UNIVERSITE Joseph FOURIER, Grenoble
U.F.R. d’ Informatique et Maths. Appliquées

Architectures logicielles et matérielles
Langage machine et langage d’assemblage ARM
Documentation technique

Table des matieéres

|1 Résumé de documentation technique ARM]|
[1.1 Organisation des registres|

[1.3 Les codes de conditions arithmétiques] L.
1.4 Description de I'instruction de chargement d’un registre]
[1.5 Description des instructions arithmétiques et logiques|
[1.6 Description des instructions de rupture de séquence].
1.7 Description des instructions de transfert d’information entre les registres et la mémoire|

[1.7.1 Transfert entre un registre et la mémoire|
[1.7.2 Pré décrémentation et post incrémentation|
[1.7.3 Transfert multiples| o

|2 Langage d’assemblage]
[2.1 Structure d’un programme en langage d’assemblage|.

2.4 Utilisation d’étiquettes|
[2.4.1 Expression d’une rupture de séquence]

[2.4.2 Acces a une donnée depuis la zone text|

0 1 O O Uk WWNNNN

©

Organisation de la mémoire : petits bouts, gros bouts|

Mise en place de I’environnement|

Commandes de traduction, exécution, observation|

b.1 Traduction d’un programme|.

b.2 Exécution d’un programme| Lo

[5.2.2 Exécution avec un débogueur| L.
5.3 Observation du code produit|

|6

Annexe I : codage ASCII des caracteres|

Annexe Il : représentation des nombres en base 2|

12

12

12
12
13
13
13
14

15

15

1 Résumé de documentation technique ARM

1.1 Organisation des registres

Dans le mode dit “utilisateur” le processeur ARM a 16 registres visibles de taille 32 bits nommés
r0, r1, ..., ri5:

— r13 (synonyme sp, comme “stack pointer”) est utilisé comme registre pointeur de pile.

— ri14 (synonyme lr comme “link register”) est utilisé par I'instruction ”branch and link” (bl)
pour sauvegarder ’adresse de retour lors d’un appel de procédure.

— r15 (synonyme pc, comme “program counter”) est le registre compteur de programme.

Les conventions de programmation des procédures (ATPCS=" ARM-Thumb Procedure Call Stan-
dard, Cf. Developer Guide, chapitre 2) précisent :

— les registres r0, rl, r2 et r3 sont utilisés pour le passage des parametres (données ou
résultats)

— le registre r12 (synonyme ip) est un “intra-procedure call scratch register” ; autrement dit il
peut étre modifié par une procédure appelée.

— le compilateur arm-elf-gcc utilise le registre r11 (synonyme fp comme ”frame pointer”) comme
base de ’environnement de définition d’une procédure.

Le processeur a de plus un registre d’état, cpsr pour “Current Program Status Register”, qui
comporte entre autres les codes de conditions arithmétiques. Le registre d’état est décrit dans la

figure

31 28 76 4 0
NZCV [IF| [mode |

Fia. 1 — Registre d’état du processeur ARM

Les bits N, Z, C et V sont les codes de conditions arithmétiques, I et F permettent le masquage
des interruptions et mode définit le mode d’exécution du processeur (User, Abort, Supervisor, IRQ,
ete).

1.2 Les instructions

Nous utilisons trois types d’instructions : les instructions arithmétiques et logiques (para-
graphe [1.5)), les instructions de rupture de séquence (paragraphe [1.6) et les instructions de transfert
d’information entre les registres et la mémoire (paragraphe [1.7)).

Les instructions sont codées sur 32 bits.

Certaines instructions peuvent modifier les codes de conditions arithmétiques N, Z, C, Ven ajou-
tant un S au nom de 'instruction.

Toutes les instructions peuvent utiliser les codes de conditions arithmétiques en ajoutant un
mnémonique (Cf. figure[2)) au nom de l'instruction. Au niveau de I'exécution, I'instruction est exécutée
si la condition est vraie.

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

1.8 Les codes de conditions arithmétiques

1.3 Les codes de conditions arithmétiques

La figure [2] décrit I’ensemble des conditions arithmétiques.

code | mnémonique signification condition testée
0000 EQ égal Z

0001 NE non égal A

0010 CS/HS > non signé C

0011 CC/LO < non signé C

0100 MI moins N

0101 PL plus N

0110 VS débordement Vv

0111 VvC pas de débordement 1%

1000 HI > non signé CNZ

1001 LS < non signé cvZz

1010 GE > signé (NAV)V(NAV)
1011 LT < signé (NAV)V(NAV)
1100 GT > signé ZA(NAV)V(NAV))
1101 LE < signé ZV(NAV)V(NAV)
1110 AL toujours

Fi1Gg. 2 — Codes des conditions arithmétiques

Toute instruction peut étre exécutée sous une des conditions décrites dans la figure [2 Le code de
la condition figure dans les bits 28 a 31 du code de l'instruction. Par défaut, la condition est AL.

1.4 Description de I’instruction de chargement d’un registre

Nous choisissons dans ce paragraphe de décrire en détail le codage d’une instruction.

L’instruction MOV permet de charger un registre avec une valeur immédiate ou de transférer la
valeur d’un registre dans un autre avec modification par translation ou rotation de cette valeur.

