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Objectifs de ce document

Ce document est une introduction au langage machine et au langage C. Le but est de donner
au lecteur une notion des actions élémentaires effectuées dans la machine et un apercu du pro-
cessus de traduction manuelle des contructions d’un langage évolué (C en l'occurence) en suite
d’instructions élémentaires du langage machine d’un processeur RISC.

En pratique, la traduction est automatisée et confiée a des programmes traducteurs : les com-
pilateurs, dont il n’est pas question d’aborder ici le fonctionnement interne. Les notions présentées
ici sont en revanche suffisantes pour permettre la compréhension du code machine généré par le
compilateur gnu en I'absence d’optimisation poussée.

Ce document couvre un surensemble des prérequis du module "Architectures Logicielles et Ma-
térielles" de troisiéme année de la licence d’informatique de Grenoble, enseignées dans le module
¢éponyme de deuxiéme année (INF241).

Les deux premiers chapitres introduisent la représentation des nombres en base 2 et les types
et expressions correspondant du langage C.

Quelques concepts essentiels d’architecture des ordinateurs sont ensuite présentés dans les
chapitres 3 et 4 : 'organisation générale d'un ordinateur, et les notions de langage machine et
d’assemblage, de jeux d’instructions et de modes d’adressage.

La suite du document est consacrée a la programmation en langage d’assemblage d'un proces-
seur RISC fictif inspiré des processeurs 32 bits ARM et SPARC v7. Elle insiste sur les primitives
importantes du langage C et sur la technique de traduction systématique du C en langage d’as-
semblage.

La notion d’étiquette, les directives de réservation de mémoire en langage d’assemblage et la
traduction des déclarations de variables sont abordées dans le chapitre 5.

Les chapitres 6 et 8 regroupent les principes de base de la traduction du C en langage d’assem-
blage. Les opérateurs * et & du C, la notion de pointeur et la traduction des accés aux variables
stockées en mémoire font I'objet du chapitre 6. Les constructeurs algorithmiques du C (tels que
for, while, etc), leur traduction et le concept de branchement sont présentées dans le chapitre 8.

Quelques points particuliers sont traités dans des chapitres spécifiques. Il s’agit des structures,
des tableaux et de leurs liens avec les pointeurs, de la gestion des procédures et de la compilation
séparée.

Le dernier chapitre explicite quelques spécificités du processeur ARM par rapport au proces-
seur RISC fictif de référence considéré dans les chapitres précédent.



Outre le dernier chapitre, le lecteur déja familiarisé avec le langage d’assemblage d'un autre
processeur, (par exemple 680x0 ou famille 80x86), pourra se concentrer sur les chapitres 4 et 6,
ainsi que 5 s’il ne mairise pas la syntaxe GNU des directives de réservation mémoire, et enfin les
instructions ldm et stm (présentées avec les procédures sans récursion),
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Chapitre 1

Codage des nombres et calcul en base 2

Un ordinateur peut étre vu comme une machine qui manipule des (représentations d’) infor-
mations. Il s’agit souvent de réaliser un certain nombre de calculs.

La manipulation de grandeurs analogiques ou continues est malaisée. Il est diffcile de réaliser
des circuits électroniques analogiques a la fois précis, rapides et insensibles aux variations de tem-
pérature. Les ordinateurs sont des calculateurs digitaux (ou numériques) qui travaillent sur des
informations de nature discréte codées sous forme de nombres. Les circuits électroniques digitaux
fonctionnant en tout ou rien offrent 'avantage d'une bonne immunité au bruit et une vitesse de
calcul élevée.

Un ordinateur manipule donc des variables booléennes qui ne peuvent prendre chacune que
deux valeurs : 0 ou 1. Ces deux symboles représentent la propriété vraie (1) ou fausse (0) d’'une
proposition logique. Mais ils correspondent aussi aux chiffres de la base 2.

Une variable booléenne dont les valeurs vrai et faux sont équiprobables encode une unité élé-
mentaire d’information : le bit. Mais le bit est plus souvent défini comme un chiffre élémentaire
(BInary digiT) dans la représentation des nombres en base deux. Les paquets de 4 bits et 8 bits
sont appelés respectivement quartet et octet.

Les circuits des ordinateurs traitent donc les chiffres des entiers (écrits en binaire) comme des
variables booléennes. Ils réalisent des fonctions boolénnes qui correspondent aux régles de calcul
arithmétique en base 2.

Les ordinateurs sont dimensionnés pour traiter des mots (paquets de bits accolés) de largeur
fixe (généralement 32 et 64 bits), ou des sous-multiples de 8 ou 16 bits. Ils savent gérer efficacement
les entiers naturels (non signés) et relatifs (signés). Il existe également une norme de représentation
de nombres a virgule (avec une précision limitée).

1.1 Conversion d’entiers naturels dans les bases 2 et 16

Dans une base de numération B donnée, tout entier naturel (non signé, > 0) X peut étre
représenté par une suite de chiffres (ou digits) z;, tous inférieurs a la base utilisée (0 < z; < B—1)
et tels que X = Z?:_ol x; * B'. La base est éventuellement précisée en indice a droite du dernier
chiffre ou entre parentheéses. Par défaut, il s’agit de la base 10.

Le rang d’un chiffre sera également désigné sous le nom de poids en se référant a la puissance
de la base par lequel il doit étre multiplié. Le chiffre de poids fort x,,_; est écrit & gauche et celui



6 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2

de poids faible g a droite. Les chiffres sont 0 et 1 pour la base 2, 0 & 7 pour la base 8 (octale), 0
a 9 pour la base 10 (décimale) et 0 4 9 et A & F pour la base 16 (hexadécimale).

Il suffit d’appliquer la définition pour convertir un entier exprimé en base B en base 10. Les 0
a gauche peuvent étre éliminés sans changer la valeur de I’entier naturel représenté.

101, — 1x224+0x2'4+1x20 = 441 = 5
101y = 1x84+0x8 +1x48& — 64+1 - 65
1010 = 1x10°+0x 10" +1 x 10° = 100+1 = 101
101, — 1x1624+0x16"+1 x 16° — 256+1 — 257
Adig  — 10 x 16" +4 x 16° = 10x164+4 — 164
00235 — O0x53+0x52+2x5'+3x5" — 10+3 - 13.
n 2"
décimal | hexa | octal | binaire décimal hexa | commentaire
0 0 00 0000 1 1
1 1 01 0001 2 2
2 2 02 0010 4 4
3 3 03 0011 8 8
4 4 04 0100 16 10 | un quartet = un chiffre hexa
5 5 05 0101 32 20
6 6 06 0110 64 40
7 7 07 0111 128 80
8 8 10 1000 256 100 | un octet = deux chiffres hexa
9 9 11 1001 512 200
10 A 12 1010 1024 400 | 1K,
11 B 13 1011 2048 800 | 2K,
12 C 14 1100 4096 1000 | 4K,
13 D 15 1101 8192 2000 | 8K,
14 E 16 1110 16384 4000 | 16K,
15 F 17 1111 32768 8000 | 32K,
16 10 20 | 10000 65536 10000 | 64K,
20 14 24 | 10100 1048576 100000 | 1M, = 1K} = 5 chiffres
30| 1E 36 | 11110 || "1.07 x 10% | 40000000 | 1G), = 1K}

TaB. 1.1  Chiffres hexadécimaux et principales puissances de deux

La traduction des chiffres hexadécimaux et les principales puissances de 2 sont regroupées dans
le tableau 1.1. Les préfixes K,M,G indiquent une multiplication par respectivement un millier, un
million et un milliard. On notera que 2'° vaut presque 1000 (2.4% d’erreur), d’ou I'idée de définir
un préfixe K, pour les valeurs binaires. Les capacités de mémoire d'un ordinateur s’expriment
toujours en préfixes binaires et nous omettrons généralement l'indice indiquant qu’il s’agit d'un
préfixe binaire. 1 Koctet de mémoire signifie par défaut 1024 octets.

La conversion d’un entier de base 10 en une autre base est effectuée en divisant répétitivement
I'entier par la base jusqu’a 0 et en alignant les restes des divisions successives (notés — reste dans
Iexemple ci-dessous), du premier écrit & droite au dernier écrit a gauche.

La représentation en binaire peut aussi étre obtenue en essayant de décomposer I’entier en
somme de puissances de 2, chacune correspondant & un chiffre a mettre a 1. Exemple : on peut se

rendre compte que 1099 = 1024(2'°) + 64(2%) + 8(2%) + 2(2!) + 1(2°). Dans la représentation en
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1.2. ADDITIONS D’ENTIERS NATURELS 7

binaire, seuls les chiffres de poids 0, 1, 3, 6 et 10 seront & 1, d’ott 1099 = 1000100101 15.

11610 = 4315 = 116+5=23 —[1]~23+5=4—[3]~4+5=0—[4]
17T10=AByy = 171+16=10—[11 (B)|~ 1016 =0 — |10 (A)

17150 = 2534 = 171 +8=21—[3]~21+8=2—=[5]~2+8=0—]2]
Tl = 1000111, = 71+2=35—=[1]~35+2=17 —=[1]~ 17+2=8 —[1]

w8+2=4—[0]wd4+2=2-[0]w2+2=1-[0]w1+2=0—]1]

109919 = 44Byg = 1099+ 16 = 68 — |11 (B) |~» 68 + 16 =4 — [4]~> 4+ 16 = 0 — [4]

F1G. 1.1 — Conversion entre bases par le calcul des restes de division

L’écriture de 32 chiffres binaires cote a cote est difficile a lire et il est recommandé de grouper
les bits en quartets (a partir de la droite), séparés par des espaces. Elle facilite le passage entre
les formes hexadécimales et binaires : chaque quartet correspond a la traduction en binaire d’un
chiffre hexadécimal de la représentation en base 16. La figure 1.1 illustre la conversion pour 1099 :

10995 0 0 0 0 0 4 4 By
10995, — 0000 0000 0000 0000 0000 0100 0100 1011,

Fi1G. 1.2 Expression binaire et hexadécimale de 1099

1.2 Additions d’entiers naturels

1.2.1 Principe de ’addition en base B

L’addition de deux nombres a et b écrits en base B est effectuée colonne par colonne des poids
faibles au poids fort, donc de droite & gauche. Chaque colonne comprend un chiffre de retenue
entrante, issue de la colonne précédente, qui vaut 0 ou 1, et un chiffre (< B — 1) de chacun des
deux opérandes.

La somme s des chiffres d’une colonne vérifie 0 < s < 2% B — 1 et s est un nombre codable sur
deux chiffres. Celui de poids fort correspond a la retenue sortante de la colonne. Il vaut 0 si s < B
et 1si B <s < 2x B. Celui de poids faible est le chiffre du résultat dans cette colonne et vaut
s modulo' B, que nous noterons s%B. La retenue sortante est prise en compte dans la colonne
suivante, ce qui revient a la multiplier par la base B.

Les lignes de la figure 1.3 représentent dans l'ordre les deux opérandes, les retenues entrantes
(retenues sortantes décalées d’un cran a gauche), le résultat et les retenues sortantes. La derniére
retenue sortante, habituellement désignée c (carry) est encadrée.

Ainsi, dans la colonne de droite du calcul en base 10, la retenue entrante est nulle (pas de
colonne précédente). La somme des chiffres de la colonne (8, 4 et 0) vaut 12, qui excéde 10. Donc
le chiffre du résultat dans la colonne est 12 modulo 10, soit 2 et la retenue sortante 1. Cette retenue
sortante est propagée a la colonne suivante, dans laquelle elle représente ’addition d’une fois la
base 10. L’addition dans la colonne suivante (5, 2 et 1 de retenue propagée) donne 8, inférieur a
la base, d’on 8 pour le chiffre de résultat et pas de retenue sortante (propagation de 0 dans la
colonne de gauche).

!Rappel : modulo désigne le reste de la division entiére notée /
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8 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2

opérande 1 n 4 5 8 n 111001010

opérande 2 . 1 2 4 . 001111100

Ret décalé «— 0 1 (0) 11100 0(0)

Résultat 0 5 8 2 1 001000110
T T

]
—_
[

111000

Ret AN @ \1

F1G. 1.3 — Addition en bases 10 et 2

1.2.2 Addition en base 2

La méme technique est appliquée en base 2. La somme de trois chiffres 1 donne 3, soit un
résultat de 1 (3 modulo 2) et une retenue sortante a 1. Deux chiffres 4 1 et un & 0 donnent 2, soit
une retenue sortante a 1 et un résultat nul.

Une retenue sortante finale, notée ¢, ou encore ¢ (encadrée), non nulle indique que la repré-
sentation du résultat nécessite un chiffre de plus que celle de ces opérandes. Elle correspond au
chiffre a rajouter a gauche de la ligne du résultat.

Tous les entiers naturels traités par les ordinateurs sont stockés dans des contenants (registres
du processeur ou emplacements de la mémoire) dont le nombre de bits n est figé. Au besoin la
représentation binaire des opérandes sera complétée a gauche par des 0 pour correspondre au
format du contenant. Les résultats sont obtenus & B" (donc 2" en base 2) prés.

Une retenue finale ¢ a 1 indique un débordement de la capacité de représentation (pour des
entiers naturels) et que le résultat apparent est faux (la véritable somme devrait valoir 2" de plus).
Soit R le résultat final apparent et c la retenue finale issus de ’additionneur :

R=(a+b) %2" c=(a+0b)/2" (division entiére) et a + b= R+ ¢ x 2".

1.2.3 Addition en hexadécimal

[’addition en base 16 fonctionne exactement de la méme maniére que dans les autres bases,
et il y a retenue lorsque la somme dans la colonne égale ou dépasse 1619 (somme de la colonne
supérieure & F). En base 16, on utilise la table d’addition (1.4) au lieu de la table d’addition
décimale habituelle. Si on trouve dans une colonne les chiffes A, 9 et 1 de retenue entrante, la
somme vaut 0x1341, soit 0x14 : résultat 4 et une retenue sortante.

1.2.4 Addition multilongueur

Il arrivent que les ordinateurs travaillent sur des entiers codés sur un nombre de bits excédant
la largeur du circuit de calcul. Les entiers sont alors découpés en tranches de bits de la largeur de
I’additionneur. Les additions sont réalisées tranche par tranche, de la droite vers la gauche.

