame_needed = 1, uses_anonymous_args = 0
19 @ link register save eliminated.

20 str fp, [sp, #-4]!
21 add fp, sp, #0

22 sub sp, sp, #68
23 str r0, [fp, #-56]
24 str rl, [fp, #-60]
25 str r2, [fp, #-64]
26 str r3, [fp, #-68]
27 1dr 13, [fp, #-56]
28 add r3, r3, #1

29 str r3, [fp, #-8]
30 ldr 3, [fp, #-60]
31 add r3, r3, #1

32 str r3, [fp, #-12]
33 1dr 13, [fp, #-64]
34 add r3, r3, #1

35 str r3, [fp, #-16]
36 ldr 3, [fp, #-68]
37 add r3, r3, #1

38 str r3, [fp, #-20]
39 ldr r3, [fp, #4]
40 add r3, r3, #1

41 str r3, [fp, #-24]
42 ldr r3, [fp, #8]
43 add r3, r3, #1

44 str r3, [fp, #-28]
45 ldr r3, [fp, #12]
46 add r3, r3, #1

47 str r3, [fp, #-32]
48 ldr r3, [fp, #16]
49 add r3, r3, #1

50 str r3, [fp, #-36]
51 ldr 3, [fp, #20]
52 add r3, r3, #1

53 str r3, [fp, #-40]
54 1dr 3, [fp, #24]
55 add r3, r3, #1

56 str r3, [fp, #-44]
57 ldr r2, [fp, #-8]
58 ldr r3, [fp, #-12]
59 add r2, r2, r3

60 1dr 3, [fp, #-16]
61 add r2, r2, r3

62 ldr 3, [fp, #-20]
63 add r2, r2, r3

64 1dr 13, [fp, #-24]
65 add r2, r2, r3

66 ldr 3, [fp, #-28]

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

67 add r2, r2, r3

68 1ldr r3, [fp, #-32]
69 add r2, r2, r3

70 ldr r3, [fp, #-36]
71 add r2, r2, r3

72 ldr r3, [fp, #-40]
73 add r2, r2, r3

74 ldr 3, [fp, #-44]
75 add r3, r2, r3

76 str r3, [fp, #-48]
77 ldr r3, [fp, #-48]
78 mov r0, r3

79 add sp, fp, #0

80 ldmfd sp!, {fp}

81 bx 1r

82 .size Somme, .-Somme

83 .section .rodata

84 .align 2

85 .LCO:

86 .ascii "La somme des entiers de 1 a 10 plus 10 vaut %d\012\000"
87 .text

88 .align 2

89 .global main

90 .type main, %function

91 main:

92 @ Function supports interworking.

93 @ args = 0, pretend = 0, frame = 8

94 @ frame_needed = 1, uses_anonymous_args = 0

95 stmfd sp!, {fp, 1r}
96 add fp, sp, #4
97 sub sp, sp, #32
98 mov r3, #5

99 str r3, [sp, #0]
100 mov r3, #6

101 str r3, [sp, #4]
102 mov r3, #7

103 str r3, [sp, #8]
104 mov r3, #8

105 str r3, [sp, #12]
106 mov r3, #9

107 str r3, [sp, #16]
108 mov r3, #10

109 str r3, [sp, #20]
110 mov r0, #1

111 mov rl, #2

112 mov r2, #3

113 mov r3, #4

114 bl Somme

115 str r0, [fp, #-8]
116 ldr r0, .L3

117 ldr rl, [fp, #-8]
118 bl printf

119 mov r0, r3

120 sub sp, fp, #4
121 ldmfd sp!, {fp, 1r}
122 bx 1r

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

123 .14:

124 .align 2

125 .L3:

126 .word .LCO

127 .size main, .-main

128 .ident "GCC: (GNU) 4.5.3"

9.6 Annexe : var pile.s

1 .cpu arm7tdmi

2 .fpu softvfp

3 .eabi_attribute 20, 1

4 .eabi_attribute 21, 1

5 .eabi_attribute 23, 3

6 .eabi_attribute 24, 1

7 .eabi_attribute 25, 1

8 .eabi_attribute 26, 1

9 .eabi_attribute 30, 6

10 .eabi_attribute 18, 4

11 .file "var_pile.c"

12 .text

13 .align 2

14 .global Compare2Chaines

15 .type Compare2Chaines, %function
16 Compare2Chaines:

17 @ Function supports interworking.
18 @ args = 0, pretend = 0, frame = 16
19 @ frame_needed = 1, uses_anonymous_args = 0
20 @ link register save eliminated.
21 str fp, [sp, #-4]!
22 add fp, sp, #0
23 sub sp, sp, #20
24 str r0, [fp, #-16]
25 str rl, [fp, #-20]
26 ldr r3, [fp, #-16]
27 str r3, [fp, #-8]
28 ldr r3, [fp, #-20]
29 str r3, [fp, #-12]
30 b .L2
31 .L4:
32 1dr r3, [fp, #-8]
33 add r3, r3, #1
34 str r3, [fp, #-8]
35 ldr r3, [fp, #-12]
36 add r3, r3, #1
37 str r3, [fp, #-12]
38 .L2:
39 ldr r3, [fp, #-8]
40 1ldrb r3, [r3, #0] @ zero_extendqisi2
41 cmp r3, #0
42 beq .L3
43 ldr r3, [fp, #-12]
44 1ldrb r3, [r3, #0] @ zero_extendqisi2
45 cmp r3, #0
46 beq .L3
47 1dr r3, [fp, #-8]

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

.L3:

.L5:

.L6:

.LCO:

.LC1:

.LC2:

.LC3:

.LC4:

main:

1drb
ldr
1drb
cmp
beq

1ldr
1ldrb
cmp
bne
1ldr
1drb
cmp
bne
mov

mov

mov
mov
mov
mov
mov
add
ldmfd
bx
.size

.section

.align

.ascii
.align

.ascii
.align

.ascii
.align

.ascii
.align

.ascii
.text
.align
.global
.type

r2, [r3, #0] @ zero_extendqisi?2
r3, [fp, #-12]

r3, [r3, #0] @ zero_extendqisi?2
r2, r3

L4

r3, [fp, #-8]
r3, [r3, #0] @ zero_extendqisi?2
r3, #0

.L5

r3, [fp, #-12]

r3, [r3, #0] @ zero_extendqisi?2
r3, #0

.L5

r3, #1

.L6

r3, #0

r3, r3, asl #16

r3, r3, lsr #16

r3, r3, asl #16

r3, r3, asr #16

r0, r3

sp, fp, #0

sp!, {fp}

1r

Compare2Chaines, .-Compare2Chaines
.rodata

2

"Chaine 1, de moins de 99 caracteres : \000"
2

"Chaine 2, de moins de 99 caracteres : \000"
2

"oui\000"
2

"non\000"
2

"Sont-elles egales 7 %s !\012\000"
2

main
main, %function

@ Function supports interworking.

Q@ args

Q@ frame_

stmfd
add
sub
1ldr

0, pretend = 0, frame = 208
needed = 1, uses_anonymous_args = 0
sp!, {fp, 1lr}
fp, sp, #4
sp, sp, #208
r0, .L10

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

66

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
1562
1563
154
155

.L8:

.L9:

L11:

.L10:

bl

1ldr
1dr
1dr
sub
mov
mov
mov
bl

1dr

1ldr
1ldr
1dr
sub
mov
mov
mov
bl
sub
sub
mov
mov
bl
mov
strh
ldrsh
cmp
beq
1dr

1dr

1dr
mov
bl
mov
sub
ldmfd
bx

.align

.word
.word
.word
.word
.word
.word
.size
.ident

puts

r3, .L10+4
r3, [r3, #0]
r3, [r3, #4]
r2, fp, #108
r0, r2

rl, #100

r2, r3

fgets

r0, .L10+8
puts

r3, .L10+4
r3, [r3, #0]
r3, [r3, #4]
r2, fp, #208
r0, r2

rl, #100

r2, r3

fgets

r2, fp, #108
r3, fp, #208
r0, r2

rl, r3
Compare2Chaines
r3, r0

r3, [fp, #-6] @ movhi
r3, [fp, #-6]

r3, #0

.L8

r3, .L10+12

.L9

r3, .L10+16

r0, .L10+20
rl, r3

printf

r0, r3

sp, fp, #4
sp!, {fp, 1lr}
1r

.LCO

_impure_ptr

.LC1

.LC2

.LC3

.LC4

main, .-main

"GCC: (GNU) 4.5.3"

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

67

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

68

Chapitre 10

TD séances 13 et 14 : Organisation
d’un processeur : une machine a pile

10.1 Description du processeur

Cette machine dispose de registres visibles par le programmeur :

— acc : accumulateur pour stocker des valeurs,
— pc : compteur de programme,
— sp : pointeur de pile.

pc est initialisé a 0 et repeére la prochaine instruction a exécuter.

La pile suit la convention progression décroissante, dernier plein. sp est initialisé a 0xFE (la pile
commence donc a 0xFD).

Il y a aussi des registres non visibles par le programmeur c’est-a-dire qui ne peuvent pas étre
utilisés dans un programme en langage machine :

— Rinst : registre instruction qui contient I'instruction en cours d’exécution,
— ma et mb : registres qui servent aux acces mémoire,
— mk1 et mk2 : registres servant a des calculs internes au processeur.

La mémoire est composé de mots de taille un octet. Les adresses sont aussi sur un octet.

Il existe des entrées sorties rudimentaires : la lecture du mot mémoire d’adresse OxFE correspond
a une lecture au clavier et I’écriture dans le mot mémoire d’adresse OxFF correspond a un affichage
sur I’écran (on fait semblant...!!!).

Le répertoire d’instructions est donné dans la figure [10.1

Le compteur programme indique la prochaine instruction a exécuter. Ainsi, lors de I'exécution de
Iinstruction jumpifAccnul, la valeur du déplacement est calculée par rapport a l'adresse de l'ins-
truction suivante (c’est-a-dire 'instruction qui sera exécutée ensuite si la condition de saut n’est pas
vérifiée)

Le code d’une instruction est choisi de telle facon que le décodage soit facilité, test d’un bit ; d’ou,
pour le codage des instructions, les codes : load : 19, input : 2ig, output : 419, push-acc : 89
pop-acc : 1619, add : 321, dup : 6419 et jumpifAccnul : 1281y s’imposent...

La figure décrit 'organisation générale du processeur et de la mémoire..

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 69

instruction signification code opération taille codage
(valeurs en décimal)
load# vi acc <-- vi 1 2 mots
input acc <-- Mem[OxFE] 2 1 mot
output Mem[0xFF] <-- acc 4 1 mot
push-acc empiler acc 8 1 mot
pop-acc dépiler vers acc 16 1 mot
add ajouter le sommet et le sous-sommet | 32 1 mot
de la pile, ils sont dépilés,
empiler la somme
I’accumulateur n’est pas modifié
dup dupliquer le sommet de pile 64 1 mot
jumpifAccnul depl | saut conditionnel a pc+depl 128 2 mot
la condition est ”accumulateur nul”

FIGURE 10.1 — Les intructions de la machine a pile

MEM
0x00
PROCESSEUR programme
adresse mémoire
MA
:
Rinst
ACC mk1 1\
pile
mk2 %f(FFE interface
P OXFF
donnée mémoire
MB

clavier

FI1GURE 10.2 — La machine a pile et sa mémoire

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

70

10.1.1 Représentation en mémoire d’un programme

Donner la représentation en mémoire (en binaire et en hexadécimal) du programme en langage
d’assemblage suivant :

load# 3
push-acc
push-acc
add

pop-acc

10.1.2 Evolution des valeurs des registres lors d’une exécution

Décrire I’évolution des registres et de la pile lors de ’exécution du programme précédent ?
Que se passe-t-il si le programmeur empile beaucoup... et que la pile "marche” sur le programme
qui commence lui & 'adresse 0 7 Comment peut-on éviter ce probleme ?

10.2 Interprétation des instructions sous forme d’un algorithme

Afin de comprendre comment évoluent les différents registres du processeur au cours de ’exécution
d’un programme on peut donner une interprétation du fonctionnement du processeur sous forme d’un
algorithme.

10.2.1 Algorithme

Donner l'algorithme d’interprétation des instructions.