La syntaxe de I'instruction de transfert est : MOV [<COND>] [S] <rd>, <opérande> ou rd désigne
le registre destination et opérande est décrit par la table ci-dessous :

opérande commentaire

#immédiate-8 entier sur 32 bits (Cf. remarque ci-dessous)

rm registre

rm, shift #shift-imm-5 | registre dont la valeur est décalée d’un nombre

de positions représenté sur 5 bits
registre dont la valeur est décalée du nombre
de positions contenu dans le registre rs

rm, shift rs

Dans la table précédente le champ shift de 'opérande peut étre LSL, LSR, ASR, ROR qui signi-
fient respectivement “logical shift left”, “logical shift right”, “arithmetic shift right”, “rotate right”.

Le codage de l'instruction MOV est décrit dans les figures [3] et [4] <COND> désigne un mnémonique
de condition ; s’il est omis la condition est AL. Le bit S est mis a 1 si 'on souhaite une mise a jour des
codes de conditions arithmétiques. Le bit I vaut 1 dans le cas de chargement d’une valeur immédiate.
Les codes des opérations LSL, LSR, ASR, ROR sont respectivement : 00,01, 10, 11.

Remarque concernant les valeurs immédiates : Une valeur immédiate sur 32 bits (opérande
#immediate) sera codée dans 'instruction au moyen, d’une part d’une constante exprimée sur 8 bits

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

1.5 Description des instructions arithmétiques et logiques 4

(bits 7 & 0 de linstruction, figure 1¢" cas), et d’autre part d’une rotation exprimée sur 4 bits
(bits 11 & 8) qui sera appliquée a la dite constante lors de I'exécution de l'instruction. La valeur de
rotation, comprise entre 0 et 15, est multipliée par 2 lors de I'exécution et permet donc d’appliquer a
la constante une rotation a droite d’'un nombre pair de positions compris entre 0 et 30. Il en résulte
que ne peuvent étre codées dans l'instruction toutes les valeurs immédiates sur 32 bits... Une rotation
nulle permettra de coder toutes les valeurs immédiates sur 8 bits.

31 28 2726 25 24 21 20 19 16 1512 11 0
lcond \ 00 \1\1101\ S \0000\ rd \opérande

Fia. 3 — Codage de l'instruction mov

11 8 7 0
10000 | immediate-8 |

11 7 65 3 0
| shift-imm-5 | shift | 0 | rm |

11 8§ 65 3 0
’ s \O‘shift‘l‘ rm ‘

Fia. 4 — Codage de la partie opérande d’une instruction

Exemples d’utilisations de ’instruction mov

MOV r1, #42 Q@ r1 <—- 42
MOV r3, r5 Q@ r3 <-- rb
MOV r2, r7, LSL #28 @ r2 <-- r7 décalé a gauche de 28 positions
MOV r1, rO, LSR r2 @ rl <-- r0O décalé a droite de n pos., r2=n

MOVS r2, #-5 @ r2 <-- -5 + positionnement N, Z, C et V
MOVEQ ri1, #42 @ si cond(EQR) alors ri1 <-- 42
MOVLTS r3, r5 @ si cond(LT) alors r3 <-- r5 + positionnement N, Z, C et V

1.5 Description des instructions arithmétiques et logiques

Les instructions arithmétiques et logiques ont pour syntaxe :
code-op[<cond>] [s] <rd>, <rn>, <opérande>, ou code-op est le nom de l'opération, rn et
opérande sont les deux opérandes et rd le registre destination.

Le codage d’une telle instruction est donné dans la figure [5| opérande est décrit dans le para-

graphe figure

31 28 2726 25 24 21 20 1916 1512 11 0
’ cond ‘ 00 ‘ I ‘code—op‘ S ‘ rm ‘ rd ‘opérande

Fiag. 5 — Codage d’une instruction arithmétique ou logique

La table ci-dessous donne la liste des intructions arithmétiques et logiques ainsi que les instructions
de chargement d’un registre. Les instructions TST, TEQ, CMP, CMN n’ont pas de registre destination,

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

1.6 Description des instructions de rupture de séquence 5

elles ont ainsi seulement deux opérandes ; elles provoquent systématiquement la mise a jour des codes
de conditions arithmétiques (dans le codage de l'instruction les bits 12 & 15 sont mis a zéro). Les
instructions MOV et MVN ont un registre destination et un opérande (dans le codage de I'instruction les
bits 16 & 19 sont mis & zéro).

code-op | Nom Explication du nom Opération remarque
0000 AND AND et bit & bit
0001 EOR Exclusive OR ou exclusif bit a bit
0010 SUB SUBstract soustraction
0011 RSB Reverse SuBstract soustraction inversée
0100 ADD ADDition addition
0101 ADC ADdition with Carry addition avec retenue
0110 SBC SuBstract with Carry soustraction avec emprunt
0111 RSC | Reverse Substract with Carry | soustraction inversée avec emprunt
1000 TST TeST et bit a bit pas rd
1001 TEQ Test EQuivalence ou exclusif bit a bit pas rd
1010 CMP CoMPare soustraction pas rd
1011 CMN CoMpare Not addition pas rd
1100 ORR OR ou bit a bit
1101 MoV MOVe copie pas rn
1110 BIC BIt Clear et not bit a bit
1111 MVN MoVe Not not (complément a 1) pas rn