La retenue sortante de ’addition d’une tranche est utilisée comme retenue entrante pour ’add-
tion de la tranche suivante. Seule la premiére addition utilise une retenue entrante initiale nulle.
Si I'on réduit les tranches a un seul bit, on retrouve ’algorithme séquentiel classique d’addition
colonne par colonne.
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1.3. SOUSTRACTION D’ENTIERS NATURELS 9

(| 1] 2[ 3] 4[5] 6] 7] 8] 9[A]B|C|[D| EJ] F]
1y 2| 3} 4, 5] 6| 7] 8 9A|B| C| D| E| F|] 10
2 41 5| 6 7| 8 9| A B|C| D| E| F| 10| 11
3| 41 5| 6] 7 8] 9/ A B, C|D| E| F|]10] 11| 12
40 5] 6| 7] 8 9] A| B C|D|E| F|l10] 11| 12| 13
51 61 7] 8 91 A B|C|D|E| F| 10| 11| 12| 13| 14
6 7] 8] 9] A B| C|D|E| F|10| 11| 12| 13| 14| 15
7181 9 A B|C|D|E|F|10]11] 12| 13| 14| 15| 16
8| 9]A| B C|D|E| F|10|11 12| 13| 14| 15| 16| 17
9 A| B|C|D|E| F|10|11|12|13| 14| 15| 16| 17| 18
Al Bl C| D|E| F[10]|11 12|13 |14| 15| 16| 17| 18| 19
Bl C|D|E| F|10]11 12|13 |14 |15| 16| 17| 18| 19| 1A
C|D|E| F|10|11 12|13 |14 15|16 | 17| 18| 19| 1A | 1B
D|E|F|10|11 12|13 |14 |15|16 17| 18| 19 |1A | 1B | 1C
E F|10|11 12|13 |14 |15|16 |17 |18 | 19| 1A |1B|1C | 1D
Fl10|11 (12|13 |14 |15]16 |17 |18 |19 | 1A | 1B |1C | 1D | 1E

Fi1G. 1.4 — Table d’addition des chiffres hexadécimaux

1.3 Soustraction d’entiers naturels

Soit un entier naturel Y a soustraire d’un entier X. Chaque colonne comprend dans ’ordre un
chiffre de X, un chiffre de Y, un emprunt entrant propagé par la colonne précédente, un chiffre du
résultat apparent et un emprunt sortant.

opérande 1 (X = > ;) 4 1 4 110011110
opérande 2 (Y = > y;) 2 4 3 01111001

Emprunt décalé «— 1 0 (0) 1110001 1(0
Résultat (R = 3 res;) 17 1 010101011
Emprunt (e;) [0] 1 o0 0]t 1100011

La soustraction est effectuée de droite a gauche, tout comme 1’addition. L.’emprunt entrant est
ajouté au chiffre de Y. Leur somme est otée du chiffre de X et cette soustraction donne le chiffre
du résultat apparent. Il n’y a pas d’emprunt sortant (e; = 0) lorsque la soustraction est possible
(Y; + e; < X). Dans le cas contraire, la base B est préalablement ajoutée au chiffre de X et un
emprunt (ei+1 = 1) est propagé a la colonne suivante.

Exemple de la colonne ? numéro 5 dans la premiére soustraction : x5 = e5 = 0 et y5 = 1, d’ot
1 aoter de 0 : ress = 1 et ¢g = 1. En colonne 6 z¢ = 0 et yg = ¢g = 1, d’out (1 + 1) a oter de O :
resg =0et e; = 1.

Remarque : un emprunt final (sortant de la derniére colonne de gauche et noté e, ou e) nul
indique que la soustraction peut étre réalisée (deuxiéme opérande inférieur ou égal au premier).

2Rappel : les colonnes sont numérotées de droite & gauche & partir de 0
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10 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2

Si nous réalisions la soustraction inversée (243 - 414), un emprunt final non nul indiquerait
que celle-ci n’est pas réalisable (deuxiéme opérande supérieur au premier). Le résultat apparent
correspond a l'opération réalisée en ajoutant B™ au premier opérande, autrement dit en supposant
I’existence d’un 1 supplémentaire a gauche du premier opérande.

opérande 1 (X = > ;) 2 4 01 1100

opérande 2 (Y =) x;) 11 0111 0
Emprunt décalé « 0 1 (0) 00 1110 0)
Résultat (R =) res;) 8 2 9 101010101
Emprunt (e;) 0 1 1o 0011100

L’emprunt final indique que 101010101 = 1011110011 — 110011110, soit 341=755 - 4143. Dans
la version décimale, il signifie que 829 = 1243 — 414%,

La soustraction multilongueur est réalisée de la méme maniére que pour l'addition, en propa-
geant les emprunts au lieu des retenues.

1.4 Notion de complément & 1 et a 2

Rappelons une formule utile pour la compréhension des calculs arithmétiques en base 2 :

Z?:_()l al = “:__11. Cette équation est aisément démontrable en multipliant (a — 1) par (1 +a+a®+

...+ a""). Pour a = 2, nous en déduisons que Y7 2" = 2" — 1.

Soient n le nombre de chiffres stockables dans un contenant (registre ou mot mémoire) et soit
X lentier Z?:_()l x;B'. Notons ~p l'opération de complémentation qui a un chiffre z; associe le
chiffre z;, = B — 1 — z;, B étant la base de numération : 310 = 6, 650 = 3, 03 = 2, 23 = 0 et
13 = 1, Par définition, nous avons x; + Z;5 = B — 1.

La base 2 exhibe une propriété trés utile pour la réalisation efficace de circuits de calculs.
La table de vérité de 'opérateur ~5 défini sur les chiffres binaires 0 et 1 se confond avec celle de
Iopérateur ~ défini sur les booléens 0 et 1 : 0s =2—1—-0=1et 1o =2—1—1 = 0. Dans la suite
du document, lorsque la base de complémentation ne sera pas précisée, il s’agira par convention

de la base 2 : X—X,.

Le complément & B — 1 de X est U'entier X = Z?:_ol Z;pB". L'entier YB = X+ 1 est appelé
complément & B de X. En base 2, X = X, et X = X, + 1 sont donc respectivement les complé-
ment & 1 et complément a 2 de X.

Les ordinateurs exploitent la propriété suivante de la somme X + X 5 + 1 pour la réalisation
des soustractions.

3avec 755—=243 + 512
Yavec 1243—=243 + 1000

(©Philippe Waille UJF/UFR IMA 6 juillet 2006



1.5. SOUSTRACTION PAR ADDITION DU COMPLEMENT A 2 11

n—1
=0
n—1
= (B-1))_ B (1.2)
=0
B"—1
= (B-1 =B"—1 1.
(B-1)—— (1.3)
X+Xp = X+Xp+1=08" (1.4)
X4+X = X+Xo4+1=2" (1.5)

Ce résultat indique que le complément a 2 (respectivement complément a 1) de X est le nombre
qu’il faut ajouter a X pour obtenir 2" (respectivement 2" — 1). On pourrait aussi les appeler com-

plément a 2" et complément a 2" — 1 X =2 XetX=2"—1-X.

Montrons a titre d’exemple comment calculer X =X + 1 pour X = 124 pour n = 8 bits
(12419 = 0111 11004 et 124 = 10000011). Une premiére méthode exploite la propriété X4+X=om
Dot 124° = 28 — 124 = 256 — 124 = 132 = 13219 = 1000 01004. 11 est également possible de poser
Iaddition X + 1 (figure).

10000011 124
0000O0O0O0T1 1

000O0GO0T11() Retenues

+

10000100 124°

Il existe une méthode plus rapide : parcourir la représentation binaire de 124 de droite a
gauche, conserver les chiffres de droite jusqu’au premier 1 inclus et inverser les autres. Pour 124,
les 3 chiffres de droite 100 sont conservés et les chiffres 0111 1 inversés en 1000 0.

Notons au passage qu’un entier est le complément & 2 de son complément & 2 et que sur n bits,
2

2"~1 est son propre complément a 2 : (72) =2"—-(2"-X)=X et g1 = gn _ gn=1 — gn-1

1.5 Soustraction par addition du complément a 2

Rappelons que les ordinateurs travaillant sur n bits réalisent les additions a modulo 2" pres.
Les ordinateurs effectuent en base 2 la soustraction X —Y via un additionneur calculant X +72.
Additionner le complément & 2 de Y revient en fait a soustraire Y (rappel : en travaillant sur n
chiffres, toutes les additions sont réalisées a modulo 2" preés ).

(©Philippe Waille UJF /UFR IMA 6 juillet 2006



12 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2

n—1
X+Y+1 = (zi+1—w) 2 +1 (1.6)
=0
n—1 n—1
= 22“‘2 (zi —yi) 2 + 1 (1.7)
=0 =0
= 2"-1+X-Y+1=X-Y +2" (1.8)

X+Y+1)%2" = 2"+X-Y)%2"=X-Y

La figure suivante illustre les deux méthodes (soustraction normale a gauche et soustraction
par addition du complément a 2 a droite) pour retancher 134 de 243.

243 11110011 +11110011 243

134 10000110 +01111001 134

Emp 0 000 110 0(0) 1 111001 1(1) Ret (Emp)
! !

109 0] 01101101 (1] o1101101 109

F1G. 1.5 — Soustraction normale a gauche et par addition du complément a 2 & droite

Les lignes du premier opérande et celle du résultat sont naturellement identiques dans les deux
versions. La deuxiéme ligne correspond a gauche au deuxiéme opérande (134) et a droite a son
complément a 1 (134).

La troisiéme ligne correspond a droite aux retenues entrantes pour I’addition (le 41 est obtenu
en utilisant une retenue entrante initiale non nulle dans la colonne de droite) et a gauche aux
emprunts entrants pour la soustraction classique. Les retenues dans 'addition du complément a
2 de Y présentent la particularité d’étre exactement égales au complément des emprunts dans la
soustraction normale.

Cette propriété s’applique en particulier a I'emprunt final e et a la retenue finale ¢ : e = ¢.
Lors de la réalisation d’une soustraction par addition du complément a 2, une retenue finale nulle
(c = =0 = e = 1) signifie que la soustraction est impossible (X < Y'), alors qu'une retenue
finale 4 1 (c=¢ =1 = e = 0) indique que le résultat est correct et la soustraction possible.

1.6 Interprétation des indicateurs C et Z

Les instructions arithmétiques peuvent positionner les indicateurs booléens 7 et C, stockés
dans un registre spécial dit d’état, du processeur. L’ensemble des indicateurs est quelquefois dé-
nommeé code condition.

L’indicateur de résultat nul est Z (Zéro). Il est égal au produit du complément des chiffres
(interprétés comme des booléens) du résultat fourni par additionneur : Z = [[/-) 7es;. On a

Z =1 si et seulement si le résultat apparent est I'entier 0 (tous les res; sont a 0).

Il existe deux interprétations possibles de C (Carry) selon les processeurs. La famille ARM le
définit comme la valeur de la retenue sortante ¢ de I’additionneur. L’autre convention utilisée entre
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1.7. OPERATIONS SUR LES VECTEURS DE BITS 13

autres par les SPARC et 680x0, le définit comme un indicateur de débordement en arithmétique
sur les entiers naturels.

Aprés une addition sur n bits, C=1 indique un débordement : le vrai résultat n’est pas repré-
sentable sur n bits et qu’il faudrait ajouter 2™ au résultat apparent.

La différence porte sur la soustraction (toujours réalisée par addition du complément a 2) : C
représente le complément de 'emprunt dans le premier cas (ARM) et 'emprunt lui-méme dans
l'autre cas (SPARC).

Les comparaisons sont des soustractions sans stockage du résultat apparent, dont le seul effet
est de positionner les indicateurs pour déterminer si une expression conditionnelle est vraie ou
fausse.

X,y @ unsigned SPARC ARM
condition expression symbolique bool || expression symbolique bool

rT=y E Z EQ A
Z

r#y NE Z NE Z
NZ

r <y LU (Less Unsigned) C LO (Lower) C
CS (Carry set) CC (Carry Clear)

<y LEU (Less or Equal) C+ Z || LS (Lower or same) C+Z

x>y GU (Greather) C.Z = || HI (Higher) C.7Z =

c+7 C+Z

x>y GEU (Greather or Equal) C HS (Higher or same) C

CC (Carry Cleared) CS (Carry Set)

TAB. 1.2 — Table des conditions pour entiers naturels aprés calcul de x-y

La construction si (rg<rd) sauter a ... est traduite en langage machine par une instruction
de branchement conditionnel précédée d’une instruction de comparaison qui essaie de retrancher rd
de rg. Le saut aura lieu si et seulement si les valeurs de Z et C correspondent a la condition rg < rd.

Cette condition correspond au seul cas dans lequel la soustraction n’est pas réalisable parce
que rd > rg, soit Csparpc = e = 1et Capy = @ = 0. La ligne x < y du tableau des
conditions ARM montre qu’il faut utiliser I'instruction de branchement conditionnel blo (bcc est
un synonyme) qui effectue un saut si C' (C vaut 0).

Pour une condition de type inférieur ou égal, il suffit d’ajouter le cas d’égalité (Z = 1) a

I’expression booléenne. Pour une condition strictement supérieur, il faut que le soustraction soit
possible (C a 0) et que le résultat ne soit pas nul (Z = 0).

1.7 Opérations sur les vecteurs de bits

Certaines opérations considérent les représentations des entiers comme des collections de
chiffres binaires ou de booléens.
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14 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2

1.7.1 Extension et réduction de format

[’extension de format consiste & passer d’une représentation d’un entier naturel en binaire sur
m bits a une représentation sur n > m bits. Il suffit pour cela d’ajouter n — m chiffres 0 a gauche
(poids forts), ce qui ne modifie pas la valeur de I'entier représenté. L’extension de format est par
exemple utilisée lors d’un transfert d’un entier stocké en mémoire sur 8 ou 16 bits vers un registre
a 32 bits.

[’opération inverse de réduction tronque la représentation en éliminant les n — m chiffres de
gauche. Elle revient a calculer la valeur entier modulo 2". Elle est notamment utilisée lors du
rangement du contenu d'un registre a 32 bits dans une variable mémoire sur 8 ou 16 bits. La
valeur de l'entier est conservée si et seulement si ses n — m chiffres de gauche sont nuls : I'entier
est alors représentable sur m bits (valeur inférieure a 2™).

1.7.2 Décalages logiques et rotations

Le décalage logique de d bits a droite supprime les d chiffres de droite et rajoute d chiffres 0 a
gauche, ce qui revient a diviser I'entier par 27.

Le décalage a gauche élimine au contraire d chiffres de poids fort et rajoute d chiffres 0 a droite.
Il correspond & une multiplication par 2¢ (en I'absence de débordement, autrement dit si les d
chiffres de poids forts du nombre de départ sont des 0).

La sommation de deux décalages logiques respectivement de d bits a droite et n—d bits a gauche
correspond a une rotation a droite qui déplace d chiffres de I'extrémité droite vers I'extrémité
gauche. Réciproquement, une opération de rotation a gauche déplace les chiffres de poids fort
(gauche) en poids faible (droite). Une rotation ne correspond a aucune opération arithmétique
simple. Il existe enfin des rotations sur n + 1 bits au travers de l'indicateur C considéré comme
un bit supplémentaire de rang n de ’entier.

1.7.3 Opérations booléennes bit a bit

Les chiffres de méme rang de deux entiers codés sur n bits peuvent étre considérés comme n
paires de booléens sur lesquelles il est possible d’appliquer les opérateurs booléeens : et , ou, ou
exclusif.

Dans chaque colonne, le chiffre du résultat est obtenu en appliquant 'opération booloéenne
sur les chiffres des deux opérandes.

1010 1 010 1010
&y +op Dop

1100 1100 1100

1000 1110 0110

F1G. 1.6 — Et, ou et ou exclusif bit & bit sur 4 bits

Dans la méme catégorie, mais agissant sur un seul entier, citons 'opérateur de complémenta-
tion qui inverse tous les chiffres de 'entier : cet opérateur calcule le complément & 1 de l'entier.
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Remarque : le complément a 1 équivaut a un ou exclusif (x @ 1 = T) avec un nombre tel que
tous ses chiffres binaires sont a 1. Ce nombre est I'entier naturel 2" — 1 ou (en anticipant sur le
paragraphe consacré a I'arithmétique signée) I'entier relatif —1.

1.7.4 Manipulation de champs de bits

Les décalages et les opérations bit a bit permettent de manipuler des champs de bits a I'intérieur
des entiers. Ce type d’opération sera décrite dans le chapitre 2 en utilisant la syntaxe du langage

C.