10.2.2 Fonctionnement de I’algorithme

Donner les différentes valeurs contenues dans les registres du processeur au cours de 'interpétation

du programme donné en |10.1.1

10.3 Interprétation des instructions sous forme d’un automate

On précise les opérations de base que le processeur peut effectuer : les micro-action. Une micro-
action dure un cycle d’horloge.
L’ensemble des micro-actions possibles dépend de l'organisation physique du processeur (Cf fi-

gure [[0:3)

Pour notre exemple, les actions élémentaires sont les suivantes :

1. micro-actions internes au processeur :
— reg_i < reg_j
— regi<regj +1
— reg i < reg_j - 1 note:-1=+ff
— reg.i < reg.j + regk
— reg_i <~ mb
— ma < reg-i
— mb < reg i (via 'UAL)
— reg_i < Oxff
— reg i<« 0
2. micro-actions permettant ’acces a la mémoire :
— lecture mémoire : mb <— Mem [ma]

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 71

BusAd

ma
Oxfe Oxff
busA Egal 0 ?{= oui/non
opl
UAL
=1 acC — pPC — ™= sp =1 mK1 — = mk2 — res
busB op2
busC

opérations UAL

res=opl
res=opl +1
res=opl -1

res=opl + op2

BusDon

Rinst

%[compare 124,. J$ oui/non

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

F1GURE 10.3 — Organisation de la machine a pile

72

— écriture mémoire : Mem [ma] < mb

avec reg_i, reg_j, reg k € { sp, pc, mkl, mk2, acc }.

On dispose des tests de la valeur contenue dans le registre Rinst : Rinst = code de load#, code
de add, etc

Par ailleurs, le “calcul” acc = acc + 0 permet de tester si acc est nul ot non.

10.3.1 Séquence de micro-actions pour une instruction

Ecrire la suite d’actions élémentaires (micro-actions) de la liste ci-dessus pour chacune des instruc-
tions.

10.3.2 Automate d’interprétation, graphe de controle

Proposer un automate d’interprétation des instructions pour la machine a pile. Il s’agit de rassem-
bler ’ensemble des séquences de micro-actions en mettant en évidence des sous-séquences communes.

10.4 Un autre exemple

Voici un programme pour cette machine :

load# -1

push

dup

load# 4

push
TITI: add

pop

dup

push

jumpifAccnul TOTO

load# O

jumpifAccnul TITI
TOTO: load# ba

output

10.4.1 Questions

1. Donner le code en hexadécimal ainsi que son implantation en mémoire a partir de 'adresse 0.
La question intéressante est la valeur du déplacement pour les instructions de branchements.

2. Donner I’évolution des valeurs dans les registres, dans la pile lors de ’exécution de ce pro-
gramme.

3. Donner la trace en terme d’états du graphe de controle du processeur lors de I'exécution de ce
programme.

10.5 Optimisation du graphe de controle

Nous pouvons envisager plusieurs types d’optimisations : diminuer le temps de calcul des instruc-
tions ou diminuer le nombre d’états du graphe de controle.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 73

10.5.1 Temps de calcul d’une instruction
Une micro-action dure le temps d’une période d’horloge. Choisir une fréquence et calculer le temps

de calcul de chaque instruction du processeur étudié pour le graphe de controle proposé dans le

paragraphe [10.3.2

Pouvez-vous améliorer ce temps de calcul 7 quelles sont les parties incompressibles 7

10.5.2 Nombre d’états du graphe de controle

Est-il possible de diminuer le nombre d’états du graphe proposé :
— avec la méme partie opérative ?
— en modifiant la partie opérative : ajout de registres, de bus, etc.?

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 74

Troisieme partie

Travaux Pratiques

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

75

Chapitre 1

TP séance 1 : Représentation des
informations (ex. : images,
programmes, entiers)

1.1 Comment est représentée une image ?

On va utiliser le format bitmap. Ce format permet de décrire une image extrémement simple en
noir et blanc; on peut par exemple ['utiliser pour décrire une icone.

Une image est un ensemble de points répartis dans un rectangle. L'image est définie par un texte
de programme en langage C comprenant la taille du rectangle et la valeur de chacun des points : noir
ou blanc. Un point est décrit par 1 bit (vrai = 1 = noir).

On donne ci-dessous le contenu du fichier image .bm codant une image de dimensions 16 x 16 dans
laquelle tous les points sont blancs.

#define image_width 16

#define image_height 16

static unsigned char image_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00

};

1.1.1 Modifier une image “a la main”

Le naturel 0 codé sur 8 bits s’écrit 0x00 en hexadécimal et 0000 0000 en binaire; il représente 8

points blancs contigus alignés horizontalement.

— Au moyen d’un éditeur de texte (nedit par exemple), modifiez le fichier image.bm de fagon &
ce qu’il contienne la description d’une image de dimensions 16 x 16 dans laquelle la troisieme
ligne est noire. Vous afficherez votre image avec la commande : bitmap image.bm.

Pour sortir, sélectionner Quit dans le menu File.
— Quelles modifications avez-vous apportées au fichier image.bm?

1.1.2 Codage d’une image

Effectuez la manipulation suivante :
— Créez au moyen de votre éditeur de texte un fichier monimage.bm contenant une image de
dimensions 16 x 16 au format bitmap.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 7

Tous les points de cette image doivent étre blancs, excepté ceux de la premiere ligne qui doit
avoir ’aspect suivant :
ERCO00OEEROOOCOROEO

— Utilisez le programme bitmap pour afficher 'image contenue dans le fichier monimage .bm.
Vérifiez que I'image affichée correspond bien au résultat attendu.

— Ecrivez en binaire les valeurs que vous avez codées dans le fichier. Expliquez le codage que vous
avez utilisé pour obtenir I'image demandée.

1.2 Comment est représenté un programme ?
Considérons un programme écrit en langage C : prog.c.

/* prog.c x/
int NN = Oxffff;
char CC[8] = "charlot";

int main() {
NN = 333;
NN= NN + 5;

Vous allez le compiler, c’est-a-dire le traduire dans un langage interprétable par une machine avec
la commande : arm-eabi-gcc -c prog.c. Vous obtenez le fichier prog.o.
C’est du “binaire”... Nous allons le regarder avec différents outils.

1.2.1 Une premiere expérience

Essayez successivement les quatre expériences suivantes :
— nedit prog.o

— more prog.o

— less prog.o

— cat prog.o

Qu’avez-vous observé ? Qu’en concluez-vous ?

1.2.2 Affichage en hexadécimal

Tapez : hexdump -C prog.o. Vous observez des informations affichées en hexadécimal et les ca-
racteres correspondants sur la droite. Plus précisément, sur la gauche vous avez des adresses, c’esta-dire
des numéros qui comptent les octets (paquets de 8 bits), et au centre I'information qui est affichée en
hexadécimal.

Combien d’octets sont codés sur une ligne affichée ? Combien de mots de 32 bits cela représente-
t-il 7

Les caracteres de la chaine de caractéres "charlot" sont codés en ASCII : chaque caractere est
représenté sur un octet (8 bits, 2 chiffres hexadécimaux). Pour avoir le code ascii d’un caractere, tapez
man ascii ou consultez votre documentation technique.

Repérez la chaine "charlot" dans 'affichage a droite et trouvez 'information correspondante au
centre. A quelles adresses est rangée cette chaine 7

La valeur ££fff de I'entier NN n’est pas bien loin de "charlot", la trouver.

La chaine NN est-elle dans ce fichier 7 Au méme endroit que les deux valeurs précédentes ?

Grace a la commande xterm & on peut ouvrir plusieurs fenétres et comparer ce qu’affiche hexdump
et ce qu’affiche nedit pour un méme fichier. Comparer les caracteres dont le code est compris entre
0x20 et 0x7f et ceux qui ne sont pas dans cet intervalle.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 78

1.2.3 Affichage plus “lisible”

Le programme a été traduit dans le langage machine ARM.

La commande arm-eabi-objdump -S prog.o donne la séquence d’instructions ARM qui correspond
a nos instructions C. On peut lire 'adresse de I'instruction, puis son code en hexadécimal et enfin les
mnémoniques correspondants en langage d’assemblage.

On va repérer le code qui correspond & 'instruction NN = 333. C’est fait en deux fois :

10: e3a03f53 mov r3, #332
14: e2833001 add r3, r3, #1

La question suivante étant un peu plus complexe, vous en chercherez la réponse chez vous ou
en fin de séance si vous avez terminé en avance. Pour cela il faut lire en détail le paragraphe 2.3
de la documentation technique et la remarque du paragraphe Pourquoi le processeur ARM ne
permet-il pas d’écrire mov r3, #3337

arm-eabi-gcc traduit un programme écrit dans le langage C en un programme écrit en langage
machine du processeur ARM.

Avec d’autres options le compilateur gce traduit dans le langage machine d’autres processeurs. Par
exemple, par défaut, gcc effectue la traduction pour le processeur contenu dans la machine sur laquelle
vous travaillez ; dans votre cas c’est le langage machine du processeur INTEL... Effectuez I'expérience
suivante :

gcc -c prog.c
hexdump -C prog.o
objdump -S prog.o

Regardez la ligne ci-dessous :
11: c7 05 00 00 00 00 4d movl $0x144d,0x0

Quel nombre représente 0x14d 7
Combien d’instructions a-t-il fallu pour traduire I'affectation NN=333 pour chacun des deux pro-
cesseurs 7

1.3 Langage d’assemblage/langage machine

Le but de cette partie est de traduire des instructions écrites en langage d’assemblage ARM en
langage machine.

Une instruction en langage d’assemblage est traduite en une instruction en langage machine par
une suite de bits. On exprime cette suite de bits en hexadécimal car c’est plus facile a lire.

A T'aide de la documentation technique ARM, traduire les instructions ci-dessous. Pour chacune,
mettre en évidence le codage de la valeur immédiate, la valeur du bit S, la valeur du bit I, le codage
du numéro des registres.

ADD r10, r2, #10
ADD r10, r2, #17
ADDS r10, r2, #10
ADD r10, r2, r3

Pour vérifier vos résultats effectuez ’expérience suivante :

— On fabrique 2 programmes en langage d’assemblage presque identiques. Par exemple, le pro-
gramme progl.s se différencie du programme progl.varl.s par une instruction. Laquelle ?

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 79

— Produire les 2 programmes en langage machine : arm-eabi-gcc -c progl.s et arm-eabi-gcc
-c progl.varl.s).

— Observer leur contenu : arm-eabi-objdump -S progl.o et arm-eabi-objdump -S
progl.varl.o.

— Comment interprétez-vous les résultats de cette expérience ?

Reproduire la méme expérience pour les instructions : ADDS ri10, r2, #10 (programme

progl.var2.s) et ADD r10, r2, r3 (programme progl.var3.s).
Ci-dessous le contenu des fichiers servant a cette expérience.

.text
.global main
main:
ADD r10, r2, rO
ADD r10, r2, #10
fin: BAL fin

.text
.global main
main:
ADD r10, r2, rO
ADD ri10, r2, #17
fin: BAL fin

.text
.global main
main:
ADD r10, r2, r0
ADDS r10, r2, #10
fin: BAL fin

.text
.global main
main:
ADD r10, r2, r3
ADD r10, r2, #10
fin: BAL fin

1.4 Codage des couleurs

Nous nous intéressons ici au codage des couleurs. On utilise le codage dit RGB. Il s’agit pour coder
une couleur de donner une proportion des trois couleurs rouge (Red), vert (Green) et bleu (Blue) pour
les images fixes ou animées.

Une couleur est codée par un nombre exprimé en hexadécimal sur 3 x 2 chiffres dans 'ordre
Rouge, Vert, Bleu; f£f représentant la proportion maximale. Par exemple, 00££00 code la couleur
verte, 000012 code une nuance de bleu.

©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 80

Pour plus d’informations vous pouvez regarder :
http://en.wikipedia.org/wiki/RGB_color_model

La figure donne la description d’une image dans le format xpm. Cette image comporte deux
segments. L’image est décrite dans le langage C a ’aide d’un tableau de caracteres. On y trouve la
taille de I'image (32 x 32), le nombre de caracteres utilisés pour la représenter (3), la couleur (au
codage RGB) associée & chacun des caracteres, et enfin la matrice de points, un caractére étant associé
& un point. None désigne une couleur prédéfinie dans le systeme.

On remarque que la proportion d’une couleur est codée sur deux chiffres hexadécimaux, f£f
représentant le maximum.

1.4.1 Fabriquer une image a la main

1. Récupérez le fichier 1ignes.xpm et affichez I'image avec x1i, xpmview ou mirage.
2. Quelles sont les couleurs des deux segments ? Donnez le code de chacune de ces deux couleurs.

3. Editez ce fichier avec un éditeur classique et modifiez la couleur d’un segment en modifiant les
proportions de la couleur de ses points puis affichez a nouveau 'image. Faites éventuellement
plusieurs essais et observez qu’une légere modification de la proportion d’une couleur de base
n’est pas visible a l'oeil. A partir de quelle proportion distingue-t-on une différence ?

4. Remplacez un des caracteres codant un point d’une couleur donnée par un autre. Par exemple,
remplacer a par s. Pensez a effectuer ce remplacement dans la définition de la couleur du point
et dans la matrice de points. Quel est 'effet d’une telle modification ?