Exemples d’utilisations

ADD r1, r2, rb @ rl1 <—— r2 + rb
ADDS r0O, r2, #4 @ rO <-- r2 + 4 + positionnement NZCV
SUB r3, r7, r0 @ r3 <—— r7 - r0
SUBS r3, r7, r0 @ r3 <-- r7 - rO + positionnement NZCV
SUBGES r3, r7, r0 @ si cond(GE) r3 <-- r7 - r0 et positionnement NZCV
CMP r1, r2 @ calcul de rl1-r2 et positionnement NZCV
TST r3, #1 @ calcul de r3 ET 1 et positionnement NZCV
@

ANDS r1, r2, #0x0000ff00 rl <-- r2 ET 0x0000ff00 et positionnement NZCV

1.6 Description des instructions de rupture de séquence

Il y a deux instructions de rupture de séquence : B[<cond>] <déplacement> et BL[<cond>]
<déplacement> dont les codes sont donnés figures [7] et L’instruction B provoque la modification

du compteur de programme si la condition est vraie; le texte suivant est extrait de la documentation
ARM :

if ConditionPassed(cond) then
PC <-- PC + (SignExtend(déplacement) << 2)

L’instruction BL provoque la modification du compteur de programme avec sauvegarde de ’adresse
de I'instruction suivante; le texte suivant est extrait de la documentation ARM :

1lr <-- address of the instruction after the branch instruction
PC <-- PC + (SignExtend(déplacement) << 2)

L’expression (SignExtend(déplacement) << 2) signifie que le déplacement est tout d’abord
étendu de facon signée a 32 bits puis mutiplié par 4. Le déplacement est en fait un entier relatif

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

1.7 Description des instructions de transfert d’information entre les registres et la mémoire 6

Conditions des instructions de branchement conditionnel
Type Entiers signés Naturels et adresses
Instruction C Bxx Condition Bxx Condition

goto | BAL 1110 BAL 1110

if (x==y) goto | BEQ 0000 BEQ 0000
if (x = y) goto | BNE 0001 BNE 0001
if (x < y) goto | BLT 1011 BLO, BCC 0011
if (x<=y) goto | BLE 1101 BLS 1001
if (x > y) goto | BGT 1100 BHI 1000
if (x>=y) goto | BGE 1010 BHS,BCS 0010

Fia. 6 — Utilisation des branchements conditionnels apres une comparaison
(codé sur 24 bits comme indiqué ci-dessous) et qui représente le nombre d’instructions (en avant ou
en arriere) entre l'instruction de rupture de séquence et la cible de cette instruction.

31 28 2725 24 23 0
’ cond ‘ 101 ‘ 0 ‘déplacement ‘

F1c. 7 — Codage de l'instruction de rupture de séquence b{cond}

31 28 2725 24 23 0
’ cond ‘ 101 ‘ 1 ‘déplacement‘

Fia. 8 — Codage de l'instruction de branchement a un sous-programme bl

Dans le calcul du déplacement, il faut prendre en compte le fait que lors de 'exécution d’une
instruction, le compteur de programme ne repere pas l'instruction courante mais deux instructions en
avant.

La figure résume l'utilisation des instructions de branchements conditionnels apres une com-
paraison.

Exemples d’utilisations

BEQ +5 @ si cond(EQ) alors pc <-- pc + 4x5
BAL -8 @ pc <-- pc - 4x8
BL 42 @ 1r <-- pc+4 ; pc <-- pc +4%42

Dans la pratique, on utilise une étiquette (Cf. paragraphe [2.4]) pour désigner l'instruction cible
d’un branchement. C’est le traducteur (i.e. ’assembleur) qui effectue le calcul du déplacement.

1.7 Description des instructions de transfert d’information entre les registres et
la mémoire

1.7.1 Transfert entre un registre et la mémoire

L’instruction LDR dont la syntaxe est : LDR <rd>, <mode-adressage> permet le transfert du mot
mémoire dont I’adresse est spécifiée par mode-adressage vers le registre rd. Nous ne donnons pas
le codage de l'instruction LDR parce qu’il comporte un grand nombre de cas; nous regardons ici
uniquement les utilisations les plus fréquentes de cette instruction.

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

1.7 Description des instructions de transfert d’information entre les registres et la mémoire 7

Le champ mode-adressage comporte, entre crochets, un registre et éventuellement une valeur
immédiate ou un autre registre, ceux-ci pouvant étre précédés du signe 4+ ou —. Le tableau ci-dessous
indique pour chaque cas le mot mémoire qui est chargé dans le registre destination. L’instruction 1dr
permet beaucoup d’autres types de calcul d’adresse qui ne sont pas décrits ici.

mode-adressage opération effectuée

[rn] rd <— mem [rn]

[rn, #offset12] |rd <— mem [rn + offset12]
[rn, #-offsetl12] | rd <— mem [rn - offset12]
[rn, rm] rd <— mem [rn + rm|
[rn, -rm] rd <- mem [rn - rm]

Il existe des variantes de 'instruction LDR permettant d’accéder a un octet : LDRB ou a un mot
de 16 bits : LDRH. Et si 'on veut accéder a un octet signé : LDRSB ou a un mot de 16 bits signé :
LDRSH. Ces variantes imposent cependant des limitations d’adressage par rapport aux versions 32 bits
(exemple : valeur immédiate codée sur 5 bits au lieu de 12).