1.7.5 Extraction de la parité

Par définition de la représentation en binaire, un entier exprimé en binaire est pair si et
seulement si son chiffre de poids faible (rang 0) est nul. Le ET bit a bit entre 'entier z et la
constante entiére 1 est donc nul si et seulement si x est pair.

1.7.6 Comparaison avec 2"

Un entier z est supérieur ou égal a 2" si et seulement si au moins un de ses bits de rang
supérieur ou égal a r est non nul. Autrement dit, le décalage de r bits a droite de x donne un
résultat non nul si et seulement si z > 2".

1.7.7 Modulo 2"

Par définition le reste de la division de x par 2" (z modulo 2") est l'entier dont les n +1 —r
premiers chiffres sont & 0 et les r — 1 chiffres de poids faibles identiques a ceux de .

L’expression x modulo 2" est calculable par un ET bit & bit entre z et 2" — 1 (dont la repré-
sentation contient » — 1 bits & 1 en poids faible et des bits a 0 en poids forts.

1.7.8 Nombre de 0 & gauche et logarithme binaire

Certains processeurs (sont la famille ARM) sont dotés d’une instruction clz (count leading
zeros) qui détermine le nombre de 0 & gauche (en poids forts) d’'un entier (écrit en binaire). Soit
r la valeur retournée par clz(x) pour un entier x non nul.

L’expression n — 1 —r (n étant le nombre de bits, soit 32 pour le ARM) est la position du
chiffre & 1 de rang le plus élevé. Elle varie comme la partie entiére de logs()z.

1.8 Nombres entiers naturels et relatifs et nombres a virgule

Un contenant a n bits ne peut prendre que 2" valeurs différentes. A ce paquet de n bits sera
associée une valeur numeérique selon une convention d’interprétation de contenu. Le tableau 1.8
donne les intervalles de valeurs entiéres codables pour différentes tailles de contenant.

n Entiers naturels Entiers signés

810 a 255 | -128 a +127
16 | 0 a 65535 (64K-1) | -32768 (-32K) a +32767 (32K-1)
3210 a 4294967295 (4G-1) | -2147483648 (-2G) a +2147483647 (2G-1)
640 a 1,8 x 10Y | T—9 x 1018 a T+9x 108

F1G. 1.7 Intervalles des entiers représentables selon le nombre de bits
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16 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2

La convention la plus simple consiste a interpréter le contenu sur n bits comme un entier
naturel en utilisant la convention de représentation des entiers en base 2. L’intervalle des entiers
naturels représentables va de 0 a 2" — 1 (le premier entier nécessitant n + 1 chiffres est 2").

Le contenu aussi peut étre interprété comme la valeur d’un entier relatif (signé) représenté en
binaire selon une convention a définir. Si 'on choisit d’avoir un codage unique de la valeur nulle,
on obtient un intervalle de valeurs représentables allant de —27~1 4 27! — 1.

Il est enfin possible d’interpréter le contenu comme un triplet {signe, mantisse ou partie frac-
tionnaire, exposant} représentant un nombre & virgule selon une norme telle que ANSI/IEEE 754
de 1985.

A titre d’illustration, sur 32 bits, cette norme interpréte le bit 31 comme un bit de signe s, et
les paquets de bits 23 & 30 d’une part et 0 a 22 d’autre part, comme des entiers naturels codant
respectivement ’exposant e et la partie fractionnaire f. Elle associe au triplet {s,e,f} ainsi défini
la valeur (—1)* x 267127 x 1.f.

‘ 31 s ‘ 30 exposant e 23 ‘ 22 mantisse f 0 ‘

FiG. 1.8 Format de nombres a virgule flottante

1.9 Convention de représentation des entiers relatifs

1.9.1 Signe et valeur absolue

Une convention imaginable pour la représentation des entiers signés dans un contenant serait
de considérer le bit de rang n — 1 comme un bit de signe (par exemple 0 pour + et 1 pour -) et
les bits 0 & n — 2 comme un entier naturel représentant la valeur absolue du nombre.

Cette technique de représentation a deux inconvénients : elle oblige & prévoir un cas spécial
pour le traitement des entiers signés dans les circuits de calcul, et surtout elle exhibe deux repré-
sentations de la valeur nulle : 40 et —0, ce qui complique nettement la réalisation des comparaisons.

La représentation en signe et valeur absolue ne subsiste dans les ordinateurs actuels que dans
la représentation de la mantisse des nombres a virgule.

1.9.2 Représentation en complément a deux

La quasi-totalité des ordinateurs modernes utilise la méthode du complément a deux pour
représenter les entiers signés. Dans cette convention, le chiffre de poids fort représente le signe de
I'entier (1 indique x < 0 et 0 indique = > 0).

La suite de Chilffres Tp_1Tp_2 ... T1Tg, qui représentait jusqu’a présent 'entier naturel
Xnon signé = Z?:_o x; B" est interprétée dans cette convention de représentation comme ’entier

signé Xsigné = — Tp-1 X 2n—1 + 2?2_02 .Z’ZBZ
Cette convention permet de représenter sur n bits I'intervalle d’entiers signés [—2"~1 +2"~1—1].
Soit y = Z?:_oz 2t et —z =72 = 2" — .
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1.9. CONVENTION DE REPRESENTATION DES ENTIERS RELATIFS 17

Un contenu d’une variable entiére de la forme 0y, 2y, _3 . .. y1Yyo Sera toujours interprété comme
I’entier y, que la variable soit de type naturel ou signé.

Un contenu de la forme 1y, _oy,_3 ... Y1y sera interprété comme l'entier Y = 27! + 4 si va-
riable est de type entier naturel et comme l'entier relatif négatif z = —2"~! 4+ 4, si la variable est
de type entier relatif.

1010

-0101
-0110

_01111001

—-1000 1000

0011 0100

Fi1G. 1.9 Représentation d’entiers naturels et signés sur 4 bits

Sur la figure 1.9, chaque entier (codé ici sur 4 bits) peut étre représenté par une rotation dans
le sens horaire pour les entiers signés négatifs et dans le sens trigonométrique pour les autres
(entiers naturels ou entiers signés non négatifs).

Exemple sur 4 bits (figure 1.9) : 1100 peut représenter soit I’entier signé -4 (rotation horaire
d’un quart de tour sur cercle intérieur des entiers signés), soit ’entier naturel 12 (rotation trigono-
métrique sur le cercle extérieur des entiers naturels). De méme, 0011 peut représenter soit 'entier
naturel 3, soit l'entier signé +3.

Cette méthode de représentation des entiers signés par le complément a 2 présente un gros
avantage : les opérations d’addition et de soustractions sont posées de la méme maniére quelque
soit la nature, signée ou non, des entiers manipulés. Seule l'interprétation des valeurs entiéres
associées change.
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18 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2

1.10 Opérations sur les entiers relatifs et débordements

La figure 1.10 illustre une addition entre deux variables sur 4 bits contenant respectivement
1110 et 1100. Au milieu, les opérations effectuées par I’additionneur sur les chiffres binaires.

La gauche de la figure montre l'interprétation classique en arithmétique non signée : la somme
de 14 et 12 donne un résultat apparent de 10 avec une retenue finale a 1 indiquant un débordement
(et qu’il faudrait ajouter 16 au résultat apparent pour obtenir un résultat exact).

La droite de la figure montre I'interprétation en arithmétique signée. Le bit de fort a 1 des opé-
randes indique qu'il s’agit d’entiers négatifs (dont la valeur absolue peut étre trouvée en prenant le
complément & deux) : —2 et —4. De méme pour le résultat apparent, correct, interprété comme —6.

Il n’y a pas débordement pour cette opération en arithmétique signée. En effet, le résultat —6
appartient effectivement & U'intervalle des entiers représentables sur 4 bits : [—23, +23 — 1]. Notons
que les deux derniéres retenues sont égales.

Rappelons que dans les deux cas, I’additionneur a effectué le méme travail sur les mémes boo-
léens et produit le méme résultat apparent. Seule la grille d'interprétation de la représentation en
binaire change.

Interprétation naturels binaires signés

opérande 1 1 4 . 1110 - 2

opérande 2 1 2 1100 -4

Résultat 10 1 010 - 6
T

retenues N 00

Fic. 1.10  Addition entiére naturelle et signée

La technique de soustraction en arithmétique signée est la méme que pour les entiers natu-
rels : par addition du complément & 2, ce qui revient en arithmétique signée a ajouter 'opposé du
deuxiéme opérande. Seule I'interprétation des indicateurs de débordement change.

Pour évaluer les conditions portant sur la valeur relative de deux entiers signés S1 et S2, on
procéde comme pour les entiers naturels en calculant S1 — S2.

1.10.1 Indicateur Z

L’indicateur Z présenté dans le chapitre sur le calcul sur les entiers naturels reste utilisable
pour des variables de type signé : la valeur nulle est codée de la méme maniére dans les deux
conventions. Z == 1 indique un résultat nul, donc I'égalité des deux entiers dans le cas d'une
soustraction.

1.10.2 Indicateur de signe N

Nous avons vu que le signe d’un entier est codé dans son bit de poids fort. Le bit de poids fort
du résultat apparent (encadré sur la figure 1.10) fourni par 'unité arithmétique est stocké dans
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I'indicateur N (Négatif).

N == 0 correspond a un résultat apparent positif ou nul. Aprés une soustraction S1 — s2,
N == 0 indique que d’aprés le résultat apparent (> 0), nous avons S1 > S2. De N == 1 on
tirerait au contraire la conclusion que S1 < S2 du résultat apparent (<0) de la soustraction.

1.10.3 Indicateur de débordement signé V

La figure 1.9 permet de visualiser le phénoméne de débordement.

Pour la représentation d’entiers naturels, I'intervalle des entiers représentables correspond a
tout le cercle. Il y aura débordement (signalé par une retenue finale ¢ a 1) si la somme des deux
rotations égale ou excéde un tour complet.

Dans la représentation d’entiers relatifs, I'intervalle des valeurs absolues disponibles est réduit
de moitié. La limite de rotation avant débordement est d’'un demi-tour seulement : au dela la va-
leur absolue du vrai résultat excéde la capacité de représentation et le signe du résultat apparent
est faux. Ce type d’erreur est signalé par I'indicateur de débordement signé V (oVerflow : I'initiale
O n’a pas été retenue pour éviter des confusions avec zéro). V == 1 indique un débordement et
V' == 0 un résultat correct.

La somme de 0100 (1/4 de tour) et 0100 (1/4 tour) donne 1000 (1/2 de tour) : le résultat
apparent de la somme des entiers naturels 4 et 4 est 8 (correct : la rotation est inférieure a un
tour complet) et le résultat apparent de la somme des entiers signés +4 et +4 est -8 (faux a 2*
prés : rotation atteignant un demi-tour). Dans cet exemple, il y a débordement uniquement en
arithmétique signée (V == 1) et pas en arithmétique naturelle (C=0).

4 0100 4
Lt

4 0100 +4
C=01000 V=1

+

§ 1000 -8

La valeur absolue de la somme de deux entiers relatifs de signes opposés (exemples sur 8 bits :
16 + -37, 72 + -37) est toujours inférieure ou égale a celle des deux opérandes. Le résultat est
toujours représentable et il ne peut y avoir de débordement (V == 0). L’interprétation des mémes
opérations en entiers naturels peut aboutir & un débordement non signé (C' == 1 pour 72-+219)
ou pas (C' == 0 pour 16-+219).

16 00010000 | +16 72 01001000 72
- + - +
219 11011011  —37 219 11011011  —37
C=000100000 V=0 C=110110000 V=
235 11101011  —21 35 00100011 435

Si I'on additionne la constante —2"~! A elle-méme, on fait exactement un tour complet. Le
résultat obtenu est 0 et il y a débordement signé.

La valeur absolue de la somme de deux entiers relatifs de méme signe est supérieure ou égale
a celle des opérandes. Excluons 'addition de I’entier —2"~! a lui-méme : la valeur absolue de la
somme est strictement inférieure a 2" . Le résultat vrai appartient a U'intervalle [—(2"—1), +2"—1].
Il ne sera représentable sur n bits que §’il appartient a Uintervalle |[—2"~1 4+27~! —1]. Dans le cas
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20 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2

contraire, il y a aura débordement et le signe N du résultat apparent sera faux.

Une étude de cas d’opérandes de méme signe (-72 + -37, -37 + -37, +72 + +37) llustre le fait
qu’il n’y a pas de débordement en arithmétique signée lorsque les deux derniéres retenues c,_; et
¢ sont égales. Il en va de méme pour 'addition d’un entier et de son opposé (+72 + -72).

184 10111000 —72 219 11011011  —37
+ + + +
219 11011011  —37 219 11011011  —37
C=111110000 V=0 C=110110110 V=0
147 10010011 —109 182 10110110 —74
L 72 01001000 472 L 72 01001000 472
37 00100101  +37 184 10111000 —72
C=000000000 V=0 C=111110000 V=0

00000000 +0

)

109 01101101 +109

L’indicateur V' peut étre défini a partir des bits de poids fort (signe) des opérandes x et y
et du résultat r selon 'expression booléenene V = T, 1.9, 1.7n-1 + Tn_1-Yn—1.Tn_1 (+ indique le
ou booléen) Cette expression signifie que V' == 1 uniquement quand les deux opérandes sont de
méme signe et le résultat apparent de signe opposé.

72 01001000 +—|—72 _|_184 10111000 +—72
72 01001000 +72 184 10111000 -T2
C=011010000 V=1 C=101110000 V=1
144 10010000 —112 112 01110000 +112

Le premier cas de débordement correspond & des opérandes positifs ou nuls et un résultat
apparent négatif (72 + 72). Dans la derniére colonne, les opérandes sont 0 et le résultat 1. Ceci
implique que la retenue entrante ¢,_; est 1 et que la retenue finale ¢, est 0.

Examinons l'autre cas de débordement : deux entiers négatifs donnent un résultat apparent
positif (-72 + -72). Dans la derniére colonne, nous avons deux opérandes a 1 et un résultat a 0,
d’ou obligatoirement ¢,_1 = 0 et ¢, = 1.

On peut définir une autre expression de V en fonction des deux derniéres retenues : V est vrai
uniquement si celles-ci sont différentes : V = c¢,,_1 & ¢, = ¢,-1.Cy, + Ce1.Cpy,
1.11 Résumé sur les indicateurs et les débordements

Rappelons que le circuit de calcul effectue sur paquets de n bits des additions ou des sous-

tractions (par addition du complément a 2) et fournit pour chaque opération réalisée quatre
indicateurs : Z, C, N et V.

Seule I'interprétation du sens de ’addition ou la soustraction réalisée sur les paquets de n bits
change selon que ’on considére que ces paquets de n bits représentent des entiers naturels ou des
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entiers relatifs.

Le programmeur utilise donc la méme instruction d’addition et la méme instruction de sous-
traction pour les deux types d’entiers. Aprés une comparaison, on utilise en revanche deux sortes
de branchements conditionnels différents : 'un testant Z et C pour les entiers naturels et 'autre
testant Z, N et V pour les entiers relatifs.

1. Une retenue finale ¢ égale & 1 signale un débordement en arithmétique sur une addition
d’entiers naturels : elle indique que la valeur absolue du vrai résultat dépasse 2" — 1 et n’est
pas représentable sur n bits.

2. Une retenue finale ¢ égale a 0 signale une erreur sur une soustraction d’entiers naturels
(réalisée par addition du complément a 2) : elle indique que le dernier emprunt est a 1 et
que la soustraction n’est réalisable qu’en ajoutant 2" au premier opérande.