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 81

i lignes.xpm */
/* XPM */ . [1={ /* le fichier doit s’appeler lig

static char *lignesl[]=

"32 32 3 1",

". ¢ None",

"# c #£0£000",

"a ¢ #££0000",

n
....... s
LY .
......... ,
e e e e e e e .
.......... s
e e e e e .
.......... s
e e e e e .
........... s
B e e e e e e .
.......... s
LY .
......... s
" HHSHHHHHHERSE)
L s
e e e e e e .
......... s
e e e e e e .
.......... s
e e e e .
P s
M e .
B - s
L .
B - s
L .
B - ,
L .
P N s
L .
P s
M e .
D s
L .
B - s
L .
B - ,
L .
P N s
L .
........... s
B e e e e e .
.......... s
LY .
......... s
e e e e e e .
......... s
e e e e e e .
.......... ,
e e e e e e .
.......... s
e e e e .
........... s
L .
.......... s
LR .
......... ,
e e e e e e e .
......... s
e e e .
......... s
e e e e

FIGURE 1.1 — Le fichier : lignes.xpm

Equipe d’Enseignemen el - 30 mars 201
q

82

Chapitre 2

TP séance 2 : Codage et calculs en
base 2

2.1 Présentation de la calculette binaire

Syntaxe d’utilisation

La syntaxe d’utilisation de la calculette est la suivante :
operation nombre_de_bits opérande_gauche opérande_droit

Les opérations disponibles sont les suivantes :

1. add et addsc : addition

2. sub et subsc : soustraction

3. subc2 et subsc?2 : soustraction par addition du complément a deux

Le nombre de bits spécifie la taille de la machine utilisée. Le suffixe sc (show carries) pour les
additions et soustractions spécifie de détailler la génération des retenues et des emprunts.

Format des opérandes et du nombre de bits

Les entiers utilisés par la calculette binaire peuvent étre spécifiés sous trois formats : décimal (par
défaut), hexadécimal (avec le préfixe Ox, comme en langage C) et binaire (avec le préfix Ob, inconnu
du langage C).

Il est de plus possible de spécifier le complément & 1 (préfixe /) ou le complément a deux (ou
opposé : préfixe -) d'un entierﬂ

A titre d’exemple, voici plusieurs manieres de spécifier I'entier 1111000010015 sur 12 bits :

1. en binaire : 0b111100001001 /0b000011110110 ou —0b000011110111

2. en hexadécimal : 0xf09 /0x0f6 ou —0x0f7

3. et en décimal : 3849 /246 ou —247.

1. Ceci s’applique aux opérandes, mais pas au nombre de bits

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 83

2.2 Expérimentation sur ’addition

Voici deux séries d’opérations a réaliser avec la calculette pour étre en mesure de répondre aux

questions ci-dessous.

No opération Calculette No opération Calculette
1|7 +s5pits 6] addsc 576 6| /8 Heits /8| add 6 /8 /8
217 Hapits 6 | add 476 71 -8 Hepits -8 | add 6-8-8
3|7 Hspits 6| add 376 81 /8 Hepits -8 | add 6 /8-8
418 Hgpits 8| add 488 9| -7 +s5pies -6 |add 5-7-6
518 Hspits 8| add 588 10 | -7 H44pies -6 | add 4-7-6

Comment représente-t-on en base 2 les entiers naturels 7 et 87
Quel est le complément de 7423 —1,de 742 —1,de8a2* —1etde8a2%?

Combien de bits faut-il au minimum pour représenter correctement :
71,10...8],[0...15] 7
T, =7...8], [-8 ... 48] 7

1. les intervalles d’entiers naturels [0 ..
2. les intervalles d’entiers relatifs [—7 ..
3. les entiers relatifs +7, —7, +8 et —8 7

4. les sommes d’entiers naturels 6 +7 et 8 + 87
5. les sommes d’entiers relatifs +6 + +7, +8 + +8 et +8 + =57

Que peut-on dire des indicateurs Z, N, C et V lorsque le résultat apparent d’une addition est :
— correct sur des entiers naturels et sur des entiers relatifs ?

— correct sur des entiers naturels et faux sur des entiers relatifs 7

— faux sur des entiers naturels et correct sur des entiers relatifs ?

— faux sur des entiers naturels et sur des entiers relatifs ?

— négatif?

— nul?

Quel lien existe-t-il entre l'indicateur V et les deux dernieres retenues de ’addition ?

2.3 Expérimentation sur la soustraction

Voici quatre opérations de soustraction, a effectuer par la méthode normale et par ’addition du

complément & deux. Observer les indicateurs Z, N, V et (selon la méthode) B (Emprunt final) ou
C (Retenue finale).

Soustractions ordinaires x — y Soustractions par x + 7 + 1
No opération Calculette No opération Calculette
1] 0x9 —4pits 0x8 | subsc 4 0x9 0x8 1| 0x9 —4pits 0x8 | subce2sc 4 0x9 0x8
21 0x8 —gits 0x9 | sub 4 0x8 0x9 2| 0x8 —gpits 0x9 | subc2 4 0x8 0x9
3| 0x3 —gpits 0x9 | sub 4 0x3 0x9 3| 0x3 —gpits 0x9 | subc2 4 0x3 0x9
4| 0x8 —4pits Ox1 | sub 4 0x8 0x1 4| 0x8 —4pits Ox1 | subc2 4 0x8 0x1

Pour des entiers de type relatif, le signe du résultat apparent est-il correct ?

Quelle condition N, B et V doivent-ils vérifier pour que la condition z > y soit vraie :
— avec X et y de type entier naturel ?

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 84

— avec x et y de type entier relatif ?

Quel lien existe-t-il entre les retenues de ’addition du complément a deux et les emprunts de
la soustraction normale 7 Quelle condition doit vérifier C apres une soustraction x — y pour que la
condition x > y soit vraie pour des entiers naturels ?

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 85

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

86

Chapitre 3

TP séances 3 et 4 : Codage des données

3.1 Déclaration de données en langage d’assemblage

Les données sont déclarées dans une zone appelée : data. Pour déclarer une donnée on indique la
taille de sa représentation et sa valeur; on peut aussi déclarer une zone de données non initialisées
(sans valeur initiale) ce qui correspond a une réservation de place en mémoire.

Soit le lexique suivant en notation algorithmique :

aa : le caractere A’

00 : 1’entier 15 sur 8 bits (1 octet)

cc : la chaine "bonjour"

rr : <’B’, 3> de type <un caractére, un entier sur loctet>

T : le tableau d’entiers sur 16 bits [0x1122, 0x3456, Oxfafd]
xx : 1’entier 65 sur 8 bits (1 octet)

On le traduit en langage d’assemblage ARM. Le fichier donnees.s contient une zone data dans
laquelle sont déclarées les données correspondant aux déclarations ci-dessus.

La directive .byte (respectivement .hword, .word) permet de déclarer une valeur exprimée sur
8 bits (respectivement 16, 32 bits). Une valeur peut étre écrite en décimal (65) ou en hexadécimal
(0x41).

Pour déclarer une chaine, on peut utiliser la directive .asciz et des guillemets.

Le caractere @ marque le début d’un commentaire, celui-ci se poursuivant jusqu’a la fin de la ligne.

.data
aa: .byte 65 @ .byte 0x41
oo: .byte 156 @ .byte 0x0f
cc: .asciz "bonjour"
rr: .byte 66 Q@ .byte 0x42
.byte 3
T: .hword 0x1122
.hword 0x3456
.hword Oxfafd
xx: .byte 65

Nous allons maintenant observer le codage en mémoire de cette zone data. Traduire le programme
donnees.s en binaire avec la commande :
arm-eabi-gcc -c -mbig-endian donnees.s.
Notez que nous utilisons l'option -mbig-endian dans le but de faciliter la lecture (rangement par
“grands bouts”). Vous pourrez en observer le fonctionnement dans la partie Vous obtenez le

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 87

fichier donnees.o. Observez le contenu de ce fichier
arm-eabi-objdump -j .data -s donnees.o

Chaque ligne comporte une adresse puis un certain nombre d’octets et enfin leur correspondance
sous forme d’un caractere (quand cela a un sens). Dans quelle base les informations sont-elles affichées ?
Combien d’octets sont-ils représentés sur chaque ligne? Donnez pour chacun des octets affichés la
correspondance avec les valeurs déclarées dans la zone data. Comment est codée la chaine de caracteres,
en particulier comment est représentée la fin de cette chaine ?

Nous voulons maintenant représenter tous les entiers sur 32 bits; d’ou le nouveau lexique :

aa : le caractere A’

oo : 1l’entier 15 sur 32 bits

cc : la chaine "bonjour"

rr : <’B’, 3> de type <un caractére, un entier sur 32 bits>
T : le tableau d’entiers sur 32 bits [0x1122, 0x3456, Oxfafd]
xx : 1l’entier 65 sur 32 bits

La directive de déclaration pour définir une valeur sur 32 bits est .word.
Copiez le fichier donnees.s dans donnees2.s et modifiez donnees2.s. Compilez donnees2.s
Quelle est maintenant la représentation de chacun des entiers de la zone data modifiée ?

3.2 Acces a la mémoire : échange mémoire/registres

3.2.1 Lecture d’un mot de 32 bits

Le probleme est le suivant : la zone data contient des données dont plus particulierement un entier
représenté sur 32 bits a ’adresse xx; on veut copier cet entier dans un registre.

Le programme accesmem. s montre comment résoudre le probleme. On commence par charger dans
le registre r5 l'adresse xx (LDR r5, ptr_xx), puis on charge dans r6 le mot mémoire a cette adresse
(LDR r6, [r5]). La suite du programme permet d’afficher le contenu des registres r5 et r6.

@ accesmem.s
.data
aa: .word 24
xx: .word 266
bb: .word 42

.text

.global main
main:

LDR rb5, ptr_xx

LDR r6, [r5]

@ impression du contenu de rb
MOV r1, r5
BL EcrHexa3d2

@ impression du contenu de r6
MOV r1, r6
BL EcrHexa3d2

fin: BAL exit

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 88

ptr_xx: .word xx

Ce programme utilise une fonction d’affichage EcrHexa32 qui est définie dans un autre module es.s
(Ct. chapitre [3). Cette fonction affiche & '’écran en hexadécimal la valeur contenue dans le registre r1
obligatoirement.

Produisez I'exécutable accesmemn :

arm-eabi-gcc -c es.s
arm-eabi-gcc -c accesmem.s
arm-eabi-gcc -0 accesmem accesmem.o €S.0

Exécutez ce programme : arm-eabi-run accesmem. Notez les valeurs affichées. Que représente
chacune d’elle ?

3.2.2 Lecture de mots de tailles différentes

Voila un programme (accesmem?2.s) utilisant les instructions : LDR, LDRH et LDRB.

Le programme es.s vous fournit également les fonctions d’affichage en décimal de la valeur conte-
nue dans le registre r1 sur 32 bits, 16 bits ou 8 bits : EcrNdecimal32, EcrNdecimal16 et EcrNdecimal8
(Cf. chapitre [3)).

Ajoutez des instructions permettant I'affichage des adresses et des valeurs lues dans la mémoire de
la méme fagon que dans le programme précédent. Compilez de la méme fagon que précédemment et
exécutez.

Relevez les valeurs affichées et en particulier donnez les adresses mémoire ou sont rangées les
valeurs 266, 42 et 12. Expliquez les différences entre elles.

@ accesmem2.s

.data
D1: .word 266
D2: .hword 42
D3: .byte 12
.text

.global main
main:
LDR r3, ptr_D1
LDR r4, [r3]

LDR r5, ptr_D2
LDRH r6, [r5]

LDR r7, ptr_D3
LDRB r8, [r7]

fin: BAL exit

ptr_D1i: .word D1
ptr_D2: .word D2
ptr_D3: .word D3

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 89

3.2.3 Ecriture en mémoire

L’instruction STR (respectivement STRH, STRB) permet de stocker un mot représenté sur 32 (res-

pectivement 16, 8) bits dans la mémoire.

Le programme ecrmem.s affiche la valeur rangée a ’adresse DW, puis range a cette adresse la
valeur 1048576; le mot d’adresse DW est alors lu et affiché. Exécutez ce programme et constatez
qu’effectivement le mot d’adresse DW a été modifié. Modifiez le programme ecrmem.s pour faire le
méme genre de travail mais avec un mot de 16 bits rangé a ’adresse DH et un mot de 8 bits rangé a

I’adresse DB.
Remarque : les adresses sont toujours représentées sur 32 bits.