Pour réaliser le transfert inverse, registre vers mémoire, on trouve 'instruction STR et ses variantes
STRB et STRH. La syntaxe est la méme que celle de 'instruction LDR. Par exemple, 'instruction STR
rd, [rn] provoque 'exécution : MEM [rn] <-- rd.

Exemples d’utilisations

LDR r1, [rO]
LDR r3, [r2, #4]
LDR r3, [r2, #-8]
LDR r3, [pc, #48]
LDRB r5, [r3]

rl <-32bits-- Mem [rO]

r3 <-32bits-- Mem [r2 + 4]

r3 <-32bits-- Mem [r2 - 8]

r3 <-32bits-- Mem [pc + 48]

8bits_poids_faibles (r5) <-- Mem [r3],

extension aux 32 bits avec des O

Mem [rl + r3] <-16bits-- 16bits_poids_faibles (r2)

© © 0 © © © ©

STRH r2, [r1, r3]

L’instruction LDR est utilisée entre autres pour accéder a un mot de la zone text en réalisant
un adressage relatif au compteur de programme. Ainsi, I'instruction LDR r2, [pc, #depl] permet de
charger dans le registre r2 avec le mot mémoire situé a une distance depl du compteur de programme,
c’est-a-dire de l'instruction en cours d’exécution. Ce mode d’adressage nous permet de recupérer
l’adresse d'un mot de données (Cf. paragraphe .

1.7.2 Pré décrémentation et post incrémentation

Les instructions LDR et STR offrent des adressages post-incrémentés et pré-décrémentés qui per-
mettent d’accéder a un mot de la mémoire et de mettre a jour une adresse, en une seule instruction.
Cela revient a combiner un accés mémoire et I'incrémentation du pointeur sur celle-ci en une seule
instruction.

instruction ARM équivalent ARM | équivalent C
LDR r1, [r2, #-4] ! | SUB r2, r2, #4 | r1l = *--r2
LDR r1, [r2]
LDR r1, [r2], #4 LDR r1, [r2] rl = *r2++
ADD r2, r2, #4
STR r1, [r2, #-4]!' | SUB r2, r2, #4
STR r1, [r2]

STR r1, [r2], #4 STR r1, [r2]

ADD r2, r2, #4

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

1.7 Description des instructions de transfert d’information entre les registres et la mémoire 8

La valeur a incrémenter ou décrémenter (4 dans les exemples ci-dessus) peut aussi étre donnée
dans un registre.

1.7.3 Transfert multiples

Le processeur ARM possede des instructions de transfert entre un ensemble de registres et
un bloc de mémoire repéré par un registre appelé registre de base : LDM et STM. Par exemple,
STMFD r7!, {r0,r1,r5} range le contenu des registres r0, rl et r5 dans la mémoire & partir de
I’adresse contenue dans r7 et met a jour le registre r7 apres le transfert; apres 'exécution de 'ins-
truction MEM[r7] contient rO et MEM[r7+8] contient r5.

Il existe 8 variantes de chacune des instructions LDM et STM selon que :

— les adresses de la zone mémoire dans laquelle sont copiés les registres croissent (Increment) ou
décroissent (Decrement).

— l'adresse contenue dans le registre de base est incrémentée ou décrémentée avant (Before) ou
apres (After) le transfert de chaque registre. Notons que l'adresse est décrémentée avant le
transfert quand le registre de base repere le mot qui a ’adresse immédiatement supérieure a
celle ot 'on veut ranger une valeur (Full) ; adresse est incrémentée apres le transfert quand le
registre de base repére le mot ot ’on veut ranger une valeur (Empty).

— le registre de base est modifié a la fin de 'exécution quand il est suivi d’un ! ou laissé inchangé
sinon.

Ces instructions servent aussi a gérer une pile. Il existe différentes fagcons d’implémenter une pile
selon que :

— le pointeur de pile repere le dernier mot empilé (Full) ou la premiere place vide (Empty).
— le pointeur de pile progresse vers les adresses basses quand on empile une information
(Descending) ou vers les adresses hautes (Ascending).

Par exemple, dans le cas ou le pointeur de pile repére 'information en sommet de pile (case pleine)
et que la pile évolue vers les adresses basses (lorsque 1'on empile 'addresse décroit), on parle de pile
Full Descending et on utilise 'instruction STMFD pour empiler et LDMFD pour dépiler.

Les modes de gestion de la pile peuvent étre caractérisés par la facon de modifier le pointeur de pile
lors de ’empilement d’une valeur ou de la récupération de la valeur au sommet de la pile. Par exemple,
dans le cas ou le pointeur de pile repere 'information en sommet de pile et que la pile évolue vers
les adresses basses, pour empiler une valeur il faut décrémenter le pointeur de pile avant le stockage
en mémoire ; on utilisera I'instruction STMDB (Decrement Before). Dans le méme type d’organisation
pour dépiler on accede a 'information au sommet de pile puis on incrémente le pointeur de pile : on
utilise alors 'instruction LDMIA (Increment After).