3. Un indicateur V a 1 indique un débordement lors d’une addition ou d’une soustraction sur
des entiers relatifs. Cela se produit si et seulement si les deux opérandes sont de méme signe
et le résultat apparent de signe opposé. La limite de valeur absolue d’entiers représentables
sur n bits est 2771,

4. L’indicateur N est le signe du résultat en arithmétique sur les entiers relatifs. Il est faux (et
le résultat apparent est faux a 2" prés) si V=1.

5. 7Z —— 1 si et seulement si le résultat apparent est nul

1.12 Comparaisons d’entiers relatifs avec Z, N et V

Apreés une soustraction x — y, il est possible d’évaluer des conditions portant sur les valeurs
relatives de deux entiers signés.

Les conditions d’égalité et de non égalité sont les mémes pour les entiers naturels et signés.

La condition = < y est vraie si le résultat vrai est négatif. En 1’absence de débordement
(V =0), c’est le cas si le signe du résultat apparent est négatif (N = 1). En cas de débordement
(V' =1), on sait que le résultat apparent est faux, y compris son signe, la condition est alors vraie
lorsque N = 0. D’ou l'expression de la condition NV = N.V + N.V.

La condition inverse x > y, incluant le cas d’égalité est naturellement associée a I’expression
complémentaire N &V = N.V + N.V. Pour la condition strictement supérieur, il faut naturelle-

ment éliminer le cas d’un résultat nul, d’ou le produit avec la condition complémentaire 7.

Pour la condition z < y, le cas nul est au contraire rajouté, d'on Z + N @ V.

1.13 Propriétés diverses des entiers relatifs

1.13.1 Opposé

D’aprés la convention de représentation des entiers signés 'opposé (-X) d’un entier relatif se
représente comme le complément a 2 de Uentier (X).
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Condition || SPARC ARM eq. booléenne
r=1y EQ ou Z EQ A
¢+#y || NE ou NZ NE Z
r <y || L (Less) LT (Lower Than) NeV
<y LE (Less or Equal) LE (Less or Equal) Z+NaV
x>y G (Greather) GT (Greather Than) Z(NaoV)
x>y GE (Greather or Equal) | GE (Greather or Equal) NeV

TaB. 1.3 Table des conditions pour entiers signés

1.13.2 Valeur absolue

Si le bit de signe est 0, le nombre est positif ou nul et égal a sa valeur absolue. Un bit de signe
a 1 indique un nombre négatif : il suffit d’en prendre le complément a 2 pour obtenir sa valeur
absolue (sauf cas particulier de —2"71).

1.13.3 Valeurs particuliéres : 0, —1, —2"!

0 est son propre complément a 2, ce qui est logique puisque 0 est son propre opposé en arith-
métique (0 = +0 = —0). 1l s’écrit 0...0 (n chiffres & 0).

—27~1 est également son propre complément a 2, alors que son opposé est 271, Cette propriété
inattendue résulte de asymeétrie des intervalles positifs et négatifs d’entiers représentables : 277!
n’est pas représentable sur n bits.

L’entier signé 2"~! s’écrit en binaire 10...0 (1 suivi de n — 1 chiffres a 0) et 'entier signé —1
s'écrit 1...1 (n chiffres a 1).

1.13.4 Extension de format et décalage arithmétique

Rappel : les extensions et réductions de format de représentation sont surtout utilisées lors des
transferts entre registres et variables en mémoire de taille inférieure a celle des registres.

Pour passer a un codage sur m > n bits, la représentation de I’entier signé doit étre complétée
par m — n copies du bit de poids fort (bit de signe). A titre d’exemple, —5 s’érit 1011 sur 4 bits
et 11111011 sur 8 bits.

L’opération inverse de réduction de format supprime les m — n chiffres de gauche. La valeur
est conservée si les chiffres supprimés sont tous identiques.

Le décalage arithmétique a droite est un décalage qui recopie a gauche le bit de signe, donc
le bit de poids fort (au lieu de 0 pour un décalage logique). Si les d chiffres de poids faibles de
I’entier sont nuls, un décalage arithmétique a droite de d bits divise la valeur de I'entier signé par 2.

La constante —2"~! peut étre générée par une rotation d’un bit a droite de la constante 1; les
constantes —2"~% par décalage arithmétique de z bits a droite de la constante —271.
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1.13.5 Récupération du signe

Définissons une fonction signe(x) qui retourne 0 pour x > 0 et —1 pour x < 0.

Signe(x) correspond & un décalage arithmétique de x d’au moins n — 1 bits. Le bit de poids fort
(bit de signe) est dupliqué sur les n bits. D’ou 00...00 (0) pour x > 0et 11...11 (—1) pour z < 0.

Notons qu’un décalage logique (normalement destiné aux entiers naturels) de n—1 bits a droite
de x retournerait 0 pour x > 0 et 1 pour z < 0.
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Chapitre 2

Variables et expressions en langage C

2.1 Types, variables et constantes

2.1.1 Les types numériques en C

En C, les variables et les constantes sont typées. Le type indique la taille (nombre de bits) et la
convention de codage qui permet d’associer une valeur au paquet de bits qu’elle contient. Toutes
les variables représentent des nombres.

Les types entiers précisent la taille (nombre de bits) et la convention d’interprétation (naturel
ou signé) du nombre entier. Le type nombre a virgule flottante existe également en deux variantes
de taille. La taille d’entier la plus efficace a manipuler dépend des machines et correspond au type
int. Le tableau 2.1 résume la correspondance pour des machines a processeur RISC 32 bits tels
que ceux de la famille ARM.

Appliqué a un type, l'opérateur C sizeof donne le nombre d’unités adressables nécessaire a
sa représentation. Autrement dit, sizeof retourne la taille du type exprimée en octets. Sizeof est
beaucoup employé dans les programmes utilisant I’allocation dynamique de mémoire (par exemple
pour des tableaux de structures).

Type Synonymes Taille(bits) | Sizeof() | Interprétation
char 8 1 | entier signé
short int short 16 2

long int long 32 4

int 32 4

unsigned char 8 1 | entier naturel
unsigned short int | unsigned short 16 2

unsigned long int | unsigned long 32 4

unsigned int 32 4

float 32 4 | nombre a virgule
double 64 8 | flottante

TAB. 2.1 — Les types de variables et de constantes en C

2.1.2 Caractéres et chaines

Contrairement a d’autres langages, C ne définit pas de type caractére spécifique, ni de type
chaine de caractéres. Le type char appartient a la famille des types entiers. Bien que cela présente
rarement le moindre intérét, il parfaitement possible d’accéder a un petit tableau avec un indice
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26 CHAPITRE 2. VARIABLES ET EXPRESSIONS EN LANGAGE C

de type char plutot que int.

Le type char correspond a un type entier de petite taille suffisant pour stocker le code ASCII
d’un caractére non accentué. Il correspond a la notion de byte en anglais. Le terme anglais octet
désigne un paquet de 8 bits. Dans le passé, la taille d’'un byte a pu aller de 6 a 12 bits. Aujourd’hui
la taille de byte universellement adoptée est de 8 bits, ce qui explique que les termes anglais byte
et octet sont tous les deux traduits en francais par le méme mot : octet.

La notation utilisée pour une constante ASCII est une paire de caractéres apostrophe (’) en-
cadrant le caractére. Le code ASCII de A se note A’ et correspond a la valeur entiére 0x41. La
commande unix man ascii affiche le code du méme nom.

caractére hexa | octal | notation | commentaire

’ 0x27 | 047 |\

\ Oxbe | 0134 | \\

"line feed" 0x0a | 012 | \n (passage a la ligne)

"carriage return" | 0x0d | 015 | \r (retour en début de ligne)
tabulation 0x09 | 011 |\t

"backspace" 0x08 | 010 | \b (retour en arriére d’un caractere),
"form feed" 0x0c | 014 | \f (saut de page)

TaB. 2.2 Notation de caractéres non imprimables et spéciaux

Le tableau 2.2 indique la notation C utilisée pour les caractéres spéciaux les plus courants. Il
est aussi possible de noter tout caractére par son code octal. Ainsi le caractére "\n’("Line-Feed")
peut aussi étre noté "\012’.

Le caractére "line feed" correspond a un déplacement vertical d’une ligne vers le bas et "car-
riage return" un retour en début de ligne courante. Les lignes sont séparées par la séquence "\n\r"
(qui réalise a I'affichage un classique passage au début de ligne suivante) dans un fichier de texte
au format Windows, ou par le caractére "line feed" seul dans un texte a la norme posix (fichiers
unix/linux).

En C, une constante chaine de n caractéres (encadrée par des guiillemets) est en réalité une
constante tableau de n+1 éléments de type char contenant le code des n caractéres de la chaine,
suivie d'un marqueur de fin de chaine. Ce dernier est le caractére nul, dont le code ASCII est zéro.
Ainsi, la notation "abc" n’est qu’'un raccourci d’écriture pour {’a’,’b’,’c’,0}.

A noter : la gestion des caractéres en C est été congue pour des caractéres ASCIIL. Le type char
et des routines de manipulation de chaines de la bibliothéque C standard permettent de gérer les
carcactéres accentués codés sur 8 bits avec une extension ISO du code ASCII, mais pas le codage
unicode qui nécessite 16 bits par caracteére.

2.1.3 Constantes

Par défaut, en C, les constantes entiéres s’écrivent en base décimale. Les préfixes 0 et Ox
perment de spécifier une constante respectivement en octal et en hexadécimal et les suffixes L et
U de spécifier les attributs long et unsigned.

(©Philippe Waille UJF/UFR IMA 6 juillet 2006



2.1. TYPES, VARIABLES ET CONSTANTES 27

Exemples : La constante entiére 171 s’écrit aussi 0253 ou encore 0xAB. La constante 171.0
note la méme valeur dans le format a virgule flottante.

Il y a deux maniéres de définir des constantes symboliques :

#define PI 3.14
const int DEUX_PUISSANCE_DIX
const float TROIS_FLOTTANT

1024;
3.0;

Le mécanisme de définition de constante #define réalise grosso modo I'équivalent d’une sub-
stitution de toutes les occurences de la chaine PI par la chaine 3.14 dans toute la suite du fichier,
telle qu’on pourrait la réaliser avec la commande chercher/remplacer d’un éditeur de fichiers.

L’attribut const appliqué & une variable indique que son contenu ne doit pas étre modifié dans
le programme.

2.1.4 Conversions

Pour convertir explicitement une valeur d’un type vers un autre, il suffit de la faire précéder
d’un forceur de type (nouveau type entre parenthéses).

const TROIS_VIRG_FLOT 3.0;
const TROIS_ENTIER (int) TROIS_VIRG_FLOT;

La conversion se fait sans perte d’information lorsque toutes les valeurs du type initial sont
représentables dans le nouveau type. Il y a par exemple perte de la partie décimale lors d’une
conversion de type flottant vers entier. En revanche, tous les entiers courts (short et unsigned
short) sont codables dans un flottant (la mantisse est de 23 bits).

Les conversions sont utilisées pour corriger les divergences de type entre opérandes d’une
expression. Pour Daffectation a e de la somme de a et d, il est possible de convertir d en unsigned
short et le résultat de la somme en float, ou au contraire de convertir a en entier float.

float d,e;
short int a;

/* conversion a vers float sans perte */
e = (float) a + d; /* version choisie par le compilateur */
e = (float) (a + (unsigned short) d); /* d vers short : avec perte */

Dans les cas simples, les conversions de types omises par le programmeur seront implicitement
insérées par le compilateur en privilégiant les conversions de types sans perte d’information.

[’absence de type est notée void. C définit le type fonction, mais pas le type procédure. La
déclaration d'une fonction spécifie le type de résultat retourné par la fonction. En C, une procé-
dure est déclarée comme une fonction retournant void.

En C, les constantes adresses et les pointeurs sont de type t *, t étant le type de I'objet pointé.
Tous les pointeurs ont la méme taille : celle d’une adresse (32 bits pour un processeur ARM).
Un pointeur de type void * peut pointer sur n’importe quel type de variable. Mais pour faire un
accés a la variable pointée, le contenu du pointeur doit au préalable étre converti en adresse du
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bon type d’entité pointée.

Le forceur (type *) convertit un pointeur générique en pointeur d’objet de type t. Le forceur
ne change pas I'adresse a laquelle il est appliqué : il permet simplement au compilateur de déduire
du type t le nombre d’octets a lire ou écrire et comment en interprétrer le contenu. Considérons
a titre d’exemple 1’allocation dynamique de mémoire pour des structures : un forceur de type
(struct st *) permet de convertir le pointeur de char retourné par la routine malloc en pointeur
de structure st.

2.1.5 Déclaration des variables et attributs de stockage

Une déclaration de variable(s) sans initialisation comprend un attribut de stockage optionnel,
suivi du type et du nom de la variable déclarée (ou d’une liste de noms pour déclarer plusieurs
variables de méme type) et se termine par un caractére point-virgule.

Par défaut, une variable est supposée stockée en mémoire centrale. L’attribut register permet-
tait au programmeur de suggérer au compilateur de stocker la variable dans un registre plutot
qu’en mémoire centrale, pour en accélérer I'acceés.

Cet attribut est aujourd’hui tombé en désuétude avec les compilateurs modernes capables de
réaliser une optimisation poussée du code et de 1’allocation des registres aux variables. Dans ce
document, nous utiliserons 'attribut register pour guider la traduction de programmes C ordi-
naires en langage d’assemblage.

A noter : lattribut register interdit ’application de I'opérateur "adresse de" (&) a la variable
(un registre du processeur n’a pas d’adresse mémoire).

register vregl, vreg2; /x vregl et vreg2 a stocker dans des registres */
int varintl, varint2; /* varintl et varint2 stockees en mémoire centrale */
int avecinit = 12345; /* avecinit en mémoire avec contenu initial */

La déclaration permet de spécifier le contenu initial (précédé du signe —) de la variable au
début de ’exécution du programme.

2.1.6 Définition de types par typedef

Typedef permet de définir de nouveaux types a partir de types C de base.

typedef unsigned short int age; /* age est une variante du type short */
typedef unsigned short int taille; /* taille est une variante du type short */

age agel, age2; /* deux variables de type age */
taille taillel,taille?2; /* deux variables de type taille */
taille2 = (taille) 165;

agel = taille2; /* types différents : peut-é&tre une erreur */

On peut définir des synonymes de types de base, par exemple des synonymes de int, mais pour
un intervalle de valeurs plus restreint (par exemple de 0 & 150 pour un age et de 0 a 250 pour une
taille).
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Le compilateur ne fera pas forcément plus de vérifications avec la définition du type synyno-
nyme (age ou taille) qu’avec le type short, mais le programme est plus lisible. Le programmeur
voyant un parameétre de fonction de type age saura implicitement qu’il est censé étre inférieur a 150.

Typedef permet aussi de donner un nom a des types complexes construits a partir des types
de bases et des opérateurs d’indirection, d’appels de fonction et d’indigage de tableau (*, (), | |).
Il est en effet difficile d’écrire des déclarations de variables lisibles ou des conversions de type de
pointeur sans nommer ce genre de type complexe.

typedef int vect3 [3]; /* le type vect3 est un tableau de 3 entiers */
vect3 v1,v2,v3; /* déclaration de 3 tableaux de 3 entiers */

typedef (int *) fonc_pti_de_i_pti (int, intx*);

/* le type fonction ayant un argument entier et */

/* un argument pointeur d’entier */

/% et retournant un résultat de type pointeur d’entier */

(int *) calcul (int x, int *y) /* une fonction de ce genre */

{

}

fonc_pti_de_i_pti *ptfonc[4]; /* un tableau de 4 pointeurs */
/% de telles fonctions */

pt_fonc[1] = &calcul; /* pt_fonc[1] repere calcul */

Ecrire (ou méme relire et comprendre) la déclaration du tableau pt fonc de pointeurs de
fonctions sans utiliser le type fonc _pti_de i pti n’est pas forcément évident'.