.data
DW: .word O
DH: .hword O
DB: .byte 0O
.text

.global main
main:
LDR rO, ptr_DW
LDR r1, [rO]
BL EcrNdecimal32

MOV r4, #1048576 @ 1048576 = 2720
LDR r5, ptr_DW
STR r4, [r5]

LDR r0, ptr_DW
LDR r1, [rxO]
BL EcrNdecimal32

fin: BAL exit

ptr_DW: .word DW
ptr_DH: .word DH
ptr_DB: .word DB

3.3 Un premier programme en langage d’assemblage
Considérons le programme caracteres.s.

.data
cc: @ ne pas modifier cette partie

.byte 0x42

.byte 0x4f

.byte Ox4e

.byte Ox4a

.byte 0x4f

.byte 0xb5

.byte 0x52

.byte 0x00 @ code de fin de chaine

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

90

@ la suite pourra etre modifiee
.word 12
.word 0x11223344

.asciz "au revoir..."

.text
.global main
main:

@ impression de la chaine de caracteres d’adresse cc
LDR r1, ptr_cc
BL EcrChaine

@ modification de la chaine
@ A COMPLETER

@ impression de la chaine modifiee
LDR rl, ptr_cc
BL EcrChaine

fin: BAL exit

ptr_cc: .word cc

Compilez ce programme et exécutez-le ; vous constatez qu’il affiche deux fois la chaine de caracteres
d’adresse cc.

Modifiez ce programme pour qu’il affiche la chalne "BONJOUR" sur une ligne puis la chaine "au
revoir..." sur la ligne suivante. Il y a plusieurs facons de traiter cette question, vous pouvez essayer
plusieurs solutions (c’est méme conseillé) mais celle qui nous intéresse le plus ici consiste a utiliser
I'indirection avec un pointeur relais. Plus précisément vous devez identifier I’adresse de début de chaque
chaine (avec une étiquette) et utiliser cette étiquette pour réaliser laffichage souhaité.

La chaine d’adresse cc est formée de caracteres majuscules. Modifiez le programme en ajoutant
une suite d’instructions qui transforme chaque caractére majuscule en minuscule. On peut résoudre
ce probléme sans écrire une boucle. Compilez et exécutez votre programme.

Indication : inspirez-vous de I'exercice fait en TD1. L’opération 0U peut étre réalisée avec 1’ins-
truction ORR.

3.4 Alignements et ”petits bouts”

3.4.1 Questions d’alignements

Voici une nouvelle zone de données a définir en langage d’assemblage :

x: 1l’entier 9 sur 8 bits
1’entier 8 sur 8 bits
1’entier 3 sur 8 bits

z: 1’entier 1024 sur 32 bits

En vous inspirant du programme accesmen. s, écrivez le programme alignementsl.s comportant
la zone de données décrite ci-dessus, et une zone text consistant a lire le mot d’adresse z et a afficher
sa valeur. Que constatez-vous ?

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 91

Le probleme vient du fait que les mots de 32 bits doivent étre placés a des adresses multiples de
4. De méme les entiers représentés sur 2 octets doivent étre stockés a des adresses multiples de 2.

Pour rétablir I’alignement insérer la ligne suivante :

.balign 4
juste avant la déclaration de l'entier z, et appelez ce nouveau programme alignements2.s.

Vérifiez que le probleme est résolu.

Ecrivez un programme dans lequel vous déclarez une valeur représentée sur 16 bits et dont ’adresse
n’est pas un multiple de 2 (il suffit de placer un octet devant). Reproduisez une expérience similaire a
la précédente (pour rétablir un alignement sur une adresse multiple de 2 utilisez la directive .balign
2).

3.4.2 Questions de ”petits bouts”

Reprendre 'exercice de lecture de mots de 32 bits dans la mémoire (paragraphe .

Observer le contenu de la zone data du fichier accesmem avec la commande : arm-eabi-objdump
-j .data -s accesmem et retrouver les valeurs et les adresses des 3 mots déclarés dans la zone data.

Noter que la convention utilisée est le rangement par “petits bouts” (Cf. paragraphe . Pour
obtenir un rangement par “grands bouts” recompiler les fichiers source avec I'option -mbig-endian.

Faire le méme exercice avec l'exercice du paragraphe [3.2.2]

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 92

Chapitre 4

TP séance 5 : Codage de structures de
controle et le metteur au point gdb

4.1 Acces a un tableau

On considere 'algorithme suivant :

lexique:
TAB : un tableau de 5 entiers représentés sur 32 bits

algorithme:

TAB[0] <-- 11
TAB[1] <-- 22
TAB[2] <-- 33
TAB[3] <-- 44
TAB[4] <-- 55

1. Récupérez le fichier tableau.s. On y a traduit en langage d’assemblage les deux premieres
affectations.

2. Complétez le programme de fagon a réaliser ’algorithme donné en entier.
3. Compilez avec la commande : arm-eabi-gcc -Wa,--gdwarf2 tableau.s -o tableauF_-I

4. Observez son exécution pas a pas sous gdb ou ddd (lire ce qui suit et vous référer au para-
graphe E-1.2).

gdb est un metteur au point (ou “débogueur”); il permet de suivre l'exécution d’un programme
en pas a pas c’est-a-dire une ligne de programme apres 'autre ou a modifier un programme en cours
d’exécution.

Nous verrons par la suite qu’un metteur au point sert aussi a chercher des erreurs dans un pro-
gramme en stoppant celui-ci justement a I’endroit ot I’on soupconne l'erreur...

Pour utiliser gdb le programme doit avoir été compilé avec I'option -g, ce que vous avez fait (option
-gdwarf?2).

Exécutez le programme sous gdb en tapant les commandes suivantes :

1. arm-eabi-gdb tableau
On lance le débogueur, nous sommes désormais dans 1’environnement gdb.

1. attention, ne pas mettre d’espace avant le -—gdwarf2

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 93

10.

11.

. target sim

On active le simulateur, ce qui permet d’exécuter des instructions en langage d’assemblage
ARM.

. load

On charge le programme a exécuter dont on a donné le nom a I'appel de gdb.

break main
On met un point d’arrét juste avant 1’étiquette main.

. run

Le programme s’exécute jusqu’au premier point d’arrét exclu : ici, I’exécution du programme
est donc arrétée juste avant la premiere instruction.

. list

On voit 10 lignes du fichier source.
list
On voit les 10 suivantes.

. list 10,13

On voit les lignes 10 a 13.

. info reg

Permet d’afficher en hexadécimal et en décimal les valeurs stockées dans tous les registres.
Notez la valeur de r15 aussi appelé pc, le compteur de programme. Elle représente I'adresse de
la prochaine instruction qui sera exécutée.

S
Une instruction est exécutée. gdb affiche une ligne du fichier source qui est la prochaine ins-
truction (et qui n’est donc pas encore exécutée).

etc.

Pour 'observation de ’exécution du programme tableau, notez, en particulier, les valeurs suc-
cessives (& chaque itération) de r0, le contenu de la mémoire & partir de 'adresse debutTAB en
début de programme et apres ’exécution de toutes les instructions. Sous gdb, pour afficher 5 mots en
hexadécimal, & partir de 'adresse debutTAB, utilisez la commande : x/5w &debutTAB.

4.2

Codage d’une itération

On considere l’algorithme suivant :

val <-- 11
i<-—-0
tant que i <> 5

TAB[i] <- val
i<—1i+1
val <- val + 11

Apres transformations, on I’a codé en langage d’assemblage par :

.data
debutTAB: .skip 5%4

.text

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 94

.global main

main:
mov r3, #11 Q@ val <- 11
mov r2, #0 @i<-0
tq: cmp r2, #5 @ i-5 77
beq fintq
@ i-5 <> 0
ldr rO, ptr_debutTAB @ rO <- debutTAB
add rO, rO, r2, LSL #2 @ r0 <- r0O + r2%4 = debutTAB + ix4
str r3, [r0] @ MEM[debutTAB+i*4] <- val
add r2, r2, #1 @ i<-1i+1
add r3, r3, #11 Q@ val <- val + 11
bal tq

fintq: @ i-5 =0
fin: bal exit

ptr_debutTAB : .word debutTAB

Récupérez le fichier iteration.s Compilez ce programme et exécutez-le sous gdb ou ddd.
Quelle est la valeur contenue dans rO a chaque itération ?

Quelle est la valeur contenue dans r2 a chaque itération ?

=

Quelle est la valeur contenue dans r2 a la fin de l'itération, c’est-a-dire lorsque le controle est
a I’étiquette £intq?

5. Supposons que l'agorithme soit écrit avec tant que i <= 4 au lieu de tant que i <> 5;le
tableau contient-t-il les méme valeurs a la fin de l'itération 7 Comment doit-on alors traduire
ce nouveau programme !

6. Supposons que le tableau soit maintenant un tableau de mots de 16 bits. Comment devez-vous
modifier le programme ? Faire la modification et rendre le nouveau programme et les valeurs
dans les registres.

7. Méme question pour un tableau d’octets.

4.3 Calcul de la suite de “Syracuse”

La suite de Syracuse est définie par :
Uy = wun entier naturel >0
U, = Uy-1/2siU,_1 est pair
= U,—1 X3+ 1 sinon
Cette suite converge vers 1 avec un cycle.
Calculer les valeurs de la suite pour Uy = 15.
Pour calculer les différentes valeurs de cette suite, on peut écrire I'algorithme suivant :

lexique
X : un entier naturel
algorithme
tant que x <> 1
si x est pair
alors x <-- x div 2
sinon x <-- 3 * x + 1

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 95

Vous allez traduire cet algorithme en langage d’assemblage et vérifier que son exécution calcule

bien les éléments de la suite de Syracuse.

Quelques indications :

— L’algorithme comporte une itération dans laquelle est incluse une instruction conditionelle.
Vous pouvez traduire chacune des deux constructions en utilisant un des schémas de traduction
précédents. N’hésitez pas a utiliser autant d’étiquettes que vous voulez si cela vous rend le travail
plus lisible.

— Pour tester si un entier est pair il suffit de regarder si son bit de poids faible (le plus a droite)
est égal a 0. Pour cela vous pouvez utiliser une instruction “et logique” avec la valeur 1 ou
I'instruction TST qui exécute la méme chose.

— Pour diviser un entier par 2 il suffit de le décaler a droite de 1 position.

— Pour calculer 3 x x on peut calculer 2 x z + x et pour multiplier un entier par 2, il suffit de le
décaler a gauche de 1 position.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 96

Chapitre 5

TP séances 6 et 7 : Parcours de
tableaux

5.1 Tables de multiplications

On vous propose de réaliser un programme qui remplit un tableau avec les tables de multiplication
de 1 & 10 et qui laffiche a I’écran comme sur la figure [5.1
Le remplissage du tableau peut étre réalisé de facon itérative, suivant ’algorithme :

//Remplissage d’un tableau des multiplications de 1 & 10
//table[n-1,m-1] = n*m pour n et m compris entre 1 et 10.

LEXIQUE :
N_MAX : 1’entier 10
Ligne : le type tableau sur [0..N_MAX-1] d’entiers
table : le tableau sur [0..N_MAX-1] de Ligne

n_lig,n_col : deux entiers

ALGORITHME :
pour n_lig parcourant [1..N_MAX]
pour n_col parcourant [1..N_MAX]
// produit de n_col par n_lig
table[n_lig-1] [n_col-1] <-- n_lig * n_col;

1123|456 | 7]8] 9|10
214168101214 |16 |18 20
3169 1215|1821 (24|27 30
4 |1 8 12|16 |20 |24 |28 |32|36]| 40
5 1015|120 |25]|30 (35|40 |45 | 50
6 12|18 |24 | 30|36 | 42 | 48 | 54 | 60
714121 281354249 |56 |63 | 70
8 1624|3240 |48 |56 |64 |72 80
9 |18 |27 |36 |45 |54 63| 72|81 90
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100

FIGURE 5.1 — Tables de multiplication de 1 a 10

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 97

Questions concernant le remplissage du tableau
1. Dans quelle case du tableau table se trouve le produit 1*17?
2. Dans quelle case du tableau table se trouve le produit 1*2 7
3. Dans quelle case du tableau table se trouve le produit 79?7
4

. Dans quelle case du tableau table se trouve le produit 10*10 7

Organisation du travail Dans ce tp, vous avez a écrire une séquence de deux blocs de codes
distincts :

1. le premier initialise (remplit) un tableau en mémoire
2. le second affiche & ’écran le contenu du tableau stocké en mémoire

Il est fortement recommandé de ne tester qu’un bloc de code a la fois : affichage puis remplissage
ou remplissage puis affichage. Les bindmes peuvent méme effectuer le travail en parallele et fusionner
les codes ensuite.

5.2 Affichage du tableau

On donne ci-dessous un algorithme pour afficher le tableau conformément a la figure 5.1 une fois
celui-ci rempli. On utilise les fonctions d’entrée/sortie suivantes :

— ecrire_car(c) : affiche sans retour a la ligne le caractére de code ascii c.

— ecrire_chn(s) : affiche sans retour a la ligne la chaine de caracteres s.

— ecrire_int (e) : affiche sans retour a la ligne la forme décimale de I'entier e.