Selon que ’on prend le point de vue gestion d’un bloc de mémoire repéré par un registre ou gestion
d’une pile repérée par le registre pointeur de pile, on considere une instruction ou une autre ... Ainsi,
les instructions STMFD et STMDB sont équivalentes ; de méme pour les instructions LDMFD et LDMIA.

Les tables suivantes donnent les noms des différentes variantes des instructions LDM et STM, chaque
variante ayant deux noms synonymes ['un de 'autre.

‘ nom de l'instruction ‘ synonyme ‘
LDMDA (decrement after) | LDMFA (full ascending)
LDMIA (increment after) LDMFD (full descending)
LDMDB (decrement before) | LDMEA (empty ascending)
LDMIB (increment before) | LDMED (empty descending)

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

adresses 0
croissantes
P/
r7_)
ﬁ
max

F1c. 9 — Transfert multiples mémoire/registres : STMFD r7 !, {r3,r4,r5,r6} ou (STMDB
de passer de I’état a) de la mémoire & ’état b). LDMFD r7 !, {r3,r4,r5,r6} (ou LDMIA ..

l’inverse.

3

‘ nom de l'instruction ‘ synonyme

7

max

STMDA (decrement after) | STMED (empty descending)

STMIA (increment after) STMEA

La figure [9 donne un exemple d’utilisati

2 Langage d’assemblage

(empty ascending)
STMDB (decrement before) | STMFED (full descending)
STMIB (increment before) | STMFA (full ascending)

on.

|

r3

7

5

6

g

b)

2.1 Structure d’un programme en langage d’assemblage

Un programme est composé de trois types de sections :

— données intialisées ou non (.data)
— données non initialisées (.bss)
— instructions (.text)

...) permet
.) réalise

Les sections de données sont optionnelles, celle des instructions est obligatoire. On peut écrire des
commentaires entre le symbole @ et la fin de la ligne courante. Ainsi un programme standard a la

structure :

.data
@ déclaration de données
Q ...

.text
@ des instructions
Q ...

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

2.2 Déclaration de données 10

2.2 Déclaration de données

Le langage permet de déclarer des valeurs entieres en décimal (éventuellement précédées de leur
signe) ou en hexadécimal ; on précise la taille souhaitée.

Exemple :

.data
.word 4536 @ déclaration de la valeur 4536 sur 32 bits (1 mot)
.hword -24 @ déclaration de la valeur -24 sur 16 bits (1 demi mot)
.byte 5 @ déclaration de la valeur 5 sur 8 bits (1 octet)
.word Oxfff2a35f @ déclaration d’une valeur en hexadécimal sur 32 bits
.byte Oxab @ idem sur 8 bits

On peut aussi déclarer des chaines de caractéres suivies ou non du caractere de code ASCII 00.
Un caractére est codé par son code ASCII (Cf. paragraphe [6]).

Exemple :

.data
.ascii "un texte" @ déclaration de 8 caractéres...
.asciz "un texte" @ déclaration de 9 caractéres, les mémes que ci-dessus
@ plus le code 0 & la fin

La définition de données doit respecter les regles suivantes, qui proviennent de I’organisation phy-
sique de la mémoire :

— un mot de 32 bits doit étre rangé a une adresse multiple de 4

— un mot de 16 bits doit étre rangé a une adresse multiple de 2

— il n’y a pas de contrainte pour ranger un octet (mot de 8 bits)

Pour recadrer une adresse en zone data le langage d’assemblage met a notre disposition la directive
.balign.

Exemple :

.data
@ on note AD 1’adresse de chargement de la zone data
@ que 1’on suppose multiple de 4 (c’est le cas avec les outils utilisés)

.hword 43 Q@ aprés cette déclaration la prochaine adresse est AD+2
.balign 4 Q@ recadrage sur une adresse multiple de 4

.word Oxffff1234 @ rangé & 1’adresse AD+4

.byte 3 Q@ aprés cette déclaration la prochaine adresse est AD+9
.balign 2 @ recadrage sur une adresse multiple de 2

.hword 42 @ rangé a 1’adresse AD+10

On peut aussi réserver de la place en zone .data ou en zone .bss avec la directive .skip.
.skip 256 réserve 256 octets qui ne sont pas initialisés lors de la réservation. On pourra par programme
écrire dans cette zone de mémoire.

2.3 La zone text

Le programmeur y écrit des instructions qui seront codées par I’assembleur (le traducteur) selon
les conventions décrites dans le paragraphe

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

2.4 Utilisation d’étiquettes 11

La liaison avec le systéeme (chargement et lancement du programme) est réalisée par la définition
d’une étiquette (Cf. paragraphe suivant) réservée : main.
Ainsi la zone text est :

.text
.global main
main:

@ des instructions ARM
Q ...

2.4 Utilisation d’étiquettes

Une donnée déclarée en zone data ou bss ou une instruction de la zone text peut étre précédée
d’une étiquette. Une étiquette représente une adresse et permet de désigner la donnée ou 'instruction
concernée.