2.1.7 Enumération de constantes nommées

Supposons que nous voulions déclarer une variable représentant une couleur appartenant a
I’ensemble rouge, bleu , vert, noir, blanc.

#define ROUGE
#define BLEU
#define VERT
#define NOIR
#define BLANC
#define BRUN

g W N = O

unsigned short int ma_couleur;

ma_couleur = VERT; /* ma_couleur = 2 %/

if (ma_couleur == NOIR) traiter_noir(); /* if (ma_couleur == 3) x/

'Elle devrait ressembler & ceci : ((int *) (*pt_fonc) (int, int *)) [4] ...
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La technique habituelle consiste a déclarer une variable d’'un type entier et & définir des
constantes entiéres symboliques correspondant aux couleur, comme l'illustre le fragment de code
précédent.

Enum permet de définir un type synonyme de type entier et une liste de n constantes symbo-
liques qui seront implicitement associées aux constantes 0 a n-1 d’aprés leur rang d’apparition :

enum couleur {ROUGE, BLEU, VERT, NOIR, BLANC, BRUN};
/* rouge 0 bleu 1 vert 2 noir 3 blanc 4 brun 5 */
couleur ma_couleur;

ma_couleur = VERT; /* ma_couleur = 2 %/
if (ma_couleur == NOIR) traiter_noir(); /* if (ma_couleur == 3)

Il est également possible d’associer explicitement a une constante symboliques une valeur dif-
férente de son rang :

enum couleur {ROUGE, BLEU, VERT=4, NOIR, BLANC=2, BRUN};
/* rouge 0 bleu 1 vert 4 noir 5 blanc 2 brun 3 */

Malgré I'utilisation de enum, le code généré par le compilateur ne vérifiera pas forcément que
toute expression affectée a la variable de type enum (ici ma_ couleur) appartient a I'intervalle des
valeurs définies pour le type couleur. Mais le programme écrit avec enum est plus lisible.

2.2 Opérateurs de calcul et expressions C

2.2.1 Opérateurs arithmétiques

Pour le calcul arithmétique, le langage C offre les opérateurs habituels +, -,* /. L’opérateur
/ est interprété comme une division entiére ou en virgule flottante selon le type de ses opérandes.
L’opérateur % (ou modulo) est le reste de la division entiére.

Le signe - représente a la fois un opérateur unaire (un seul opérande : changement de signe)
et un opérateur binaire (deux opérandes : soustraction).

float x,y,div_ent div_float;

unsigned int f,g,h;

h=1f/g; /* division entiere de f par g */
div_float = x / y; /* division flottante de x par y */
div_ent = (float) ((int x) /(int) y); /* division entiere de x par y */

2.2.2 Opérateurs bit a bit et décalages

Les opérateurs logiques binaires travaillant bit a bit sont : & (et), | (ou), * (ouex). L’expression
a & b retourne un entier dont le bit 0 correspond au produit booléen des bits 0 de a et b, le bit 1
au produit booléen des bits 1 de a et b, etc.

Il existe aussi I'opérateur unaire ~ de complément & un?. L’entier signé -1 étant codé en binaire
avec tous les chiffres a 1 (voir chapitre 1.8), on peut aussi obtenir ~ x par x * -1 (en exploitant la

2Rappel : le complément & 1 inverse tous les bits de l’entier
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propriété x @ 1 =T).

On trouve aussi deux opérateurs de décalage de I'opérande gauche d’un nombre de bits spécifié
par l'opérande droit, respectivement a gauche (opérateur <) et a droite (opérateur >).

L’opérateur > réalise un décalage arithmétique (recopie du bit de signe en poids fort) si
l'opérande est de type entier relatif (int) et un décalage logique (ajout de chiffres & 0 en poids
fort) si 'opérande est de type entier naturel (unsigned int).

2.2.3 Gestion de champs de bits

Les décalages et les opérations bit a bit permettent de manipuler des champs de bits a I'inté-
rieur d’un contenant de type entier.

Soit un bit z, de rang r & manipuler dans un contenant entier z. La représentation de la
constante 2" contient un seul chiffre & 1 de rang r et des 0 a tous les autres rangs. Elle est facile-
ment générée en décalant la constante 1 de r bits a gauche (1 < r en C).

Pour forcer z, a 1, il suffit d’effectuer un OU bit & bit entre x et 2" (z; OU 1 = 1). Pour inver-
ser la valeur de z,, on utilisera un OU exclusif (z; & 1 = 7). Un ET bit a bit entre le complément
a 1 de 2", qui ne contient que des chiffres a 1 excepté au rang r, force z,, 4 0 (x; ET 0 — 0). Pour
tester la valeur de z,, il & noter que le ET bit a bit de x et 2" retourne une valeur non nulle si et
seulement si x, = 1.

[’entier x peut aussi étre considéré comme une juxtaposition de champs de bits représentant
chacun une constante entiére sur quelques bits.

Soit B un tel champ de b bits occupant les rangs » & r + b — 1. Les macros suivantes peuvent
étre définies pour sa manipulation :

#define MASQUE_b_BITS = ((1<<b) -1);

#define MASQUE_B_DANS_X = (MASQUE_b_BITS << r);

#tdefine get_B(x) ((x>>r) & MASQUE_b_BITS)

#define set_b(x,vb) ((x & “MASQUE_B_DANS_X) | ((vb & MASQUE_b_BIS) << r))

Les seuls bits & 1 de la représentation en binaire de la constante 1 << B — 1 sont ceux de B.

La valeur de B peut étre récupérée en calculant le ET bit a bit entre MASQUE b _BITS et x
décalé de r bits a droite (il est aussi possible réaliser le ET bit a bit de x et MASQUE B DANS X
et décaler le résultat de r bits a droite ensuite).

L’affectation d'une valeur v, sera réalisée en deux opérations : mise a zéro de B par ET bit
a bit entre z et le complément & 1 de MASQUE B DANS X, suivie d'un OU bit a bit avec v,
décalée de r bits a gauche.

2.2.4 Expressions booléennes

Les opérateurs relationnels binaires incluent les comparaisons habituelles <, <—, > >—=. La
comparaison d’égalité se note — . La négation logique se note! et la comparaison d’inégalité! .
Ainsi al= b équivaut a! (a == b).
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Les opérateurs && (ET) et || (OU) permettent de construire des conditions composées. Ils
considérent chaque entier sur n bits comme un seul booléen®, faux ou vrai selon que I’entier est
nul ou différent de 0.

La norme C spécifie que 'opérande gauche de 'opérateur && ou || est évalué d’abord et que
si cette évaluation retourne faux, 'opérande droit de && n’est pas évalué (il s’agit donc d'un ET
puis et d’'un OU puis).

C n’offre pas de type booléen comme c’est le cas dans d’autres langages. Il existe cepen-
dant une interprétation booléenne de valeurs entiéres. L’entier 0 est assimilé a faux et toute autre
valeur & vrai. Les opérateurs relationnels retournent une valeur entiére : 1 pour vrai et 0 pour faux.

Il existe aussi en C des expressions conditionnelles. Le terme précédant ’ 7’ est la condition a
tester. L’expression conditionnelle retourne la valeur de I’expression entre * 7’ et ” :” si la condition
est vraie et celle aprés le ’ ;" dans le cas contraire.

A titre d’exemple, voici deux maniéres de calculer dans d le double du maximum de deux entiers
a et b. La premiére (originale mais pas du tout recommandable) exploite le fait que les opérateurs
relationnels retournent un entier 0 ou 1. La deuxiéme utilise une expression conditionnelle.

d
d

2% ((a>=b) * a + (a<b) *b);
(a >=Db) ? 2%xa : 2%b;

2.2.5 Opérateur d’affectation

En langage C, l'opérateur d’affectation s’écrit = , (le test d’égalité étant noté == ). At-
tention : dans de nombreux autres langages, tels que ADA ou PASCAL, = correspond & une
comparaison et I'affectation se note :=—.

Le membre de gauche de I'affectation désigne un contenant qui sera un registre ou un empla-
cement mémoire. Il peut par exemple s’agir d'une simple variable ou d’un tableau indicé par une
expression. Le membre de droite est une expression donnant la valeur a affecter au contenant.

Particularité : en C, I'affectation est une expression (au méme titre qu'une opération arithmeé-
tique) qui a pour effet de bord de modifier un contenant et qui retourne la valeur de I’expression
affectée a la variable. Ainsi, I'instruction C suivante est parfaitement légale. L’opérateur = évalue
I’expression x+3, Iaffecte a la variable y et retourne cette valeur comme opérande de la multipli-
cation.

z=2x% (y=x+3) - 4; /x équivaut a la séquence ci-dessous */
y =x + 3;
z=2%xy -4

Cette particularité peut quelquefois améliorer la clarté du programme en cas d’affectations
multiples de la méme valeur a un ensemble de variables et ou de mémorisation d’expression utilisée
dans les tests de boucles, comme le montrent les deux variantes de I'exemple ci-dessous.

/* z = lire_valeur(); x/
y = z = lire_valeur (); /¥y = z; */

3Contrairement aux opérateurs bit & bit & et | qui traitent chacun des n bits d'un entier comme un booléen.
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while ((x = (2<<3 - y/2)) != VALEUR_FINALE) /% x = z << 3 - y/2; x/
/* while (x '= VALEUR_FINALE) */

{ /¥ { */
corps_du_while; /* corps_du_while; * /

} /% Xx =2z << 3 - y/2; */
/¥ } */

Chaque argument d’appel d’une fonction C est une expression qui est évaluée et dont le résultat
est passé a la fonction appelée. Passer une affectation comme paramétre d’appel d’une fonction
est parfaitement légal en C (mais a proscrire pour la lisibilité du programme).

z=f (1, x+ 2, y=g() +1); /* signifie */ y = g(x) + 1;
z=f (1, x+2, y);

2.2.6 Formes abrégées de P’affectation

La notation x +— 1 est une abréviation de I'expression x — x + 1. Le principe est applicable
a d’autres opérations (-—, *—, &, |—,...). Si le membre de gauche est défini par une expression,

cette expression n’est évaluée qu'une seule fois.

Les opérateurs ++ et — a gauche (notation préfixée) ou a droite (notation postfixée) d’une
variable sont des raccourcis d’écriture pour += 1 et -= 1, souvent utilisés pour mettre a jour les
variables de boucle a chaque itération. La variable incrémentée peut faire partie d'une expression.
La position gauche ou droite de l'opérateur ++ définit I'ordre dans lequel I'incrémentation et
I’évaluation de I'expression utilisant la variable seront effectuées.

y = tab [x++]; /* correspond a */ y = tab[x]; x = x + 1;
z = tab [++y]; y =y +1; z = tablyl;
tampon = f(x);
tab[f(x)] += 3; tab[tampon] = tab[tampon] + 3;

Le programeur veillera a ne pas abuser de ces raccourcis d’écriture qui n’améliorent pas tou-
jours la lisibilité du programme. Pire, la sémantique d’instructions utilisant +-+ et — peut étre
ambigiie, notamment en version postfixée.

L’effet des instructions ci-dessous dépend de ’ordre dans lequel le compilateur décide de réaliser
I'incrémentation de x et le calcul de I'adresse de t[x] dans I'autre membre de 'affectation. Dans la
derniére instruction, le compilateur peut choisir de calculer y + 1 dans un temporaire, appliquer
l'opérateur +-+ sur y, puis affecter le temporaire a y (ce qui annule l'effet du ++). Il peut au
contraire affecter y + 1 a y d’abord et appliquer ensuite ++ sur y déja modifié.

tab[x] = tab[x++] + 1; /* ambigu : tlx]=t[x]+1 ou tlx+1]=t[x]+1 7 %/
tab[++x] = tab[x] + 1; /* ambigu : t[x+1]=t[x]+1 ou t[x+1]=t[x+1]+1 7 %/
tab[x++] +=1; /* non ambigu : t[x] = t[x]+1 puis x= x+1 */
tab[++x] +=1; /* non ambigu : x = x +1  puis t[x] = t[x] + 1 */
y = ++y + 1; /* non ambigu : y += 2 */
y = y++ + 1; /* ambigu : y += 1 ouy +=2 7 */
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2.2.7 Instructions simples et composées, opérateur virgule

En C, une instruction simple est soit une expression (cette expression pouvant étre une affec-
tation), soit un saut de la forme goto étiquette. Dans les deux cas elle se termine par ’;’. 1l est
possible de grouper une séquence d’instructions simples par des accolades, ’ensemble est alors
considéré comme une seule instruction.

Une instruction C peut aussi étre formée d’un assemblage d’instructions et d’expressions avec
les constructeurs algorithmiques (if, while, for, switch etc).

On peut aussi former une expression composée d’expressions simples séparées par des virgules.
L’opérateur virgule évalue les expressions de gauche a droite, et retourne la valeur de ’expression
de droite. L’ensemble est alors considéré comme une expression unique.

while (c=getchar (), c != EOF) /* equivalent a */ c = getchar ();
{ while (c !'= EOF)
. traiter {
} ... traiter
c = getchar ();
}

/* on pourrait aussi ecrire */
while ((c=getchar ()) != EOF) { ... traiter }

2.3 Expressions avec parenthéses et priorité des opérateurs

Les expressions que 1’on peut rencontrer dans un programme C pourraient étre ambigiies parce
que non parenthésées.

unsigned register reg_x, reg_y, reg_z, reg_a, reg_b,reg_c,reg_result;

reg_result = reg_a * reg_ b + reg_c / reg_x } reg.y - reg_z;

/K K Ko oK oK K oK KoK K K KK K K R K KoK K 3K oK R K oK K oK K K oK o K oK oK K KoK K K K K K K oK oK KoK KK K Kk K Kok ok ok ok /
/* Deux maniéres parmi d’autres de parenthéser 1’expression */
/* reg_result = (reg_a * reg_b) + (reg_c /reg_x) % (reg_y - reg_z) ou */
/* reg_result = (reg_a * (reg_b + reg_c)) / (reg_x ' reg_y)) - reg_z */
/KK K oK oK oK K oK o K oK R K KK K K R K oK oK K 3K oK R K K K oK S K oK o K oK ok K KoK K K K oK K K oK oK K KoK KK K Kk K oK ok Kok ok /

Obliger a parenthéser totalement chaque expression alourdirait nettement la programmation
des expressions mathématiques. En mathématiques, I'usage est d’interpréter I'expression z—3y/z+
a comme (z — ((3*y)/z)) + a plutot que par exemple z — (3 % (y/(z + a))), en considérant qu’on
privilégie I'application des opérateurs * et / a celle des opérateurs + et -. On dit aussi que * et /
ont priorité sur + et -.

2.3.1 Priorité des opérateurs C

Les opérateurs appliqués en priorité sont les opérateurs unaires d’appel de fonction ( ), d’indi-
cage de tableau/pointeurs | | et d’accés aux champ d’une structure via un pointeur - > (cf table 2.3).