— a-la_ligne() : provoque un retour a la ligne

LEXIQUE :

N_MAX : 1’entier 10

ESPACE : le caractére ’ ’ // code ascii 32

BARRE : le caractére ’|’ // code ascii 124

TIRETS : le caractére ’---’ // code ascii 45

Ligne : le type tableau sur [0..N_MAX-1] d7entiers
table : le tableau sur [0..N_MAX-1] de Ligne

n_lig,n_col : deux entiers
mult : un entier

ALGORITHME :
pour n_lig parcourant [0..N_MAX-1]

pour n_col parcourant [0..N_MAX-1]
ecrire_car (BARRE);
mult <-- table[n_lig][n_coll;
si mult < 100 alors ecrire_car (ESPACE);
si mult < 10 alors ecrire_car (ESPACE);
ecrire_int (mult);

ecrire_car (BARRE) ;

a_la_ligne();

répéter N_MAX fois :
ecrire_car (BARRE) ;
ecrire_chn(TIRETS);

ecrire_car (BARRE);

a_la_ligne();

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 98

Traduire en langage d’assemblage cet algorithme, récupérer le fichier tabmult.s et compléter la
partie affichage. Tester cette partie, pour le tableau évidemment pour 'instant vide; c’est-a-dire que
I’affichage que vous devez observer est le méme que celui de la figure mais avec des zéros.

Pour la traduction des fonctions d’entrées-sorties utiliser les fonctions suivantes définies dans le
fichier es.s :

— EcrChn pour implémenter ecrire_car et ecrire_chn. Pour écrire un caractére sans retour a

la ligne déclarer le caractere comme chaine.

— EcrNdecim32 pour implémenter ecrire_int.

— AlaLigne pour implémenter a_la_ligne.

5.3 Remplissage du tableau

Il s’agit maintenant de traduire en langage d’assemblage 1’algorithme de remplissage du tableau
donné au paragraphe

Transformer cet algorithme dans une forme adaptée a la traduction en langage d’assemblage
(i.e. suppression des constructions pour).

Dans un premier temps, on garde telle quelle 1’écriture de l'acces a un élément du tableau
(table[n_lig] [n_col).

Pour réaliser la multiplication de deux entiers positifs vous pouvez utiliser des additions successives
selon ’algorithme suivant :

LEXIQUE :
mult, a et b : trois entiers positifs ou nuls

ALGORITHME :
mult <-- 0;
répéter a fois : mult <-- mult + b;

Votre compte-rendu comportera cette version intermédiaire de la traduction.

5.3.1 Codage d’un tableau a 2 dimensions

Pour stocker en mémoire un tableau a 2 dimensions, on peut le transformer en un tableau & une
dimension en rangeant les lignes du tableau, les unes apres les autres. Chaque ligne est une suite de
cases contenant chacune un élément du tableau.

Par exemple, un tableau avec 4 lignes et 6 colonnes pourra étre représenté par un tableau de

4*6=24 cases.
table : €00

e01l
e02
e00 | e01 | e02 | e03 | e04 | e05 e03
elD | ell | el2 | el3 | el4d | el e04
e20 | e21 | e22 | e23 | €24 | e25 €05
e30 | e31 | e32 | e33 | €34 | e35 el0
ell

€35
questions

1. table étant I’adresse de début du tableau (i.e. du premier élément), exprimer la formule du
donne ’adresse de table[x] [y] en fonction de table, x et y 7.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 99

2. Donner le langage d’assemblage correspondant a la ligne suivante (calcul d’adresse, puis écriture
de la valeur en mémoire) : table[x] [y] <-- valeur.

5.3.2 Codage du programme de multiplication (version 1)

En rassemblant les différents algorithmes que vous avez traduits, vous avez maintenant une ver-
sion complete et vous pouvez compléter le fichier tabmult.s le compiler, I'exécuter et vérifier vos
résultats ...

Pour vérifier que votre tableau est correctement rempli, vous pouvez utiliser gbd ou ddd pour
afficher le contenu de la mémoire & I’adresse debutTab. Vous pouvez aussi utiliser la partie affichage
si celle-ci a été completement testée car dans le cas contraire vous n’étes pas a ’abri d’un bug dans
cette premiere partie.

5.3.3 Codage du programme de multiplication (version 2)

Pour parcourir le tableau a 2 dimensions, on pourrait aussi parcourir le tableau a 1 dimension du
début a la fin, en utilisant une seule boucle. L’algorithme de remplissage du tableau peut alors étre
récrit sans utiliser de multiplication.

questions
1. Donnez la nouvelle forme de ’algorithme complet.

2. Traduire cette version en langage d’assemblage. Reprenez la version initiale du fichier
tabmult.s, complétez-le avec la traduction de votre algorithme.

3. Compilez votre programme, exécutez le et vérifiez vos résultats ...

Pour le compte-rendu :

les différentes lignes de vos algorithmes doivent apparaitre de fagon claire sous forme de
commentaire dans votre programme en langage d’assemblage. Vous donnerez aussi les
conventions d’implantation des différentes variables dans les registres

5.4 tabmult.s

@ Programme tabmult : Affiche les tables de multiplication de de 1 a 10
N_MAX= 10

.data
barre : .byte |’
.byte 0
espace : .byte ’ °’
.byte 0
tirets : .asciz "---"
debutTab: .skip N_MAX*N_MAX*4 @ adresse du debut du tableau
.text
.global main
main:

@ remplissage du tableau
@ a completer...

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 100

@ affichage du tableau
@ a completer...

BAL exit

ptr_debutTab : .word debutTab

adr_barre : .word barre
adr_espace : .word espace
adr_tirets : .word tirets

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 101

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 102

Chapitre 6

TP séances 8, 9 et 10 : Procédures,

fonctions et parametres

6.1 Traitement des fichiers au format bitmap

Une image donnée au format bitmap peut recevoir des traitements spéciaux via l'utilisation de

plusieurs types d’algorithmes.

L’objectif de ces TP est de réaliser plusieurs fonctions en langage d’assemblage ARM capables de
traiter différemment une image donnée en entrée au format bitmap.
Pour faciliter votre tache la consigne est d’utiliser des hauteurs et largeurs d’image multiples de 8

pixels.

En partant des exemples des sections suivantes, vous devez produire les fonctions qui réalisent les

effets ci-dessous sur I'image :

1. Négatif;
2. Symétries comme dans la figure [6.1] ci-apres ;

3. Rotations comme dans la figure [6.1] ci-apres.

LU | 1=
_]

—

[

rot+90

rot—90

symetrie (miroir) axe V ﬂ T

Rl

symetrie (miroir) axe H

FIGURE 6.1 — Exemples d’opérations de symétrie et rotation d’une image

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

symetrie H+V ou rot+/— 180

103

6.2 Négatif d’'une image au format bitmap

Le premier objectif de ces TP est de réaliser un programme capable de produire un fichier au
format bitmap qui contienne le négatif de I'image donnée en entrée au format bitmap aussi.

Le programme principal écrit en C, negatif.c, est disponible ci-apres, il fait appel a une procédure
écrite en langage d’assemblage dans le fichier util.s, que vous devez le compléter par la procédure
NEG et la fonction NON_OCT décrites ci-dessous.

6.2.1 Spécifications de NEG et NON_OCT

La procédure NEG(tt, n) transforme le tableau d’adresse tt en son négatif, n étant la taille du
tableau en nombre d’octets. Cette procédure est exportée vers le programme principal qui 'utilise.

NEG : procédure (tt: adresse d’un tableau d’octet, n: entier)
pour i de 0 & n-1 : tt[i] <-- not tt[il

Les conventions de passage des parametres sont : 'adresse du tableau est dans r0, la valeur de n
est dans ri.

La fonction NON_OCT est utilisée par la procédure NEG pour calculer la négation bit a bit d’un octet.
Cette fonction est locale a ce fichier.

NON_OCT : fonction (x : un octet) --> un octet

Les conventions de passage du parametre et du résultat sont : I'octet donnée est dans r4, 'octet
résultat est dans r5.

6.2.2 Consignes de compilation

Le fichier contenant une image exemple charlot.bm et le fichier contenant le programme principal
negatif.c sont disponibles sur le site de I'UE.
Un petit rappel pour compiler vos programmes :

arm-eabi-gcc -c -Wa,-gdwarf2 util.s
arm-eabi-gcc -c -g negatif.c
arm-eabi-gcc -o exec -g negatif.o util.o
arm-eabi-run exec

Le programme lit le fichier charlot.bm et produit le fichier resultat.bm. Pour afficher ces fichiers,
utiliser la commande bitmap (cf. le premier TP).

6.2.3 util.s

.text
.global NEG

@ NEG : procedure (tt: tableau d’octet, n: entier)
@ NEG(tt, n) transforme le tableau d’adresse tt en son negatif
@ n est la taille du tableau en nombre d’octets

@ adresse du tableau dans rO, n dans ri

NEG:

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 104

@ a completer

@ NON_OCT : fonction (x : un octet) -—> un octet

@ NON_OCT(x) est la negation bit a bit de 1l’octet x

@ donnee dans r4, resultat dans rb
NON_OCT:

@ a completer

6.2.4 negatif.c

/* transformation d’un image au format bitmap en son image negative

le programme produit un fichier resultat.bm

un tableau de bits en sa negation bit a bit

*
*
* ce programme fait appel a la procedure NEG qui transforme
*
*

#include <stdio.h>
#include "charlot.bm"

/* NEG : procedure (tt : tableau d’octet, n : entier)
* NEG(tt) transforme le tableau d’adresse tt en son negatif

* n est la taille du tableau en nombre d’octets
x/

extern void NEG (unsigned char *ptr_tab, int n);

int main(int argc, char *argv[]) {
int nboctets, i, nblignes, j;
FILE *fich_res;

/* un pixel = 1 bit d’ou 1 octet vaut pour 8 pixels
* et nombre d’octets de 1’image = (longueur * largeur) / 8 */

nboctets = (charlot_width*charlot_height) >> 3;

printf ("Calcul du negatif de 1’image\n");
J% RkkskokRok ko ok ok ok Kok ko ok ok ok Kok kK ok kK ook Kok kK ok ok

/* appel d’une procedure ecrite en assembleur
/% skokokok ok ok sk ok sk ok sk ok ok ok ok ok ok ok ok sk ok ok ok o ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok

NEG (charlot_bits, nboctets);

/% sk keokskskosk sk sk ok stk sk sk ok ok sk sk sk sk sk ok ok sk sk sk sk sk ok sk sksk sk sk ok sk sk ok o
/* version en C *x/

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

*/
*/
*/

*/

105

/%
for (i=0;i<nboctets;i++) {
charlot_bits[i] = “charlot_bits[i];
}
x/

/* >k 3k 3k 5k >k >k 3k 3k 3k >k %k >k 3k 5k >k >k >k >k 5k 5k >k >k %k 3k >k >k %k >k %k 5k >k >k %k >k >k 5k >k %k %k %k >k k */

printf ("Production du fichier resultat.bm\n");
if ((fich_res = fopen("resultat.bm", "w")) == NULL) {
printf ("%s : impossible d’ouvrir le fichier %s\n",
argv[0], "resultat.bm");
exit(1);

fprintf (fich_res, "#define charlot_width J%d\n", charlot_width);
fprintf (fich_res, "#define charlot_height %d\n", charlot_height);
fprintf (fich_res, "static unsigned char charlot_bits[] = {\n");

nblignes = nboctets / 12; /% on ecrit des lignes de 12 octets */

/* les nb-1 premieres lignes */
for (j=0; j < nblignes; j++) {
for (i=0; i<12; i++) {
fprintf (fich_res, "Ox%x, ", charlot_bits[(j*12) + i]);

};
fprintf (fich_res, "\n");
}
/* la derniere ligne (peut etre moins de 12 octets) */
for (i=0; i < (nboctets - (mblignes*12) -1) ;i) {
fprintf (fich_res, "Ox%x, ", charlot_bits[(nblignes*12)+i]);
}

/* le dernier n’est pas suivi d’une virgule */
fprintf (fich_res, "Ox%x", charlot_bits[nboctets-1]);
fprintf (fich_res, "};\n");

fclose (fich_res);

6.3 Miroir vertical d’une image au format bitmap

Le code ci-aprés en langage C propose deux méthodes de calcul du symétrique d’un octet :

1. Avec une constante tableau préinitialisée (cf. tabsym.h);

2. Par des opérations bit a bit 4+ décalage.

Adaptez le code main de la section précédente pour valider votre programme en langage d’assem-

blage ARM qui fait 'algorithme décrit ci-apres en langage C.