Les étiquettes représentent une facilité d’écriture des programmes en langage d’assemblage.

2.4.1 Expression d’une rupture de séquence
On utilise une étiquette pour désigner I'instruction cible d’un branchement. C’est le traducteur

(i.e. Passembleur) qui effectue le calcul du déplacement. Par exemple :

etiq: MOV r0O, #22
ADDS r1, r2, r0
BEQ etiq

2.4.2 Acces a une donnée depuis la zone text

.data
DD: .word 5
.text
@ acces au mot d’adresse DD
LDR rl1, relais @ rl <-- 1’adresse DD
LDR r2, [ri] @ r2 <-- Mem[DD] c’est-a-dire 5
MOV r3, #245 @ r3 <—- 245
STR r3, [ri] @ Mem[DD] <-- r3

@ la mémoire d’adresse DD a été modifiée

@ plus loin
relais: .word DD @ déclaration de 1l’adresse DD en zone text

L’instruction LDR r1l, relais est codée avec un adressage relatif au compteur de programme :

LDR r1, [pc, #depl] (Cf. paragraphe [1.7.1]).

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

12

3 Organisation de la mémoire : petits bouts, gros bouts

La mémoire du processeur ARM peut étre vue comme un tableau d’octets repérés par des numéros
appelés adresse qui sont des entiers naturels sur 32 bits. On peut ranger dans la mémoire des mots
de 32 bits, de 16 bits ou des octets (mots de 8 bits). Le paragraphe indique comment déclarer de
tels mots.

Dans la mémoire les mots de 32 bits sont rangés a des adresses multiples de 4. Il y a deux conventions
de rangement de mots en mémoire selon 'ordre des octets de ce mot.

Considérons par exemple le mot 0x12345678.

— convention dite "Big endian” (Gros bouts) :

les 4 octets 12, 34, 56, 78 du mot 0x12345678 sont rangés aux adresses respectives 4x, 4x+1,
4x+2, 4x+43.

— convention dite ”Little endian” (Petits Bouts) :

les 4 octets 12, 34, 56, 78 du mot 0x12345678 sont rangés aux adresses respectives 4x+3,
4x+42, 4x+1, 4x.

Le processeur ARM suit la convention ” Little endian”. La conséquence est que lorsqu’on lit le mot
de 32 bits rangé a ’adresse 4x on voit : 78563412, c’est-a-dire qu’il faut lire ”a 'envers”. Selon les
outils utilisés le mot de 32 bits est présenté sous cette forme ou sous sa forme externe, plus agréable...

En général les outils de traduction et de simulation permettent de travailler avec une des
deux conventions moyennant l'utilisation d’options particulieres lors de l’appel des outils (option
-mbig-endian).

4 Mise en place de 'environnement

Pour utiliser les outils GNU ARM vous devez mettre & jour certains chemins d’acces.
Selon [l'environnement dans lequel vous travaillez, la commande a effectuer est : source
/opt/gnu/bin/setenvarm.csh

Cette commande pourra éventuellement étre exécutée systématiquement lors de la connexion.

Mais il se peut que la procédure d’installation soit différente et soit par conséquent détaillée
ultérieurement.

5 Commandes de traduction, exécution, observation

5.1 Traduction d’un programme

Pour traduire un programme écrit en C contenu dans un fichier prog.c :
arm-elf-gcc -g -o prog prog.c. L’option -o permet de préciser le nom du programme exécutable ;
o signifie “output”. L’option -g permet d’avoir les informations nécessaires a la mise au point sous
débogueur (Cf. paragraphe [5.2)).

Pour traduire un programme écrit en langage d’assemblage ARM contenu dans un fichier prog.s :
arm-elf-gcc -Wa,--gdwarf2 -o prog prog.s.

Lorsque 'on veut traduire un programme qui est contenu dans plusieurs fichiers que 'on devra
rassembler (on dit “lier”), il faut d’abord produire des versions partielles qui ont pour suffixe .o, le o
voulant dire ici “objet”. Par exemple, on a deux fichiers : principal.s et biblio.s, le premier contenant
I’étiquette main. On effectuera la suite de commandes :

arm-elf-gcc -c -Wa,--gdwarf2 biblio.s
arm-elf-gcc -c -Wa,--gdwarf2 principal.s

arm-elf-gcc —-g —o prog principal.o biblio.o

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

5.2 Exécution d’un programme 13

La premiére produit le fichier biblio.o, la seconde produit le fichier principal.o, la troisieme
les relie et produit le fichier exécutable prog.

Noter que les deux commandes suivantes ont le méme effet :
arm-elf-gcc -c prog.s et
arm-elf-as -o prog.o prog.s. Elles produisent toutes deux un fichier objet prog.o sans les infor-
mations nécessaires a l’exécution sous débogueur.

5.2 Exécution d’un programme
5.2.1 Exécution directe

On peut exécuter un programme directement avec
arm-elf-run prog. S’il n'y a pas d’entrées-sorties, on ne voit évidemment rien...