Ils sont suivis des formes unaires des opérateurs - (opposé), * (déréférencement de pointeur),
lopérateur inverse & de prise d’adresse, 'opérateur de détermination de taille (sizeof), les formes
préfixées et suffixées des opérateurs ++ et — et le forceur (conversion) de type.
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Priorité | Opérateurs Associativité
16| () [1->
15 | ++ et postfixés
14 | ++ et préfixés! - unaire * unaire & unaire
(forceur de type) sizeof()

131*/ % Gauche
12 | + - Gauche
11 «» Gauche
10| < <= > >= Gauche
9| ==I= Gauche
8 | & bit a bit Gauche
7 | bit & bit Gauche
6 | | bit a bit Gauche
5 | && booléen Gauche
4 | || booléen Gauche
3 7: Droite
2 -+ %y« & | Droite
11, Gauche

TaB. 2.3 Table des priorités

Viennent ensuite les opérateurs arithmétiques avec la précédence habituelle de la multiplica-
tion et de la division sur I'addition et la soustraction et les opérateurs relationnels de comparaison.

Les versions bit a bit des opérateurs booléens précédent les opérateurs booléen logiques utilisés
pour combiner les conditions.

Les opérateurs appliqués avec la plus faible priorité sont les affectations et les expressions
condtionnelles.

A priorité égale, les régles d’associativité spécifie que les opérateurs a gauche sont appliqués
avant les opérateurs a droite : I'expression a + b + ¢ sera interprétée comme (a + b) + c.

Les opérateurs d’affectation et d’expression conditonnelle font logiquement exception : xz =y = 2
est interprété comme r = (y = 2).

2.3.2 Exemples d’application des priorités

L’application de la priorité de () (appel de fonction) sur * unaire (accés a un objet a partir

de son adresse) indique que I'expression *f(x) correspond a *(f(x)) (obtention d’un objet dont la
fonction f appliquée a x calcule adresse) plutot que (*f) (x) (valeur retournée par une fonction,
dont f contient I'adresse, appliquée a x).

La priorité relative des opérateurs arithmétiques (+ - * / %) refléte 'usage adopté en matheé-
matiques et permet d’économiser quelques parenthéses dans I’écriture d’expressions arithmétiques
sans risque d’erreur. Pour comparer la parité de deux entiers en utilisant 'opérateur modulo
(% : reste de la division entiére), on pourra ainsi écrire £%2 == y%2 que le compilateur interpré-
tera (x%2) == (y%2).

Malheureusement, les régles de priorité pour les autres opérateurs ne correspondent pas tou-
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jours a l'intuition du programmeur et il est vivement recommandé de parenthéser explicitement
les expressions.

A titre d’exemple, la parité peut aussi étre obtenue en prenant le chiffre de poids faible par
masquage avec 1. Il semblerait naturel d’écrire la comparaison de parité sur le méme modéle
qu'avec 'opérateur % : x&1 == y&1. L’opérateur == étant prioritaire sur &, cette expression
sera interprétée comme (z&(1 == y))&1 et non (z&1) == (y&1).

Les régles de priorité appliquées aux opérations de décalage ne sont pas plus intuitives. Un pro-
grammeur souhaitant forcer a 1 le bit n de « sera probablement tenté d’écrirez =z + 1 < (n — 1) :
il semble naturel de supposer que 'opérateur < se comporte comme 'opérateur de multiplication
et prime sur ’addition. Malheureusement, il n’en est rien et cette expression est interprétée comme
r=((x+1) < (n—1)) plutét que z = (x 4+ (1 < (n — 1))).

2.4 Décomposition d’une affectation en opérations élémen-
taires

Traduire une expression C en langage machine implique de détailler la décomposition de son
évaluation en une séquence d’opérations de calcul élémentaires.

Nous supposerons que toutes les variables sont stockées dans des registres. Ce paragraphe dé-
taille uniquement le stockage des résultats intermédiaires issus de 1’évaluation des sous-expressions.
Les points spécifiquement liés a gestion des accés aux variables stockées en mémoire centrale font
I’'objet des chapitres 5 et 6.

2.4.1 Description arborescente et notation polonaise inversée

Les expressions peuvent étre représentées sous une forme arborescente, la racine indiquant
I'opérateur a appliquer en dernier et les feuilles les opérandes des opérateurs les plus prioritaires.

L'expression (a+0b)/((c+d)xe+ f—3) sécrit
(a+b)/((((c+d)*e)+ f) —3) avec ses paren- /
theses. L’opérateur de division occupe la racine
de Tl'arbre associé. Son opérande gauche est le +/ \ _
résultat de l'expression (a + b) décrite par son VRN /
sous-arbre fils gauche et de (((c+d)*e) + f) —3 a b "
décrite par son sous-arbre fils droit. / \

f

N

3

*
La notation polonaise inversée est une nota- / \
tion plus compacte des arbres d’évaluation. e

+
Elle consiste a dérire l’arbre dans Dordre / \
fils gauche fils droit nceud pére. c d

La notation polonaise inversée de la formule ci-

dessus s’écrita b +cd +e*f+3- /. (a+0b)/((c+d)xe+ f—3)

2.4.2 Gestion des temporaires

L’évaluation et le stockage de la valeur de 'expression de droite dans une affectation de la
forme reg,3 = reg,1 — reg,o ne pose pas de probléme particulier et se traduit en une unique ins-
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truction machine prenant ses opérandes et déposant son résultat dans trois registres généraux du
processeur.

Mais dans le cas général, I’évaluation de 'expression nécessite des (emplacements de stockage)
temporaires pour mémoriser les résultats intermédiaires (de I’évaluation des sous-expressions).

Pour guider la traduction en langage d’assemblage, il est souvent utile d’écrire en C une va-
riante du programme d’origine ne contenant qu’une opération de calcul simple par affectation et
détaillant 1'utilisation de registres temporaires. Chaque affectation se traduit alors en une instruc-
tion de calcul du processeur.

La stratégie la plus simple consiste a affecter un temporaire distinct a chaque noeud de 'arbre.
Ainsi, pour la premiére affectation, templ est utilisée pour évaluer a + b, temp2 pour ¢ + d et
temp3 pour mémoriser le résultat de la division.

Notons cependant qu’allouer un registre temporaire distinct a chaque nceud de 'arbre est un
gaspillage de ressources : lorsque toutes les sous-expressions utilisant la valeur qu’il contient ont
été calculées, un registre temporaire peut étre réutilisé pour stocker un autre résultat intermédiaire.

Lorsque le membre de gauche de I'affectation est une variable logée dans un registre, il
peut remplacer le temporaire associé a la racine de 'arbre. Ainsi, on peut directement calcu-
ler r1 = templ * temp2 au lieu de passer par un temporaire temp3 dans 'exemple qui suit.

Lorsque sa valeur actuelle n’est pas utilisée, la variable a gauche de 'affectation peut servir
de temporaire. Dans la premiére affectation, rl peut ainsi remplacer le temporaire templ. En re-
vanche, r2 ne peut jouer le role de temporaire (pour la premiére affectation) tant que I’expression
r2 % 2 n’a pas été évaluée.

2.4.3 Exemple de traduction en langage d’assemblage

Considérons a titre d’exemple la traduction de quatre affectations.

register int a,b,c,d,e,f,rl,r2,r3;

rl = (at+b) * (c+d); /¥ ab+cd+ * */
r2 = (c+d) * (r2 % 2); /¥ ¢ d+ 12 2 Y% % */
r3 = (a+b) / ((c+d) * e + £ -3); /¥ ab+cd+exf+3-/x%/
rd = (a-b) * (c-d) + (£f-3) / (a-b); /*ab-cd+f3-ab-/ x/

Chaque affectation d’origine de cet exemple se décompose en quatre a six instructions C élé-
mentaires.

/* expansion avec les temporaires */
register int templ, temp2, temp3, temp4, tempb, temp6, temp7;

templ = a+b; /*¥ ou rl = a + b; */
temp2 = c+d; /* templ = ¢ + d;  */
temp3 = templ * temp?2; /% rl = rl * templ x/
rl = temp3;
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templ = c + d; /* la valeur de r2 est */
temp2 = r2 % 2; /* <--- utilisée ici  */
r2 = templ * temp2;

/* variante possible */
templ = a+b; /* templ = c + d ; */
temp2 = c+d; /* templ = templ * e ; */
temp3 = templ * e; /* templ = templ + f;  */
temp4 = temp2 + f; /* templ = templ - 3;  */
temp5 = temp4 -3; /* T3 = atb; */
r3 = templ / temp5; /* r3 /= templ */
templ = a-b; /* reutilisation de la */
temp2 = c-d;
temp3 = £-3;
temp2 = templ * temp2; /* sous expression commune */
temp3 = temp3 / templ; /* a-b calculee dans templ */
rd = temp2*temp3;

L’ordre d’évaluation des sous-expressions a une incidence sur le nombre de temporaires a pré-
voir. L’arbre sera parcouru en privilégiant les nceuds et les branches les plus profonds, la notation
polonaise inversée suggérant 'ordre dans lequel effectuer les calculs. Ainsi, I’évaluation optimisée
de (a+b)/((c+d)*e+ f— 3) n’utilise qu’un seul registre temporaire en plus de r3 pour réaliser
les six opérations.

A titre d’illustration, voici & quoi peut ressembler la traduction en langage d’assemblage de
laffectation de r1 (non optimisée) de I’exemple.

@rl : ri1

@ r2 : templ

@ r3 : temp2

@ r4 : temp3

@r5 : a

@r6 : b

@ r7 : c

@r8 : d

add r2, rb, r6 @ templ = atb
add r3, r7, r8 Q@ temp2 = c+d

mul r4, r2, r3 @ temp3 = templ * temp2
mov rl, r4 @ r1 = temp3
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Chapitre 3

Ordinateur, langages machine et
d’assemblage

3.1 Organisation générale d’un ordinateur

3.1.1 Composants d’un ordinateur

Les ordinateurs sont des calculateurs numériques qui manipulent deux sortes d’informations :

1. Les données regroupent les opérandes et résultats des opérations de calcul, de tri etc. Elles
correspondent aux variables et tableaux des programmes (stockées en mémoire centrale) et
aux fichiers (stockés en mémoire secondaire).

2. Les programmes exécutables sont des suites d’instructions de la machine (dites "instructions
machine") décrivant les suites d’opérations a effectuer sur les données. Les instructions ma-
chine sont codées en binaire. Une instruction d’un langage de programmation est traduite
en une suite d’instructions machine, chacune effectuant un travail souvent beaucoup plus
élémentaire qu’une instruction des langages de programmation tels que C ou ADA.

Il existe des automates qui exécutent une suite d’actions prédéfinies selon un algorithme figé
(par exemple sous la forme de cames d’un programmateur). Un tel automate peut étre qualifié de
machine a programme cablé : il faut en recabler les circuits électroniques ou changer les rouages
mécaniques pour en modifier le comportement. L’orgue de barbarie est au contraire un exemple
de machine a programme enregistré : il suffit de changer les perforations du ruban cartonné pour
changer le morceau de musique joué par l'orgue.

L’ordinateur appartient a la famille des machines & programmes enregistrés et se caractérise
par une grande souplesse de programmation avec la possibilité de réaliser des traitements condi-
tionnels en fonction de résultats de calcul ou de données extérieures, ainsi que des répétitions de
séquences (boucles de programmation).

Un ordinateur comprend une mémoire qui stocke les données et les instructions. En pratique,
cette mémoire est organisée en une mémoire électronique rapide et volatile (le contenu est perdu
lors de la coupure de 'alimentation) et une mémoire secondaire permanente.

La mémoire rapide dite centrale ou principale est utilisée durant ’exécution des programmes
et des calculs sur les données. Pour le programmeur, elle est assimilable & un tableau dont les

éléments (mots et octets) sont accessibles individuellement.

La mémoire secondaire plus lente, plus économique et non volatile, stocke les programmes
exécutables et les données persistentes (fichiers et bases de données) entre deux exécutions et en
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Fi1G. 3.1 Schéma synoptique d’un ordinateur

particulier pendant ’arrét de la machine.

L’ordinateur est aussi doté de périphériques, dispositifs de dialogue avec I’environnement, a
savoir le ou les utilisateurs, d’autres ordinateurs ou des processus industriels. Les écrans, claviers,
souris, scanners et imprimantes sont les principaux périphériques de dialogue avec 1'utilisateur
dont sont dotés les ordinateurs personnels. Les périphériques sont connectés a ’ensemble proces-
seur et mémoire via des coupleurs d’entrées/sorties.

Le coeur de l'ordinateur est le processeur, qui comprend les organes de calcul et la circuiterie
de pilotage du reste de la machine. Outre les organes de calcul et de séquencement du travail,
le processeur est doté de quelques mémoire rapides d’une capacité d'un mot chacune : les registres.

3.1.2 Microactions et instructions

Le processeur est un circuit séquentiel cadencé par un signal périodique dit d’horloge. A chaque
cycle (période) d’horloge, le processeur effectue une action trés élémentaire (ou microaction). Il
peut s’agir d’un calcul interne au processeur sur le contenu de ses registres ou d’un accés a la
mémoire.

Lors d’un accés en lecture, la mémoire fournit une copie du contenu d’un mot au processeur.
Lors d'un cycle d’accés en écriture, le processeur envoie a la mémoire la nouvelle valeur d’un
emplacement & modifier.

Un processeur travaillant & une fréquence de 2 GigaHertz a une période d’horloge de la moitié
d’une nanoseconde (0.5 x 1079 seconde).

Un ordinateur simple exécute les instructions séquentiellement, dans I'ordre ot elles sont ran-
gées en mémoire. Un registre (noté PC : Program Counter), appelé compteur ordinal, compteur
programme ou encore pointeur d’instruction contient I’adresse (position dans la mémoire) de l'ins-
truction courante (instruction en cours d’exécution).

Chaque exécution d’une instruction représente une séquence de plusieurs microactions. [.’exé-
cution d’une instruction simple de calcul, travaillant sur les registres, représente au moins deux ou

trois microactions (lecture de I'instruction en mémoire et mise a jour du compteur ordinal pour
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passer a U'instruction suivante, réalisation du calcul).

A la mise sous tension, PC est initialisé avec ’adresse de la premiére instruction du programme
de démarrage de l'ordinateur et incrémenté aprés chaque instruction pour pointer sur I'instruction
suivante.

3.1.3 Fonctionnement en pipeline

On peut imaginer de décomposer tres finement le déroulement d’une instruction de calcul en
microactions : par exemple lecture de I'instruction en mémoire, transfert du contenu des registres
vers I'unité de calcul, calcul du résultat, écriture du résultat dans le registre destination.

En pratique, le processeur est souvent capable de travailler "a la chaine" sur les séquences d’ins-
tructions, a savoir dans le méme cycle d’horloge effectuer le calcul sur les opérandes de I'instruction
courante, ranger le résultat du calcul associé¢ a I'instruction précédente, consulter le contenu de
registres spécifiés par I'instruction suivante et lire & I'avance I'instruction d’apreés.

On parle de traitement en "pipeline'". Les instructions progressent le long des circuits du
processeur comme un flux : I'instruction qui occupait 1’étage de recherche d’instruction au cycle
C occupera le circuit de calcul au cycle C'+1 et I’écriture dans les registres aura lieu au cycle C'+2.

La durée effective d'une instruction qui correspond au délai de mise a jour du registre résultat
n’a pas changé (quatre cycles dans notre exemple). En revanche, le processeur "pipeliné" peut
éventuellement commencer 'exécution d’une nouvelle instruction a chaque cycle d’horloge. Le dé-
bit théorique du processeur est quadruplé et la durée apparente d’une instruction (utilisée pour
estimer le temps de calcul) se réduit a un seul cycle.