6.3.1 symetrie.c

#include <stdio.h>
#include "commun.h"
#include "image_test.bm"

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

106

#ifndef SYMTAB
void symetrie_octet (unsigned char *adresse) {
unsigned char octet;

octet = *adresse;

// echange de quartets adjacents

octet = (octet & O0xF0) >> 4 | (octet & 0x0OF) <<4;
// echange de doublets adjacents

octet = (octet & 0xCC) >> 2 | (octet & 0x33) <<2;
// echange de bits adjacents

octet = (octet & OxAA)>> 1 | (octet & 0x55) <<1;

*adresse = octet;

}
#else
#include "tabsym.h"

void symetrie_octet (unsigned char *adresse) {
unsigned char octet;

octet = *adresse;
octet = tabsym_octet[octet];
*adresse = octet;

}

#endif

void permuter_ligne (unsigned char *tab, unsigned int octets_par_ligne, unsigned int col) {
unsigned char tmp;

tmp = tabloctets_par_ligne -1 - coll;
tab [octets_par_ligne -1 - col] = tab [col];
tab[col] = tmp;

void symetrie (unsigned char *image) {
unsigned int position;
unsigned int 1li,col;

// symetriser chaque octet
for (position = 0; position < height*octets_par_ligne_image; position++) {
symetrie_octet (image+position);
b
// symetrie verticale octet par octet
for (1i=0;1li<height;li++) {
for (col=0; col<octets_par_ligne_image/2;col++)
permuter_ligne (image+lixoctets_par_ligne_image, octets_par_ligne_image,col);

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 107

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 108

Chapitre 7

TP séance 11 : Passage de parametres
par les registres

7.1 Calcul de n! au moyen d’une action itérative
On considere le lexique suivant :

. factl : une action(la donnée : un Entier > O,
le résultat : un Entier > 0)
{ facti(n, facn)
état initial : r5 = n, r7 = @facn
état final : facn = n! }
. mult : deux Entiers >= 0 -> un Entier >= 0
{ mult(a, b) = a *x b
pré-condition : r0 = a, rl1 =b
post-condition : rO = a * b }

On s’intéresse a l'action factl. Une réalisation itérative en est donnée par I’algorithme suivant :

facti(n, facn)
X : un Entier sur [0 .. n - 1]
res : un Entier > 0
x <-n-1
res <- n
tant que x <> 0
res <- mult(res, x)
x <-x -1
facn <- res

On se propose de coder cette action en langage d’assemblage.

Exercice 1 :

1. Traduire l'algorithme en langage d’assemblage Arm : compléter la définition de la procédure
factl (fichier factl.s, cf. annexe I) : cette procédure devra faire appel a la fonction mult
(fichier multiplication.s, cf. paragraphe [7.3).

2. Compléter le corps de la procédure principale main du fichier essai-factl.s (cf. annexe III)
vous devez ajouter a ’endroit voulu de ce fichier I'appel a la procédure fact1.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 109

3. Compilez et testez le programme. Vous disposez d’un fichier Makefile vous permettant d’'uti-
liser la commande make pour compiler le programme. Vous pouvez (vous devez!) utiliser
arm-eabi-gdb pour éliminer les erreurs d’exécution.

Remarque : pour ce premier programme, il est inutile de sauvegarder les registres temporaires dans la
procédure facti.

7.2 Calcul de n! au moyen d’une fonction récursive

On ajoute a présent dans le lexique la déclaration suivante :

. factOrec : un Entier > O -> un Entier > 0O
{ factOrec(n) = n!
pré-condition : rO = n
post-condition : rl = n! }

Une réalisation récursive de la fonction factOrec est donnée par 'algorithme suivant :

factOrec(n)
facn : un Entier > 0
sin=1 alors
facn <- 1
sinon
facn <- mult(factOrec(n - 1), n)
factOrec(n) : facn

Exercice 2 :

1. Traduire I'algorithme en langage d’assemblage Arm : compléter la définition de la fonction
factOrec (fichier factOrec.s, cf. annexe IV).

2. Compléter le corps de la procédure principale main du fichier essai-factOrec.s (cf. annexe V).
Vous devez ajouter a I’endroit voulu de ce fichier I’appel a la fonction factOrec.

3. Compilez et testez le programme.

7.3 Calcul de n! au moyen d’une action récursive

On reprend la spécification de I'action fact1 réalisée en section en la modifiant comme suit :

. factlrec : une action(la donnée : un Entier > O,
le résultat : un Entier > 0)
{ factirec(n, facn)
état initial : rO = n, r1 = @facn
état final : facn = n! }

On veut maintenant donner une réalisation récursive de cette action, selon ’algorithme suivant :

factirec(n)
facn_1 : un Entier > 0
sin =1 alors
facn <- 1
sinon
factirec(n - 1, facn_1)
facn <- mult(facn_1, n)

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 110

Exercice 3 :

1. Traduire le nouvel algorithme en langage d’assemblage Arm : compléter la définition de la
fonction factirec (fichier factirec.s, cf. annexe VI).

2. Compléter le corps de la procédure principale main du fichier essai-factirec.s (cf. an-
nexe VII). Vous devez ajouter a ’endroit voulu de ce fichier I’appel a la fonction factirec.

3. Compilez et testez le programme.

Annexe I : le fichier factl.s

@

factl.s : realisation iterative d’une action
sans sauvegarde des registres

@

procedure factl

parametres : A COMPLETER

algorithme : A COMPLETER

allocation des registres : r3 <-> x
r4d <-> res

@ 0 © @ ©

.text

.global factl
factl:

clelelefelelelelefelelele]

@ A COMPLETER

clelelefelelelclelelcelele]

Annexe II : le fichier multiplication.s
Algorithme de multiplication par addition et decalage

Principe : si a = Sigma de i=0 a n-1 des a_i * 271
alors resultat = Sigme de i=0 a n-1 des (a_i * 27i) * b_i
Pour a entier relatif : a_(n-1) est a mutiplier par -2 (n-1)

Principe : pour chaque bit i de a a 1, ajouter b << 1
(ajouter b si a_i et faire b = b*2 a chaque passage)

int mult (int a, int b) {
int resultat;
unsigned int au; // a pris comme un naturel (pour >>)

au = a; resultat = 0;
if (a <0) { // se ramener au cas a >= 0
au = -a; b = -b;
}
while (au '= 0) {
if ((au & 1) != 0) // ajouter b si a_0 ==
resultat = resultat + b;
b=">bx*x 2; // oub =Db << 1
au = au / 2; // ou au = au >> 1
}

return resultat;

@ 0 0 0o ooooOoOoOoOoOoOoO®O©®©®OM®OoOo o B’ © ©

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 111

@ Convention d’appel

Q@ a: r0, b : r1l, valeur retour : r0

@ Registres temporaires

Q resultat : r2, au: confondu avec a: r0
.text
.global mult

mult:
stmfd sp!, {rl,r2} @ sauver aussi b par precaution
mov r2,#0 @ resultat =0
cmp r0,#0 @ if (a<0)

rsblt r0,r0,#0 Q au = -a
rsblt rl,rl,#0 @ b=-b

b condtq @ while (au !'= 0)
tq: tst r0,#1 @ if ((aukl) !'= 0)
addne r2,r2,ri @ resultat = resultat + b

mov rl,rl, LSL #1 @b ="D>b *%2
mov r0,r0, LSR #1 @ au = au /2
condtq: cmp 10,#0
bne tq
mov r0,r2 @ return resultat
ldmfd sp!,{r1,r2}
mov pc,lr

Annexe III : le fichier essai-factl.s

@ essai-factl.s

.data
n: .word 0 @ donnee
facn: .word 0 @ resultat
invite: .asciz "Saisir un entier > 0 :"
.text

.global main
@ procedure principale

main:
@ saisir n
1ldr rl, adr_invite
bl EcrChaine
ldr rl, adr_n
bl Lire32

@ appel de la procedure factl(n, facn)
0000000EEOQEA0
@ A COMPLETER
deleleldeleeldeeed

@ afficher n!

1ldr rl, adr_facn
ldr rl, [ri]
bl EcrNdecimal32

@ fin de la procedure principale
bal exit

Q@ adresses pour l’acces en zone data

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

112

adr_n:

.word n
adr_facn:

.word facn
adr_invite:

.word invite

Annexe IV : le fichier factOrec.s
@ factOrec.s : realisation recursive d’une fonction

fonction factOrec : A COMPLETER

parametres : A COMPLETER

algorithme : A COMPLETER

allocation des registres : rO <-> n, n - 1
rl <> n!, (n - D!
r2 <->1n *x (n - 1)!

@ 0 © © © ©

.text

.global factOrec
factOrec:

clelelCeleleceelele¢

@ A COMPLETER

clelelefelelele]efelcelele]

Annexe V : le fichier essai-factOrec.s

@ essai-factOrec.s

.data
n: .word 0 @ donnee
invite: .asciz "Saisir un entier >= 0 :"
.text

.global main
@ procedure principale

main:
@ saisir n
ldr rl, adr_invite
bl EcrChaine
1dr rl, adr_n
bl Lire32

@ appel de la fonction factOrec(n)
cleleleledeeleddeed
@ A COMPLETER
defeleldedeeddddd

@ afficher n!
bl EcrNdecimal32

@ fin de la procedure principale
bal exit

Q@ adresses pour l’acces en zone data
adr_n:

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

113

.word n
adr_invite:
.word invite

Annexe VI : le fichier factlrec.s

@ factlrec.s : realisation recursive d’une action

@ procedure factlrec : A COMPLETER
@ parametres : A COMPLETER
Q@ algorithme : A COMPLETER
@ allocation des registres : rO <->n, n - 1
Q rl <-> @facn, @facn_1
Q r2 <->n x (n - 1)!
.text
.global factlrec
factlrec:
defelelelelelelelelelele
@ A COMPLETER
defefelelelelelelelelele

Annexe VII : le fichier essai-factlrec.

@ essai-factlrec.s

.data
n: .word 0 @ donnee
facn: .word 0 @ resultat
invite: .asciz "Saisir un entier >= 0 :"
.text

.global main
@ procedure principale

main:
@ saisir n
ldr rl, adr_invite
bl EcrChaine
ldr rl, adr_n
bl Lire32

@ appel de la procedure factlrec(n, facn)
000EEEEOEEEEQ
@ A COMPLETER
lclcleleelclelceleeled

@ afficher n!
ldr ri, [ri]
bl EcrNdecimal32

@ fin de la procedure principale
bal exit

Q@ adresses pour l’acces en zone data

adr_n:
.word n

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

114

adr_facn:

.word facn
adr_invite:

.word invite

Annexe VIII : version C des procédures et fonctions

// Protoype de la fonction mult
unsigned int mult (unsigned a, unsigned b);

void factl (unsigned int n, unsigned int *facn)
{
unsigned int x,res;
X = n-1;
res = n;
while (x '= 0) {
res = mult(res,x);
x = x-1;
}
*facn = res;

}

unsigned int factOrec(unsigned int n)
{

unsigned int facn;
if (n==1) {
facn=1;
} else {
facn = mult(factOrec(n-1),n);

3

return facn;

}

void factlrec (unsigned int n, unsigned int *facn)
{

unsigned int facn_1;

if (n==1) {

xfacn = 1;

} else {

factirec(n-1,&facn_1);

*facn = mult(facn_1,n);

}

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 115

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 116

Chapitre 8

TP séance 12 : Code en langage
d’assemblage produit par un
compilateur C

Le code en langage d’assemblage ARM d’un programme en C peut étre produit sans optimisation par
le compilateur gcc avec l'option -00. Dans ce TP, nous allons observer ce qu’un compilateur peut
optimiser. Nous allons reprendre les mémes programmes et codes du chapitre éventuellement
modifiés mais en les compilant avec un niveau d’optimisation important (option -02).
Pour ce TP n’hésitez pas a faire d’autres essais que ceux qui sont proposés.
Un autre objectif du TP est de distinguer :
— ce qui est du domaine du “statique”, c’est-a-dire ce qui peut étre calculé lors de la compilation,
— ce qui est du domaine du “dynamique”, c’est-a-dire ce qui ne peut étre calculé que lors de
I’exécution.

8.1 Un premier exemple

Récupérez le programme écrit en langage C dans le fichier premier.c.