5.2.2 Exécution avec un débogueur

Nous pouvons utiliser deux versions du méme débogueur : gdb et ddd. On parle aussi de metteur
au point. C’est un outil qui permet d’exécuter un programme instruction par instruction en regardant
les “tripes” du processeur au cours de l'exécution : valeur contenues dans les registres, dans le mot
d’état, contenu de la mémoire, etc.

gdb est la version de base (textuelle), ddd est la méme mais graphique (avec des fenétres, des
icones, etc.), elle est plus conviviale mais plus sujette a des problemes techniques liés a l'installation
du logiciel. . .

Soit le programme objet exécutable : prog. Pour lancer gdb :
arm-elf-gdb prog. Puis taper successivement les commandes : target sim et enfin load. Maintenant
on peut commencer la simulation.

Voila un ensemble de commandes utiles :

— placer un point d’arrét sur une instruction précédée d’une étiquette, par exemple : break main.

On peut aussi demander break no avec no un numéro de ligne dans le code source.

— enlever un point d’arrét : delete break numéro_du_point_d’arrét

— voir le code source : list

— lancer I'exécution : run

— poursuivre I’exécution apres un arrét : cont

— exécuter l'instruction a la ligne suivante, en entrant dans les procédures : step

— exécuter I'instruction suivante (sans entrer dans les procédures) : next

— voir la valeur contenue dans les registres : info reg

— voir la valeur contenue dans le registre r1 : info reg $ri

— voir le contenu de la mémoire a 'adresse etiquette : x &etiquette

— voir le contenu de la mémoire & I’adresse 0x3f£5008 : x 0x3ff5008

— voir le contenu de la mémoire en précisant le nombre de mots et leur taille.

x /nw adr permet d’afficher n mots de 32 bits a partir de ’adresse adr.
x /ph adr permet d’afficher p mots de 16 bits a partir de I'adresse adr.

— modifier le contenu du registre r3 avec la valeur 0x44 exprimée en hexadécimal : set $r3=0x44

— modifier le contenu de la mémoire d’adresse etiquette : set *etiquette = 0x44

Et ne pas oublier : man gdb sous Unix (ou Linux) et quand on est sous gdb : help
nom_de_commande. ..

Pour lancer ddd : ddd --debugger arm-elf-gdb. On obtient une grande fenétre avec une par-
tie dite “source” (en haut) et une partie dite “console” (en bas). Dans la fenétre “console” taper
successivement les commandes : file prog, target sim et enfin load.

On voit apparaitre le source du programme en langage d’assemblage dans la fenétre “source” et
une petite fenétre de “commandes”. Maintenant on peut commencer la simulation.

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

5.8 Observation du code produit 14

Toutes les commandes de gdb sont utilisables soit en les tapant dans la fenétre “console”, soit en
les sélectionnant dans le menu adéquat. On donne ci-dessous la description de quelques menus. Pour
le reste, il suffit d’essayer.

— placer un point d’arrét : sélectionner la ligne en question avec la souris et cliquer sur ’icone
break (dans le panneau supérieur).

— démarrer 'exécution : cliquer sur le bouton Run de la fenétre “commandes”. Vous voyez ap-
paraitre une fleche verte qui vous indique la position du compteur de programme i.e. ou en est
le processeur de ’exécution de votre programme.

— le bouton Step permet l’exécution d’une ligne de code, le bouton Next aussi mais en entrant
dans les procédures et le bouton Cont permet de poursuivre ’exécution.

— enlever un point d’arrét : se positionner sur la ligne désirée et cliquer a nouveau sur 'icone break.

— voir le contenu des registres : sélectionner dans le menu Status : Registers; une fenétre apparait.
La valeur contenue dans chaque registre est donnée en hexadécimal (0x...) et en décimal.

— observer le contenu de la memoire étiquettée etiquette : apres avoir sélectionné memory dans
le menu Data, on peut soit donner I’adresse en hexadecimal 0x... si on la connait, soit donner
directement le nom etiquette dans la case from en le précédant du caractere &, c’est-a-dire
&etiquette.

5.3 Observation du code produit

Considérons un programme objet : prog.o obtenu par traduction d’un programme écrit en langage
C ou en langage d’assemblage. L’objet de ce paragraphe est de décrire 'utilisation d’un ensemble
d’outils permettant d’observer le contenu du fichier prog.o. Ce fichier contient les informations du
programme source codées et organisées selon un format appelé format ELF.

On utilise trois outils : hexdump, arm-elf-readelf, arm-elf-objdump.

hexdump donne le contenu du fichier dans une forme brute.
hexdump prog.o donne ce contenu en hexadécimal complété par le caractere correspondant quand
une valeur correspond a un code ascii; de plus 'outil indique les adresses des informations contenues
dans le fichier en hexadécimal aussi.

arm-elf-objdump permet d’avoir le contenu des zones data et text avec les commandes respec-
tives :
arm-elf-objdump -j .data -s prog.o et
arm-elf-objdump -j .text -s prog.o. Ce contenu est donné en hexadécimal. On peut obtenir la
zone text avec le désassemblage de chaque instruction :
arm-elf-objdump -j .text -d prog.o.

arm-elf-readelf permet d’avoir le contenu du reste du fichier.
arm-elf-readelf -a prog.o donne l’ensemble des sections contenues dans le fichier sauf les zones
data et text.
arm-elf-readelf -s prog.o donne le contenu de la table des symboles.