Dans une famille de processeurs partageant le méme langage machine binaire, on pourrait trou-
ver des processeurs peu optimisés qui exécutent les instructions en mode séquentiel et d’autres
qui sont "pipelinés" pour accroitre les performances. Certains détails dans la définition du jeu
d’instructions des machines résultent d’une conception de processeurs "pipelinés".

Dans le cas de la famille ARM, on notera que lorsqu’une instruction utilise la valeur du comp-
teur ordinal (par exemple pour calculer une adresse de branchement relatif) PC pointe deux
instructions plus loin que I'instruction qui en utilise la valeur. La valeur de PC lue est donc celle
de 'instruction courante plus huit (deux instructions d’avance occupant 4 octets chacune).

3.2 Organisation et structuration du contenu de la mémoire

3.2.1 Von neumann : un modéle séquentiel & mémoire unique

Conformément au modéle défini par Von Neumann, la mémoire centrale stocke a la fois les ins-
tructions et les données. Les emplacements de la mémoire principale ne sont pas typés et peuvent
contenir une information de n’importe quelle nature.

En particulier, rien ne distingue les données proprement dites des instructions : le contenu
d’un mot mémoire prend simplement le statut d’instruction et est interprété comme tel par le

1Ce mot se traduit en francais par le suffixe duc, ou éventuellement par le mot conduite. Le terme officellement
préconisé pour traduire pipeline n’a pas été retenu dans ce document. Il sonne assez bizarrement & l'oreille : bitoduc
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processeur lorsqu’il est pointé par le registre PC.

D’une maniére générale, le contenu d’'un mot mémoire est dépourvu de tout sens en 1’absence
de convention d’'interprétation. En ’absence d’information de type, il est impossible de déterminer
si le contenu du mot représente une variable numérique entiére signée ou non, un nombre a virgule
flottante, une chaine de 4 caractéres, une instruction machine, ou autre chose.

Les contenus des mots transitent entre la mémoire et le processeur par un ensemble de fils
porteurs de signaux bidirectionnels : le bus de données. Le numéro d’emplacement de la mémoire
accédé par le processeur est appelé adresse et transite via le bus unidirectionnel du méme nom
(du processeur vers la mémoire).

L’usage a consacré le terme de bus de données (par opposition a adresse), mais le terme de
bus de contenu aurait été plus correct. Une information contenue dans une variable pointeur peut
étre lue puis utilisée ensuite par le processeur comme numéro d’emplacement mémoire a écrire
lors d'un cycle d’écriture. Elle sera alors considérée comme une donnée (et voyagera sur le bus du
méme nom) lors du cycle de lecture, puis comme une adresse (émise par le proceseur sur le bus
d’adresse) lors du cycle d’écriture.

3.2.2 Unité de transfert et unité adressable

Rappelons que la mémoire est organisée a la maniére d'un tableau, dont les numéros de cases
sont les adresses.

L’unité de transfert normale (information transférée en un seul cycle d’accés mémoire) entre le
processeur et la mémoire est le mot (32 bits pour ARM), de méme taille que les registres, I'unité
de calcul et les adresses. Mais la majorité des processeurs est concue de telle maniére qu'un cycle
mémoire puisse lire ou modifier un sous-multiple d’'un mot dans toucher au reste du mot.

L’unité adressable définit la taille des cases numérotées. Elle correspond a la plus petite taille
d’emplacement mémoire qu’il est possible de consulter ou modifier individuellement en un seul
cycle d’acceés.

Son choix résulte d'un compromis entre plusieurs critéres :
maximiser la quantité de mémoire adressable a taille de mot constante, qui conduit a adopter
une unité adressable la plus grande possible (le mot),
simplifier I'interface mémoire, ce qui s’oppose a une subdivision trop fine du mot, et

— faciliter la manipulation des variables de taille sous-multiples du mot, qui incite & numéroter
chaque bit de mémoire d’une adresse de telle sorte que les variables booléennes aient chacune
son adresse.

L’unité adressable universellement adoptée aujourd’hui est 'octet. Utiliser des adresses de mot
alourdirait notablement la gestion des variables de type caractére, largement utilisées dans de
nombreuses applications, dont les éditeurs de fichiers et les traducteurs (compilateurs)?.

A Pinverse, la réduction de la quantité de mémoire adressable (division par 8 ou 32 par rapport
a l'octet et au mot) induite par un adressage individuel de chaque bit de mémoire :
limiterait la mémoire des machines 32 bits actuels & 512 Moctets,
serait tolérable sur des processeurs récents a 64 bits,

2A moins de ne stocker qu’un caractére par mot, ce qui gaspillerait inutilement de la mémoire.
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— était totalement rédhibitoire sur les anciennes machines travaillant sur 16 bits.

Les quelques variables booléennes habituellement présentes dans les programmes peuvent étre
dotées facilement d’adresses individuelles pour en conserver une gestion simple et efficace. Il suffit
simplement d’allouer & chaque variable booléenne un octet ou un mot entier. Le surcoiit en mé-
moire consommeée reste trés raisonnable compte tenu de la relative rareté de ce type de variable
dans la majorité des applications. Cette technique se retrouve dans la définition du langage C (se
reporter a I'interprétation booléenne de valeurs entiéres).

Rappelons que l'opérateur C sizeof(type) prend en paramétre un type ou une variable et en
retourne la taille, exprimée en nombre d’unités adressables, donc en octets (colonne Sizeof de la
table 2.1).

3.2.3 Ordre de stockage (big/little endian)

Tout objet® O, de taille X et d’adresse A, occupe une suite d’octets d’adresses {A, A+ 1,...,
A+ X —1}. Un épisode du voyage de Gulliver relate un conflit portant sur la maniére de manger
les ceufs : en les gobant par le grand bout ou par le petit bout. Les noms des deux méthodes de
stockage d’'un entier s’en inspirent.
La méthode dite "gros boutiste!" ("big endian" en anglais) range les bits de poids forts de
I'entier en téte alors que la convention "petit boutiste" (little endian) stocke les bits de I'entier
dans l'ordre de poids croissant. Certains parlent aussi de "sexe des machines" & propos de l'ordre
de rangement des entiers. Certaines familles de processeurs, dont ARM, autorise le choix de la
convention. Dans la suite de ce document, la configuration ARM sera supposée "petit boutiste".

Chiffres de I'entier | Adresse de I'octet
GB/BE | PB/LE
3130 - - - L2524 A A +3
T923X22 ...X17T16 A + 1 A + 2
T15T14 - - - T8 A+2 A"—l
IT7xg...T1XQ A"—?) A

TAB. 3.1 Conventions gros et petit "boutiste"

Lorsque le contenu de la mémoire est affiché octet par octet, par adresses croissant de gauche
a droite (et de haut en bas), le codage "gros boutiste" facilite la lecture des entiers : 'ordre des
chiffres hexadécimaux de 'entier est respecté alors qu’avec le codage "petit boutiste", les paires
de chiffres hexadécimaux apparaissent dans I'ordre inverse.

Octet d’adresse | 0x1000 | 0x1001 | 0x1002 | 0x1003
Gros Boutiste | 12 34 56 78
Petit Boutiste | 78 56 34 12

TAB. 3.2 — Stockage de I'entier 0x12345678 a ’adresse 0x1000

Les propriétés respectives des deux conventions ne donnent aucun avantage décisif a I'une ou
I'autre des deux méthodes. La majorité des familles de processeurs et d’ordinateurs, depuis 'l BM
360 est de type "gros boutiste", excepté entre autres la famille ’'INTEL (exception devenue trés

30bjet pris dans le sens le plus large (entité), hors du contexte de la programmation orientée objet.
4La traduction "boutiste" laisse & désirer, mais écrire "grands indiens" ou garder "big endian" ne semble pas
plus satisfaisant.
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répandue!) 80x86 et Pentium utilisée dans les ordinateurs personnels compatibles IBM PC.

La présence de machines utilisant des conventions différentes complique les échanges de données
et doit notamment étre prise en compte par les protocoles de transfert d’informations via le réseau.

3.2.4 Contraintes d’alignement

Compte tenu de la maniére dont la mémoire est connectée aux bus d’adresses et de données,
seuls les octets peuvent étre lus ou écrits en un seul cycle a n'importe quelle adresse.

Dans la majorité des machines, les mots et sous-multiples du mot autres autres que 1'unité
adressable ne sont accessibles en un seul cycle que s’ils sont stockés & une adresse multiple de leur
taille.

Le programmeur devra faire en sorte que tout entier sur 16 bits soit stocké a une adresse paire,
et tout mot de 32 bits a une adresse multiple de 4.

3.2.5 Sections d’instructions et de données

Un programme en langage d’assemblage décrit (dans I'ordre croissant des adresses) le contenu
de la mémoire tel qu’il sera initialisé & partir du fichier binaire exécutable au début de chaque
lancement du programme. L’exécution proprement dite commence lorsque le registre PC est ini-
tialisé a ’adresse de la premiére instruction du programme.

Les informations sont habituellement regroupées par nature dans des régions de la mémoire
appelées zones ou sections. En fonctionnement normal, les instructions et les constantes ne sont
accédées qu’en lecture et regoupées dans une section commune.

Sur les machines dotées d’un systéme d’exploitation (tel que unix) et des fonctions matérielles
associées a la protection, toute tentative d’écriture dans cette zone déclenchera l'arrét de 1'exé-
cution du programme (pour éviter son auto-destruction) et l'affichage d’un message d’erreur a
I'intention de I'utilisateur.

Selon la terminologie en vigueur pour les outils GNU dans le monde unix, la section contenant
le code des instructions est appelée text® et posséde automatiquement les attributs de droit d’accés
lecture seule et exécution (lecture d’instructions).

Une autre section correspond aux variables globales du programme, et dont la déclaration
spécifie une valeur initiale. Cette valeur est stockée dans le fichier exécutable de telle sorte que les
variables sont initialisées avant ’exécution de la premiére instruction du programme. Le nom de
cette section est data (accessible en lecture et écriture) dans le monde unix/posix (et par exemple
une section avec les attributs DATA et READWRITE dans un autre contexte).

Les variables peuvent étre déclarées sans valeur initiale (note : l'utilisation dans une expres-
sion de la valeur d’une variable déclarée sans valeur initiale avant qu’elle ne soit initialisée par
une affectation constitue en principe une erreur de programmation). La section correspondante
s’appelle bss (variante hors gnu/unix : DATA, READWRITE et NOINIT). Le fichier exécutable
indique la taille de la section bss, pour que le chargeur/lanceur lui alloue de la mémoire, mais pas

5Nom historique. Hors de I’environnement gnu et unix, on décrira par exemple cette section par les attributs
CODE et READONLY.
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de contenu initial de bss.

Pour des raisons de confidentialité, les systémes d’exploitation multiutilisateurs initialisent
toute la zone bss a 0, mais dans le cas général, (notamment pour des applications embarquées)
lors de I'exécution de la premiére instruction du programme les mots mémoire de la zone bss sont
potentiellement susceptibles de contenir des valeurs quelconques.

La gestion des appels de procédure utilise une troisieme zone appelée pile. Cette zone est
souvent gérée automatiquement par le systéme d’exploitation ou le chargeur/lanceur, et absente
du fichier exécutable. Cete zone est référencée via un registre pointeur de pile (sp sur la figure 3.1).

Remarques :

1. Les zones text, data et pile n’occupent pas forcément des emplacements adjacents en mé-
moire.

2. Rien n’interdit de mettre des instructions dans une section prévue pour les données. Mais
une erreur de manipulation de pointeurs peut venir écraser le code d’une séquence d’instruc-
tions stockées en zone dédiée aux données modifiables, ce qui peut compliquer sérieusement
la mise au point, et interdit de partager le code entre plusieurs utilisateurs exécutant le
méme programme sur des données différentes. Cette possibilité est en particulier utilisée par
certains interprétes de langages tels que JAVA (compilation "just in time"), qui compilent
en cours d’exécution les procédures les plus souvent utilisées.

3. Il possible d’alterner les déclarations de sections dans le texte du programme. L’assembleur
regroupera ensemble toutes les séquences étiquetées avec le méme nom de section.

3.3 Langages et cycle de vie d’un programme

3.3.1 Fichier binaire exécutable

Un programme exécutable se présente sous la forme d’un fichier binaire stocké en mémoire
secondaire. Il représente une image de ce que devra contenir la mémoire principale au début de
I’exécution du programme.

A chaque lancement d’une exécution du programme, le contenu du fichier binaire exécutable
est recopié en mémoire centrale, puis 'adresse de la premiére instruction a exécuter dans ce
programme est chargée dans le registre PC. Ensuite, le processeur exécute séquentiellement les
instructions du programme dans 'ordre ou elles sont stockées en mémoire.

3.3.2 Langages machine et d’assemblage

Le jeu d’instructions est I’ensemble des instructions défini par les concepteurs du processeur
considéré et que ce dernier sait interpréter en effectuant la suite de microactions correspondante.

En mémoire et dans les fichiers exécutables, ces instructions sont codées en binaire. Elles
forment le langage machine du processeur. Le code binaire d’une instruction rassemble un certain
nombre de champs de bits : nature de 'opération et opérandes (numéros de registres, constante
numeérique).

La programmation directe en langage machine binaire ou hexadécimal est extrémement fas-
tidieuse puisque le programme doit détailler chaque action élémentaire en instruction machine :
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un simple appel de procédure peut demander plusieurs dizaines d’instructions en langage machine.

Le langage machine (en binaire ou en hexadécimal) est de plus quasiment illisible pour un
humain : il faut une grande habitude du langage machine ARM pour reconnaitre par exemple le
code d’'une addition dans le code hexadécimal 0xE282102A.

C’est pourquoi on utilise un langage dit d’assemblage qui est une représentation textuelle li-
sible du langage machine. Le langage d’assemblage a le méme pouvoir d’expression que le langage
machine binaire : chaque instruction du langage machine existe également sous forme symbolique
en langage d’assemblage. Le langage d’assemblage permet aussi de donner un nom symbolique
aux adresses (les étiquettes) et d’automatiser le calcul des déplacements dans les branchements.

3.3.3 Cycle de vie d’un programme

Chaque famille de processeurs posséde son propre langage machine et les programmes en lan-
gage machine binaire ou d’assemblage ne sont pas portables entre machines dotées de processeurs
de familles différentes.

Les langages de programmation dits "de haut niveau" tels que C permettent I’écriture de lo-
giciels portables d’'une machine a I'autre et de programmer a partir de primitives (constructeurs
algorithmiques, appels de procédures,. . .) plus puissantes que les actions élémentaires réalisées par
les instructions du langage machine.

Le cycle de vie (simplié) des programmes est le suivant :

1. Le cahier des charges est analysé, puis la structuration du logiciel et les principaux algo-
rithmes sont définis.

2. Les fichiers contenant le texte du programme sont saisis avec un éditeur de texte (tel que
vi, emacs ou nedit). Ce type de fichier est appelé fichier source. L’extension .s (langage
d’assemblage) ou .c indique le langage dans lequel le programme est écrit.

3. Les fichiers .c sont traduits en langage d’assemblage (fichiers .s) par un programme traduc-
teur appelé compilateur.

4. Les fichiers .s en langage d’assemblage sont traduits en fichiers binaires. Ce type de fichier
est appelé fichiers objet (extension .0). Le traducteur est appelé assembleur®.