Compilez ce programme avec un bon niveau d’optimisations (option -02) avec la commande suivante :
arm-aebi-gcc -02 -8 premier.c. Etudiez le code en langage d’assemblage ARM produit dans le
fichier premier.s et comparez avec le code étudié dans le chapitre

8.2 Programme avec une procédure qui a beaucoup de parametres

8.2.1 Premier essai

On considere le programme contenu dans le fichier bcp_param.c. Compilez ce programme avec la
commande : arm-aebi-gcc -02 -S bcp_param.c. Etudiez le programme produit dans bcp_param.s
et comparez avec le code étudié dans le chapitre

8.2.2 Deuxieme essai

Modifier le programme précédent de la facon suivante :

1 #include "stdio.h"

2

3 static long int Somme (long int al, long int a2, long int a3, long int a4, long
int a5,

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 117

4
int

al0) {

long int a6, long int a7, long int a8, long int a9, long

5 long int x1,x2,x3,x4,x5,x6,x7,x8,x9,x10;
6 long int y;

7
8
9
10
11
12
13

x1=al+l; x2=a2+1; x3=a3+1; x4=a4d+1; x5=ab+1;
x6=a6+1; x7=a7+1; x8=a8+1; x9=a9+1; x10=a10+1;
y = x1+x2+x3+x4+x5+x6+x7+x8+x9+x10;

return (y);

}

14 int main () {
15 long int z; long int ul, u2, u3, u4, ub, ub6, u7, u8, u9, ulld;

16
17
18
19
20
21
22
23
24
25
26
27
28
29

scanf
scanf
scanf
scanf
scanf
scanf
scanf
scanf
scanf
scanf

("%a", &ul);
("%d", &u2);
("%d", &u3);
("%d", &ud);
("%d", &ub);
(ll%dll’ &u6> ;
("%d", &uT7);
("%d", &u8);
("%hd", &u9);
("%d", &ul0);

z = Somme (ul, u2, u3, u4, ub, u6, u7, u8, u9, ull);
printf("La somme des entiers vaut %d\n", z);

}

Compilez ce programme, étudiez le code produit, comparez avec la version précédente.

8.2.3 Troisiéme essail

Modifier le programme précédent de la facon suivante :

1
2
3
int
4
int

© 00 N O O

10
11
12
13
14
15
16
17
18
19
20

#include

"stdio.h"

static long int Somme (long int al, long int a2, long int a3, long int a4, long

ab,

a10) {

long int a6, long int a7, long int a8, long int a9, long

long int x1,x2,x3,x4,x5,x6,x7,x8,x9,x10;
long int y;

x1=al+1; x2=a2+1; x3=a3+1; x4=a4+1; xb=ab+1;
x6=a6+1; x7=a7+1; x8=a8+1; x9=a9+1; x10=al0+1;
y = x1+x2+x3+x4+x5+x6+x7+x8+x9+x10;

return (y);

}

int main () {
long int z; long int u;

scanf

("%d", &u);

z = Somme (1, 2, 3, 4, u, 6, 7, 8, 9, 10);
printf("La somme des entiers vaut %d\n", z);

}

Compilez ce programme, étudiez le code produit, comparez avec la version précédente.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

118

8.3 Les variables locales peuvent prendre beaucoup de place

Soit le programme contenu dans le fichier var_pile.c. Compilez ce programme avec la commande :
arm-aebi-gcc -02 -S bep_param.c. Etudiez le programme produit dans bcp_param.s et comparez
avec le code étudié dans le chapitre

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 119

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 120

Chapitre 9

TP séances 13 et 14 : Procédures et
parametres

9.1 Application d’une fonction a tous les éléments d’un tableau
On considere le lexique suivant :

. Ent8 : entier sur [-128 .. + 127]

. NMAX : constante de type entier >= 0 et <= 255

. EntN : entier sur [0 .. NMAX]

. TabEnt8 : tableau sur [0 .. NMAX - 1] d’entiers du type Ent8

. FoncMapEnt8 : adresse d’une fonction avec un paramétre du type Ent8 et un
retour du type Ent8 aussi

. saisir_tab : procédure avec deux paramétres des types : TabEnt8 et EntN
{
saisir_tab(t, n) : saisit le contenu des n premiers entiers du type Ent8
dans un tableau t

}

. afficher_tab : procédure avec deux paramétres des types : TabEnt8 et EntN

{

afficher_tab(t, n) : affiche le contenu des n premiers entiers du type Ent8
qui sont dans un tableau t

}

. map : procédure avec quatre parametres des types : TabEnt8, EntN, TabEnt8 et FoncMapEnt8
{

map(tl, n, t2, f) : tl est un tableau qui contient une séquence de n entiers

du type Ent8, déja t2 est un tableau qui contient la séquence avec les résultats

du type Ent8 de la fonction f du type FoncMapEnt8 : [£(t1[0]), f(t1[1]), ..., f£(t1[n-11)]
¥

On s’intéresse a la procédure map. Une réalisation en est donnée par ’algorithme suivant :

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 121

map(tl, n, t2, f)

i : entier du type EntN
i<-0

tant que i !=n

t2[1] <- £(t1[i])
i-1i+1

On se propose de coder cette procédure en langage d’assemblage. On convient que :
— l’adresse du tableau t1 est passée dans le registre r0
— la taille n de la séquence est passée dans le registre ri
— l’adresse du tableau résultat t2 est passée dans le registre r2
— ladresse de la fonction f est passée dans le registre r3

D’autre part, pour 'appel de la fonction £ on convient que :
— l’entier donné est passé dans le registre r3
— le résultat calculé par la fonction est produit dans le registre r4

Note : Pour appeler une fonction dont ’adresse est dans un registre on utilise 'instruction ARM BLX
(Cf. paragraph [2.1.6).
De méme, la convention d’appel des procédures saisir_tab et afficher_tab est la suivante :

— l’adresse du tableau t est passée dans le registre r0
— le nombre n d’éléments & afficher est passé dans le registre ri

Exercice 1 :

1. Traduire l'algorithme en langage d’assemblage Arm : compléter la définition de la procédure
map (fichier map.s, cf. annexe I).

2. Compléter le corps de la procédure principale main du fichier essai-map.s (cf. annexe III) : vous
devez ajouter aux endroits voulus de ce fichier deux appels a la procédure map et pour chacun
d’eux un appel a la procédure auxillaire afficher_tab (fichier gestion_tab.s, cf. annexe VI).

La procédure map sera invoquée une premiere fois avec la fonction plus_un comme un parametre
telle que : plus_un(z) = x-+1 et une seconde fois avec la fonction carre telle que : carre(z) = x?
(fichier fg.s, cf. annexe II).

3. Compilez et testez le programme (faites un fichier Makefile permettant d’utiliser la commande
make pour compiler le programme).

9.2 Reéduction d’un tableau a une valeur
9.2.1 Calcul de Y7~ Ti]
On ajoute les éléments suivants dans le lexique de la question précédente :

. Ent32 : entier naturel sur 32 bits

. FoncRedEnt8 : adresse d’une fonction avec un paramétre du type Ent8 et un
retour du type Ent32

. red : fonction avec quatre paramétres des types TabEnt8, EntN, Ent8 et
FoncRedEnt8 et un retour du type Ent32

{
sin>0 : red(t, n, vi, g = g(... (glglglvi, t[01), t[11), t[2]), ..., tln - 11) ...)
sin=0: red(t, 0, vi, g) = vi

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 122

Si g est la fonction somme telle que : somme(x,y) = x + y, alors red(t,n,0, somme) = > 7"~

Une réalisation de la fonction red est donnée par I’algorithme suivant :

red(t, n, vi, g)
i : entier du type EntN
acc : entier du type Ent32

i<-0
acc <- vi
tant que i !=n

acc <- g(acc, t[i])
i<-1+1
retour acc

Pour coder cette fonction en langage d’assemblage, on convient que :
— l’adresse du tableau t est passée dans le registre r0
— la taille n de la séquence a traiter est passée dans le registre ri
— la valeur initiale du calcul est passée dans le registre r2
— D’adresse de la fonction g est passée dans le registre r3
— le résultat calculé par la fonction est produit dans le registre r4

D’autre part, pour 'appel de la fonction g on convient que :
— les données sont passées dans les registres r0 et ri
— le résultat calculé par la fonction est produit dans le registre r2

Exercice 2 :

n).

1. Traduire I'algorithme en langage d’assemblage Arm : compléter la définition de la fonction red
(fichier red.s, cf. annexe IV).

2. Compléter le corps de la procédure principale main du fichier essai-red.s (cf. annexe V). Vous
devez ajouter aux endroits voulus de ce fichier un appel a la fonction red ainsi qu'un appel a
I'une des deux procédures auxillaires EcrZdecimal32 ou EcrZdecim32 (cf. fichier es.s).

La fonction red sera invoquée avec la fonction somme comme un parametre telle que :
somme(z,y) = x +y (fichier fg.s, cf. annexe II).

3. Compilez et testez le programme.

9.2.2 Calcul de [[/-, Ti]

Exercice 3 :

1. Quels sont-ils les parametres a passer a la fonction red pour effectuer le calcul du produit
175 Tl ?
2. Quelle est la fonction qui remplace g de I'exercice précédent ?

3. Ajoutez au programme main de l'exercice précédent une invocation de la fonction red permet-
tant de réaliser ce calcul.

4. Compilez et testez le programme modifié.

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 123

9.3 Passage de parametres par la pile

Exercice 4 :

On veut réaliser une nouvelle version de la procédure map, ou de la fonction red, en utilisant cette
fois-ci le passage de parametres par la pile plutot que par les registres. Choisissez une organisation
de la pile appropriée pour le passage des parametres (le schéma correspondant sera a inclure dans le
compte-rendu du TP), puis réalisez une nouvelle version du programme (dans les fichier map2.s et
essai-map2.s, ou red2.s et essai-red2.s, par exemple).

Annexe I : le fichier map.s

Q@ procedure map

@ parametres : A COMPLETER
@ algorithme : A COMPLETER
@ allocation des registres :

.text

.global map
map:

defefelelelelelelelelele

@ A COMPLETER

clelelCelelelceeleed

A COMPLETER

Annexe II : le fichier fg.s

.global plus_un, carre
.global somme, produit

.text

@ fonction plus_un :

@ r3 : donnee

@ r4 : resultat

plus_un: add
mov

@ fonction carre :

@ r3 : donnee

@ r4 : resultat

carre: sub
str
sub
str
sub
str
sub
str

mov
mov
bl

mov

1ldr
add
ldr

r4d,
pc,

r3, #1
1r

incremente 1l’entier passe en parametre

eleve au carre 1l’entier passe en parametre

sp,
1r,

sp,
r0,
sp,
rl,

sp,
r2,

r0,
rl,

mult

r4d,

r2,

sp,
rl,

sp, #4
[sp]
sp, #4
[sp]
sp, #4
[sp]
sp, #4
[sp]

r3
r3

r0
[sp]

sp, #4
[sp]

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

124

add sp, sp, #4

ldr r0, [spl]
add sp, sp, #4
ldr 1r, [sp]
add sp, sp, #4
mov pc, 1r

@ fonction somme : ajoute les deux entiers passes en parametre
@ rO0, rl : donnees
@ r2 : resultat
somme : add r2, r0, ri
mov pc, 1r

@ fonction produit : multiplie les deux entiers passes en parametre
@ rO0, rl : donnees
@ r2 : resultat
produit:
lcleleleeleleleleelele
@ A COMPLETER
0000eEEOEEEEQ

Annexe III : le fichier essai-map.s

.set NMAX, 10 @ nombre d’elements
.data

invitel: .asciz "Saisir une sequence de "

invite2: .asciz " entiers :"

afftabl: .asciz "Sequence donnee S :"

afftab2: .asciz "map(S, plus_un) :"

afftab3: .asciz "map(S, carre) :"

tabl: .skip NMAX @ tableau de NMAX octets

tab2: .skip NMAX @ tableau de NMAX octets
.text

.global main
Q@ procedure principale

main:
@ saisir la sequence donnee
1dr rl, adr_invitel
bl EcrChn
mov rl, #NMAX
bl EcrNdecim32
ldr rl, adr_invite2
bl EcrChaine
1dr r0, adr_tabil
mov rl, #NMAX
bl saisir_tab

@ afficher la sequence donnee

bl AlaLigne

ldr rl, adr_afftabl
bl EcrChaine

ldr rO, adr_tabl
mov rl, #NMAX

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

125

bl afficher_tab

@ appel de la procedure map(tabl, NMAX, tab2, plus_un)

clelelCelelelceeleed
@ A COMPLETER
0000000EQEE0R0

@ afficher la sequence resultat
bl Alaligne

1ldr rl, adr_afftab2

bl EcrChaine
lcleleleeleleleleeleld

@ A COMPLETER

felelelefeleleleleelelel

@ appel de la procedure map(tabl, NMAX, tab2, carre)

clelelelecdeelddedeed
@ A COMPLETER
defeleleedeeddeddd

@ afficher la sequence resultat
bl AlalLigne

1dr rl, adr_afftab3

bl EcrChaine
lelelelelelelelelelelelel

@ A COMPLETER

0000eEQEOEEEQQ

@ fin du programme principal
bal exit

@ relais vers la zone data
adr_invitel:

.word invitel
adr_invite2:
.word invite2

adr_afftabl:

.word afftabl
adr_afftab2:

.word afftab2
adr_afftab3:

.word afftab3
adr_tabl:

.word tabl
adr_tab2:

.word tab2

@ relais vers la zone text
adr_plus_un:

.word plus_un
adr_carre:

.word carre

Annexe IV : le fichier red.s

.text

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

126

@ fonction red
@ parametres : A COMPLETER
@ algorithme : A COMPLETER

red:
clefelelefelelefeleleleld
@ A COMPLETER
clefelcleleleleleleled

Annexe V : le fichier essai-red.s

.set NMAX, 10 @ nombre d’elements
.data
invitel: .asciz "Saisir une sequence de "
invite2: .asciz " entiers :"
afftab: .asciz "Sequence donnee S :"
affresil: .asciz "red(S, somme) = "
tab : .skip NMAX @ tableau de NMAX octets
var_somme: .byte 0
.text

.global main
@ procedure principale

main:
@ saisir la sequence donnee
1ldr rl, adr_invitel
bl EcrChn
mov rl, #NMAX
bl EcrNdecim32
ldr rl, adr_invite2
bl EcrChaine
1ldr rO, adr_tab
mov rl, #NMAX
bl saisir_tab

@ afficher la sequence donnee

bl Alaligne

ldr rl, adr_afftab
bl EcrChaine

mov rl, #NMAX

bl afficher_tab

@ appel de la fonction red(tab, NMAX, O, somme)
(clefelefeleleleleleleleld
@ A COMPLETER
clfelefeleleleleleleleld

@ afficher le resultat
bl AlalLigne

1dr rl, adr_affresi
bl EcrChn
clelelefelelele]efelelele]

@ A COMPLETER
(clelelefelelcle]elelelele]

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 127

@ fin du programme principal

bal

exit

@ relais vers la zone data

adr_invitel:

.word
adr_invite2:

.word
adr_afftab:

.word
adr_affresi:

.word
adr_tab:

.word
adr_var_somme:

.word

invitel

invite2

afftab

affresl

tab

var_somme

@ relais vers la zone text

adr_somme:
.word

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

somme

128

Annexe VI : le fichier gestion tab.s

.data
entier: .byte 0 @ entiers de la sequence

.text
.global saisir_tab, afficher_tab

Q@ procedure saisir_tab : saisit une sequence d’entiers

@ rO = T : adresse de debut du tableau contenant la sequence
@ rl = N : nombre d’elements de la sequence

@ algorithme : i parcourant O .. N - 1 : Lire8(T[i])

saisir_tab:

sub sp, sp, #4 @ sauvegarde adresse de retour

str 1r, [sp]

sub sp, sp, #4 @ sauvegarde temporaires

str rl, [sp]

sub sp, sp, #4

str r2, [spl]

sub sp, sp, #4

str r5, [spl]

sub sp, sp, #4

str r6, [sp]

mov r5, #0 @ indice dans le tableau

mov r6, ril @ nombre d’elements
tantquel:

cmp r5, r6

beq fintql

ldr rl, adr_entier @ lire un entier

bl Lire8

1drb r2, [ri]

strb r2, [r0, r5] @ le ranger dans le tableau

add r5, rb5, #1 @ octet suivant

bal tantquel
fintql:

ldr r6, [spl] @ restauration temporaires

add sp, sp, #4

ldr r5, [spl]

add sp, sp, #4

ldr r2, [spl]

add sp, sp, #4

ldr rl, [spl]

add sp, sp, #4

ldr 1r, [sp] @ restauration adresse de retour

add sp, sp, #4

mov pc, 1r @ retour a 1’appelant
adr_entier:

.word entier

@ procedure afficher_tab : affiche une sequence d’entiers

@ r0 = T : adresse de debut du tableau contenant la sequence
@ rl = N : nombre d’elements de la sequence

@ algorithme : i parcourant O .. N - 1 : EcrZdecimal8(T[i])

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

129

afficher_tab:
sub
str
sub
str
sub
str
sub
str
sub
str

@ corps de la procedure

mov
mov
mov

tantque?2:

cmp
beq
1ldrb
bl
mov
bl
add
bal

fintq2:

bl

ldr
add
ldr
add
1dr
add
ldr
add
1dr
add
mov

sp,
1r,
sp,
rl,
sp,
r5,
Sp,
r6,
sp,
r7,

r5, #0

r6, r0

r7, rl

r5, r7
fintqg2

rl, [r6, r5]
EcrZdecim8
rl, # °
EcrCar

r5, rb, #1
tantque?2
AlaLigne
r7, [sp]
sp, sp, #4
r6, [sp]
sp, sp, #4
r5, [sp]
sp, sp, #4
rl, [spl]
sp, sp, #4
1r, [sp]
sp, sp, #4
pc, 1r

sp, #4
[sp]
sp, #4
[sp]
sp, #4
[sp]
sp, #4
[sp]
sp, #4
[sp]

@ sauvegarde adresse de retour

@ sauvegarde temporaires

@ indice dans tableau
@ adresse de debut
@ taille du tableau

@ on recupere l’octet courant
@ qui est imprime

@ en le separant du suivant par un espace
@ octet suivant

@ restauration temporaires

@ restauration adresse de retour

@ retour a 1’appelant

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

130

Quatrieme partie

Annexes

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 131

Chapitre 1

Annexe I : Codage ASCII des

N

caracteres
Dec | Hex | Char Dec | Hex | Char Dec | Hex | Char Dec | Hex | Char
0 00 NUL 32 20 SPACE 64 40 @ 96 60 ‘
1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 7 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 | 64 d
5 05 ENQ 37 25 % 69 45 E 101 | 65 e
6 06 ACK 38 26 & 70 46 F 102 | 66 f
7 07 BEL 39 27 ’ 71 47 G 103 | 67 g
8 08 BS 40 28 (72 48 H 104 | 68 h
9 09 HT 41 29) 73 49 I 105 | 69 i
10 0A | LF 42 2A | * 74 4A | J 106 | 6A | j
11 0B | VT 43 2B | + 75 4B | K 107 | 6B | k
12 0C | FF 44 2C |, 76 4C | L 108 | 6C |1
13 0D | CR 45 2D | - 77 4D | M 109 | 6D | m
14 0E SO 46 2E . 78 4E N 110 | 6E n
15 OF | SI 47 2F |/ 79 4F | O 111 | 6F | o
16 10 DLE 48 30 0 80 50 P 112 | 70 p
17 11 DC1 49 31 1 81 51 Q 113 | 71 q
18 12 DC2 50 32 2 82 52 R 114 | 72 r
19 13 DC3 51 33 3 83 53 S 115 | 73 S
20 14 DC4 52 34 4 84 54 T 116 | 74 t
21 15 NAK 53 35 5 85 55 U 117 | 75 u
22 16 SYN 54 36 6 86 56 A% 118 | 76 v
23 17 ETB 55 37 7 87 57 \WY% 119 | 77 w
24 18 CAN 56 38 8 88 58 X 120 | 78 X
25 19 EM 57 39 9 89 59 Y 121 | 79 y
26 1A | SUB 58 3A : 90 5A | Z 122 | 7TA | z
27 1B | ESC 59 3B ; 91 5B || 123 | 7B | {
28 1C | FS 60 3C | < 92 5C |\ 124 | 7C | |
29 1D | GS 61 3D | = 93 5D |] 125 | 7D | }
30 1E | RS 62 3E | > 94 5E | © 126 | 7TE |~
31 1F | US 63 3F ? 95 5F | _ 127 | 7F | DEL

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

133

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 134

Chapitre 2

Annexe II : Représentation des
nombres en base 2

La figure illustre les représentations d’entiers naturels et signés pour une taille de mot de 4 bits.
A chaque entier peut étre associé un angle. Effectuer une addition revient a ajouter les angles cor-
respondant. Un débordement de produit au-dela d’un demi-tour en arithmétique signée ou d’un tour

complet en arithmétique naturelle.

Le tableau suivant récapitule les principales puissances de 2 utiles, avec leur représentation en
hexadécimal et les puissances de 10 approchées correspondantes.

n 2m
décimal | hexa | octal | binaire décimal hexa | commentaire
0 0 00 0000 1 1
1 1 01 0001 2 2
2 2 02 0010 4 4
3 3 03 0011 8 8
4 4 04 0100 16 10 | un quartet = un chiffre hexa
5 5 05 0101 32 20
6 6 06 0110 64 40
7 7 07 0111 128 80
8 8 10 1000 256 100 | un octet = deux chiffres hexa
9 9 11 1001 512 200
10 A 12 1010 1024 400 | 1K,
11 B 13 1011 2048 800 | 2Ky
12 C 14 1100 4096 1000 | 4K,
13 D 15 1101 8192 2000 | 8K,
14 E 16 1110 16384 4000 | 16K,
15 F 17 1111 32768 8000 | 32K,
16 10 20 | 10000 65536 10000 | 64K,
20 14 24 | 10100 1048576 100000 | 1M, = 1K§ = 5 chiffres
30| 1E 36 | 11110 |[71.07 x 107 | 40000000 | 1G}, = 1K}

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017

135

FIGURE 2.1 — Représentation d’entiers naturels et signés sur 4 bits

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 136

Chapitre 3

Annexe 1III : Spécification des fonctions
d’entrée/sortie définies dans es.s

@ fichier es.s
@ fonctions d’entrees sorties

© AlalLigne

e retour a la ligne

@ EcrCar :

e ecriture d’un caractére dont la valeur est dans rl

@ EcrChn :

¢ ecriture de la chaine sans retour & la ligne dont 1l’adresse est dans rl

@ EcrChaine
(C ecriture de la chaine dont 1l’adresse est dans rl

@ EcrHexa32

@ ecriture d’un mot de 32 bits en hexadécimal

@ la valeur a afficher est dans ril

@ EcrZdecimalf32

¢] ecriture en decimal d’un entier relatif represente sur 32 bits
@ 1l’entier est dans ri

@ EcrZdecimall6 :

@ ecriture en decimal d’un entier relatif represente sur 16 bits
e 1’entier est dans les 16 bits de poids faibles de ril

@ EcrZdecimal8 :

c] ecriture en decimal d’un entier relatif represente sur 8 bits
e 1’entier est dans les 8 bits de poids faibles de ril

e attention : les bits 15 a 8 de rl sont eventuellement modifies
@ EcrNdecimal32 :

c] ecriture en decimal d’un entier naturel represente sur 32 bits
© 1’entier est dans ril

@ EcrNdecimall6 :
ecriture en decimal d’un entier naturel represente sur 16 bits
e 1’entier est dans les 16 bits de poids faibles de ril

@

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 137

@ EcrNdecimal8

@ ecriture en decimal d’un entier naturel represente sur 8 bits
e 1’entier est dans les 8 bits de poids faibles de ril

c] attention : les bits 15 a 8 de rl sont mis a 0

@ Lire32

@ lecture d’un entier represente sur 32 bits

@ 1’adresse de 1l’entier doit etre donnee dans ri
@ Lirel6

c] lecture d’un entier represente sur 16 bits

@ 1’adresse de 1l’entier doit etre donnee dans rl
@ Lire8

c] lecture d’un entier represente sur 8 bits

@ 1’adresse de 1l’entier doit etre donnee dans rl
@ LireCar

C] lecture d’un caractere tape au clavier

Q 1’adresse du caractere (code en ascii) doit etre donnee dans ri

(©Equipe d’Enseignement INF401 ALM de 'UJF - 30 mars 2017 138

	I Documentation Technique
	Environnement informatique pour les travaux pratiques
	Langage machine et langage d'assemblage ARM

	II Travaux Dirigés
	TD séance 1 : Codage
	TD séance 2 : Représentation des nombres
	TD séance 3 : Langage machine
	TD séance 4 : Langage machine (suite)
	TD séances 5 et 6 : Codage des structures de contrôle
	TD séance 7 : Fonctions : paramètres et résultat
	TD séance 8 : Appels/retours de procédures, action sur la pile
	TD séances 11 : Paramètres dans la pile, paramètres passés par l'adresse
	TD séance 12 : Etude du code produit par le compilateur arm-eabi-gcc
	TD séances 13 et 14 : Organisation d'un processeur : une machine à pile

	III Travaux Pratiques
	TP séance 1 : Représentation des informations (ex.: images, programmes, entiers)
	TP séance 2 : Codage et calculs en base 2
	TP séances 3 et 4 : Codage des données
	TP séance 5 : Codage de structures de contrôle et le metteur au point gdb
	TP séances 6 et 7 : Parcours de tableaux
	TP séances 8, 9 et 10 : Procédures, fonctions et paramètres
	TP séance 11 : Passage de paramètres par les registres
	TP séance 12 : Code en langage d'assemblage produit par un compilateur C
	TP séances 13 et 14 : Procédures et paramètres

	IV Annexes
	Annexe I : Codage ASCII des caractères
	Annexe II : Représentation des nombres en base 2
	Annexe III : Spécification des fonctions d'entrée/sortie définies dans es.s