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

6 Annexe I : codage ASCII des caracteres

Dec | Hex | Char Dec | Hex | Char Dec | Hex | Char Dec | Hex | Char
0 00 NUL 32 20 SPACE 64 40 @ 96 60 ‘
1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 ” 66 42 B 98 62 b
3 03 ETX 35 23 +# 67 | 43 C 99 63 ¢
4 04 EOT 36 24 $ 68 44 D 100 | 64 d
5 05 ENQ 37 25 % 69 45 E 101 | 65 e
6 06 ACK 38 26 & 70 46 F 102 | 66 f
7 07 BEL 39 27 ’ 71 47 G 103 | 67 g
8 08 BS 40 28 (72 48 H 104 | 68 h
9 09 HT 41 29) 73 49 I 105 | 69 i
10 0A | LF 42 2A | * 74 4A | J 106 | 6A |]
11 0B | VT 43 2B | + 75 4B | K 107 | 6B | k
12 0C | FF 44 2C |, 76 4C | L 108 | 6C |1
13 0D | CR 45 2D | - 77 4D | M 109 | 6D | m
14 OE | SO 46 2E | . 78 4E | N 110 | 6E | n
15 OF | SI 47 2F |/ 79 4F | O 111 | 6F | o
16 10 DLE 48 30 0 80 50 P 112 | 70 p
17 11 DC1 49 31 1 81 51 Q 113 | 71 q
18 12 DC2 50 32 2 82 52 R 114 | 72 r
19 13 DC3 51 33 3 83 53 S 115 | 73 S
20 14 DC4 52 34 4 84 54 T 116 | 74 t
21 15 NAK 53 35 5 85 55 U 117 | 75 u
22 16 SYN 54 36 6 86 56 V 118 | 76 v
23 17 ETB 55 37 7 87 57 \W% 119 | 77 W
24 18 CAN 56 38 8 88 58 X 120 | 78 X
25 19 EM 57 39 9 89 59 Y 121 | 79 y
26 1A | SUB 58 3A : 90 5A | Z 122 | 7TA |z
27 1B | ESC 59 3B ; 91 5B | [123 | 7B | {
28 1C | FS 60 3C | < 92 5C |\ 124 | 7C ||
29 1D | GS 61 3D | = 93 5D |] 125 | 7D |}
30 1E | RS 62 3E | > 94 5E - 126 | 7E |~
31 1F | US 63 3F ? 95 5F | _ 127 | 7F | DEL

7 Annexe II : représentation des nombres en base 2

La figure illustre les représentations d’entiers naturels et signés pour une taille de mot de 4
bits. A chaque entier peut étre associé un angle. Effectuer une addition revient & ajouter les angles
correspondant. Un débordement de produit au-dela d’un demi-tour en arithmétique signée ou d’un
tour complet en arithmétique naturelle.

Le tableau suivant récapitule les principales puissances de 2 utiles, avec leur représentation en

hexadécimal et les puissances de 10 approchées correspondantes.

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

15

27'L

décimal | hexa | octal | binaire décimal hexa | commentaire

0 0 00 0000 1 1
1 1 01 0001 2 2
2 2 02 0010 4 4
3 3 03 0011 8 8
4 4 04 0100 16 10 | un quartet = un chiffre hexa
5 5 05 0101 32 20
6 6 06 0110 64 40
7 7 07 0111 128 80
8 8 10 1000 256 100 | un octet = deux chiffres hexa
9 9 11 1001 512 200

10 A 12 1010 1024 400 | 1K,

11 B 13 1011 2048 800 | 2K,

12 C 14 1100 4096 1000 | 4K,

13 D 15 1101 8192 2000 | 8K,

14 E 16 1110 16384 4000 | 16K,

15 F 17 1111 32768 8000 | 32K}

16 10 20 | 10000 65536 10000 | 64K,

20 14 24 | 10100 1048576 100000 | 1M, = 1K§ = 5 chiffres

30| 1E 36 | 11110 || ~1.07 x 109 | 40000000 | 1G}, = 1K

0011

0100

F1G. 10 — Représentation d’entiers naturels et signés sur 4 bits

©F. Lagnier, A. Rasse, P. Waille 7 septembre 2005

16

	Résumé de documentation technique ARM
	Organisation des registres
	Les instructions
	Les codes de conditions arithmétiques
	Description de l'instruction de chargement d'un registre
	Description des instructions arithmétiques et logiques
	Description des instructions de rupture de séquence
	Description des instructions de transfert d'information entre les registres et la mémoire
	Transfert entre un registre et la mémoire
	Pré décrémentation et post incrémentation
	Transfert multiples

	Langage d'assemblage
	Structure d'un programme en langage d'assemblage
	Déclaration de données
	La zone text
	Utilisation d'étiquettes
	Expression d'une rupture de séquence
	Accès à une donnée depuis la zone text

	Organisation de la mémoire : petits bouts, gros bouts
	Mise en place de l'environnement
	Commandes de traduction, exécution, observation
	Traduction d'un programme
	Exécution d'un programme
	Exécution directe
	Exécution avec un débogueur

	Observation du code produit

	Annexe I : codage ASCII des caractères
	Annexe II : représentation des nombres en base 2