5. Les fichiers .0 sont réunis en un fichier binaire exécutable par I’éditeur de liens. Généralement,
le fichier exécutable porte le nom du fichier source principal, sans extension.

6. L’exécution est déclenchée par le chargeur/lanceur du systéme d’exploitation. Invoqué par
Iinterpréte de commande, le chargeur copie le contenu du fichier exécutable en mémoire
centrale et initialise PC a 'adresse du point d’entrée du programme (premiére instruction a
exécuter) pour en lancer 'exécution.

Lors de la phase de développement, les premiers tests d’exécution révelent généralement des
erreurs de conception ou de programmation. Les corrections sont alors apportées a 1’étape cor-
respondante et les étapes de génération de ’exécutable et de test sont reprises. Dans la phase
d’exploitation normale du logiciel, seule subsiste 1’étape de chargement-exécution du fichier bi-
naire exécutable.

6La programmation en langage d’assemblage est souvent appelée programmation en assembleur ou méme pro-
grammation assembleur. Ces raccourcis de langage, trés usités, sont cependant des abus de langage : I'assembleur
n’est que le programme traducteur du langage d’assemblage.
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Notons que la commande de compilation est généralement capable d’enchainer toutes les étapes
de génération du fichier exécutable, de la compilation en langage d’assemblage proprement dite
jusqu’a l'édition de liens. Il s’agit généralement du comportement par défaut, diverses options
permettant de limiter le processus a une étape particuliére (typiquement -o et -S stoppent le
travail du compilateur aprés la génération des fichiers respectivement .o et .s.).

3.3.4 Syntaxe d’assemblage multiples

Chaque processeur ou famille de processeurs n’admet qu'une syntaxe de langage machine bi-
naire et dont l'interpréte est figé dans le matériel du processeur. En revanche il est possible de
définir plusieurs variantes de langages d’assemblage pour décrire le méme langage machine.

Ainsi, il existe des différences notables, en particulier dans la syntaxe des directives de réser-
vation de mémoire, entre les langages d’assemblage pour ARM d’origine GNU et ceux fournis par
ARM. La suite du document utilise la syntaxe GNU.

3.3.5 Justification de I’étude du langage machine

Depuis de nombreuses années déja, les applications ordinaires ne sont plus écrites en langage
machine (ni binaire, ni d’assemblage). On peut donc s’interroger sur I'utilité d’étudier les langages
machine et d’assemblage.

L’étude du langage machine est une base indispensable pour comprendre 1’architecture et le
fonctionnement interne d’'un processeur ou de la hiérarchie mémoire (dont la mémoire virtuelle),
ainsi que pour écrire les traducteurs générant du code en binaire (assembleurs, compilateurs, édi-
teurs de liens, gestionnaires de bibliothéques).

En outre, 'apprentissage de la programmation en langage d’assemblage reste cependant utile
pour :

1. toutes les opérations nécessitant la manipulation directe de ressources spéciales de la machine
(telles que les registres ou instructions spéciaux des processeurs, relatifs par exemple a la
commande du systéme de gestion des interruptions), notamment dans le noyau (cceur du)
du systéeme d’exploitation ou dans le cas d’applications embarquées.

2. écrire des bibliothéques optimisées (graphique, calcul), utilisant des instructions spécifiques
du processeur. Par exemple, 'absence d’opérateur C correspondant oblige le programmeur
en C a réaliser les rotations par des paires de décalages. Le compilateur C n’est pas forcément
capable de reconnnaitre que la paire de décalages est une opération de rotation réalisable en
une seule instruction machine.

3. observer et éventuellement optimiser a la main le code généré par un compilateur pour une
procédure dont les performances sont critiques.

4. comprendre la programmation en C, en particulier la gestion des tableaux, pointeurs et
parameétres de procédures.
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Chapitre 4

RISC, CISC et modes d’adressage

4.1 Interprétation d’une affectation

4.1.1 Exemple d’affectations

Considérons l'extrait de programme C suivant. Il manipule trois variables entiéres nommées
pour simplifier 16 & r8, que nous supposerons stockées dans les registres de méme nom du proces-
seur.

long int ml = 55667788;
long int m2 = 11223344,
long int m3;

register long int r6,r7,r8;

r6 = r7 - r8; /* reg_no_6 <- reg_no_7 - reg_no_8 */

m3 = ml - m2; /* Mem[120000] <- Mem[100000] - Mem[100004] */
r7 = r8 - 11112222; /% reg_no_7 = reg_no_8 - 11112222 %/

ml = m2 - 12345678; /* Mem[100000] = Mem[100004] - 12345678 */

Il déclare aussi deux variables m1 et m2 stockées en mémoire avec une valeur initiale spécifique
et une variable m3 stockée elle aussi en mémoire, mais sans spécification de valeur initiale. Les six
variables, de type entier long, sont représentées sur 32 bits.

Nous supposerons que, lors de I'exécution considérée, m1 et m2 sont stockées dans la section
data, respectivement aux adresses 00100000 et 00100004. Le contenu de la section data est intialisé
avec le contenu du fichier exécutable.

Nous supposerons que m3 occupe 'adresse 00120000 de la section bss (pas de valeur initiale
de bss dans le fichier exécutable : initialisation a 0 par défaut).

Ce fragment de code contient quatre affectations, dont nous allons détailler la signification en
termes d’actions élémentaires dans la machine et I’expression en instructions du langage machine.

4.1.2 Signification d’une affectation

L’affectation évalue la valeur de son membre droit et 'assigne comme nouveau contenu au
contenant désigné dans son membre gauche. Un contenant est désigné par un numéro. Il peut
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s’agir d’un registre identifié par son numéro de registre ou d’un emplacement mémoire identifié
par son adresse.

Le membre droit de 'affectation prend 'une de ces trois formes :

— une constante (par exemple 11112222) a utiliser directement

— un contenant dont on va utiliser le contenu (par exemple r7)
une expression utilisant un opérateur de calcul dont chaque opérande est lui-méme une
constante, un contenant ou une expression.

L’affectation r6 = r7 - r8 correspond a une opération interne au processeur : soustraire le
contenu du registre numéro 8 du contenu du registre numéro 7 et stocker le résultat comme nou-
veau contenu du registre numéro 6.

L’affectation r7 = r8 - 11112222 soustrait la constante 11223344 (contenue dans 'instruction)
du contenu du registre numéro 8 et range le résultat dans le registre numero 7.

L’affectation m3 — m1 - m?2 lit les contenus des emplacements mémoire de m1 et m2 (respecti-
vement Mem[100000] et Mem[100004]) et les soustrait I'un de I'autre (a I'intérieur du processeur).
Elle effectue une écriture en mémoire qui copie le résultat comme nouveau contenu de I'emplace-
ment de m3 (Mem|120000]).

L’affectation m1 = m2 - 12345678 lit en mémoire le contenu de de m2 (Mem|[100004]), lui sous-
trait la constante 12345678 contenue dans U'instruction, et écrit le résultat en m1 (Mem|[100000]).

4.1.3 Informations contenues dans la section text

Chacune des affectations C du programme d’origine est traduite dans la section text par une
instruction ou une séquence d’instructions de la machine, codée(s) sur un ou plusieurs mots, et
décrivant les informations suivantes :

1. la nature du calcul a effectuer (addition, soutraction, etc),

2. la séquence de microactions a effectuer pour récupérer les opérandes et stocker le résultat
ou

3. le type d’emplacement (registre, constante incluse dans I'instruction, emplacement mémoire
dans une section de donnée) choisi pour le résultat et les opérandes, ce qui définit implicite-
ment la séquence de microactions a effectuer pour y accéder,

4. les numéros de registres utilisés,
5. les constantes adresses des variables stockées en mémoire (exemple 100004 pour m2),

6. les constantes valeurs utilisées dans I'affectation (par exemple 12345678).

Les variantes possibles pour définir les informations autres que la nature du calcul corres-
pondent aux différents modes d’adressage.

4.1.4 Exécution : une séquence de microactions

Les actions élémentaires (ou microactions) réalisables par le matériel de la machine sont les
suivantes :
calcul interne : affecter a un registre du processeur un nouveau contenu calculé a partir du
contenu des registres du processeur.
— lire dans la mémoire : copier dans un registre du processeur le contenu d’un emplacement
mémoire (dont I'adresse est spécifiée par le contenu d’un registre)
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écrire dans la mémoire : copier le contenu d’un registre du processeur dans un emplacement
mémoire (dont I'adresse est spécifiée par le contenu d’un registre du processeur)

Dans une machine simple, chaque microaction correspond a un cycle d’horloge.

Dans la description des affectations, les rien,, désignent des registres du processeur utilisés
pour le stockage temporaire d’informations (autres que les variables déclarées du programme C).

L’affectation r6 = r7 - 18 effectue les actions élémentaires suivantes :

L

lire en mémoire (dans la section text) chacun des mots spécifiant la nature de I'instruction,
affectuer la soustraction entre les registres internes au processeur.

"affectation C r7 — r8 - 11112222 implique une microaction supplémentaire :

lire en mémoire (dans la section text) chacun des mots spécifiant la nature de 'instruction,
lire en mémoire (dans la section text) la constante 11112222 incluse dans I'instruction et la
stocker dans un registre r.empl,

faire la soutraction entre les registres internes au processeur.

L’affectation C m3 = m1 - m2 réalise davantage de microactions :

lire en mémoire (dans la section text) chacun des mots spécifiant la nature de I'instruction
lire en mémoire (dans la section text) la constante 00100000, et la copier dans un registre
Ttemp11 du processeur ,

stocker Mem|[ryemp1| dans un registres ryepmpo @ il s’agit d’une lecture en mémoire (dans la
section de donnée) du contenu de m1 (en 'occurence l'entier 55667788),

lire en mémoire (dans la section text) la constante 00100004, et la copier dans un registre
Ttemps d1 processeur,

stocker Mem|repp3] dans un registre 74epmpa : lecture en mémoire (dans la section de donnée)
du contenu de m2 (en 'occurence 'entier 11223344),

faire la différence 7yemps — Ttempa (s0it 44224444) entre ces deux contenus et la stocker dans
un registre riempe,

lire en mémoire (dans la section text) la constante 00120000, et la copier dans un registre
Ttemps dU processeur,

écrire remp6 dans Mem[120000| : écriture en mémoire (dans la section de données) du
nouveau contenu de m3.

L’instruction C m1 = m2 - 12345678 demande une étape de moins :

lire en mémoire (dans la section text) chacun des mots spécifiant la nature de I'instruction
lire en mémoire (dans la section text) la constante 00100004, et la copier dans un registre
Ttemp11 du processeur ,

stocker Mem|[ryemp1| dans un registres 7yepmpo @ il s’agit d’une lecture en mémoire (dans la
section de donnée) du contenu de m2 (en 'occurence 'entier 11223344),

lire en mémoire (dans la section text) la constante 12345678, et la stocker dans un registre
Ttempa d1 processeur,

calculer riemp2 — Tempa et ranger le résultat dans le registre 7emps,

lire en mémoire (dans la section text) la constante 00120000, et la copier dans un registre
Ttemps dU processeur,

écrire remp6 dans Mem|120000| : écriture en mémoire (dans la section de données) du
nouveau contenu de m3.
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Memoire centrale

Adresses Contenus
|
processeur
| etat (NZCV)
| pc
- -"| 6 |l

|

|
tAnT U=
:___4r8 I O :

| temp1 |

| rtemp2 |

100000

100004
text (instructions)

data (fichier executable) . :
120000 contenude m3: 0 V=

N

bss (0O par defaut)

F1Gg. 4.1 Registres et contenu de la mémoire : text, data et bss

4.2 Notion de mode d’adressage

Le compteur ordinal repére! I'instruction machine courante, composée d'un ou plusieurs mots,
généralement stockée dans la section text. Le premier mot de l'instruction contient le code opé-
ration de l'instruction (ou un préfixe spécifique & une famille d’instructions additionnelles? ). Ce
dernier définit la nature du calcul effectué et le mode d’accés aux opérandes et au résultat. Selon
les modes d’accés utilisés, il est éventuellement suivi d’informations d’adressage complémentaires.

4.2.1 Meéthodes d’adressage

L’information d’adressage peut étre omise lorsque la méthode d’accés est définie par conven-
tion. C’est par exemple le cas d’une instruction "empiler" utilisant systématiquement le registre
sommet de pile. On parle alors d’adressage implicite.

L’instruction peut spécifier un registre a usage général. L’information d’adressage se limite a
un numéro de registre. Il s’agit le plus souvent d’'un nombre entier codé sur 3 a 5 bits, les proces-

Lcontient I’adresse de

2Les concepteurs de processeurs ont parfois recours & la surcharge de code opération pour ajouter de nouvelles
instruction (calcul graphique, vectoriel, extension d’instructions a des entiers sur 64 bits, etc), via un préfixe (un
code opération inaffecté dans le jeu d’instruction initial) modifiant la signification du code opération qu'il précede.
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seurs étant majoritairement dotés de 8, 16 ou 32 registres généraux. Cette taille réduite permet
généralement de 'encoder dans le méme mot que le code opération.

En mode registre indirect, le registre repére le contenant en mémoire : il contient I'adresse
a laquelle est stocké 'opérande ou le résultat. En mode registre direct, 'opérande est stocké
dans le registre : le registre est le contenant.

L’utilisant du compteur ordinal (pc) en mode indirect permet d’accéder au contenu (de la sec-
tion text) d’un emplacement mémoire voisin du code opération de I'instruction. Il est commode
de stocker une constante immeédiatement derriére le code opération de I'instruction.

Dans le cas d’un adressage dit immeédiat (souvent noté avec un caractére #) cette constante
est l'opérande de 'instruction de calcul®. L’adressage immédiat permet de gérer des calculs sur
des constantes. La taille de I'information d’adressage est celle de la constante (typiquement un
mot).

Si Padressage est de type absolu (ou direct mémoire) cette constante est 1’adresse mémoire
du contenant et pointe 'opérande. La taille de I'information d’adressage est alors celle d'une
adresse, soit un mot (32 bits pour un processeur ARM). L’adressage absolu permet d’accéder a
des variables ordinaires stockées en mémoire.

Les adressages de type indexé et base plus déplacement sont des variantes du type registre
indirect utiles pour 1’accés aux élements d’un tableau ou aux membres d’'une struture. Ils défi-
nissent l'adresse de I'opérande comme la somme d’'une constante et du contenu d’un registre ou
la somme du contenu de deux registres.

L’adressage relatif est une variante d’adressage indexé utilisant le registre compteur ordinal.
Il est rarement utilisé pour accéder a des contenus de variables*. Il est principalement utilisé pour
définir la cible des branchements par rapport a 'emplacement de 'instruction de saut.

4.2.2 Notations et exemple

Il n’existe pas de syntaxe universelle respectée par I’ensemble des langages d’assemblages, en
particulier pour les notations des modes d’adressage. Nous définirons donc notre propre notation
pour la suite de ce document.

Pour I'adressage registre direct, nous écrirons simplement le nom du registre. Pour I'adressage
immédiat, nous utiliserons le caractére # suivi de la constante immédiate.

Nous utiliserons une paire de crochets pour décrire les autres modes d’adressage explicites. Les
crochets contiennent une liste d’éléments séparés par des virgules. L’addition de ces éléments défi-
nit I'adresse de I’emplacement mémoire accédé. Ainsi, 'adressage (absolu) d’une variable stockée
a l'adresse 12 se note [12|. L’adressage (registre indirect) d’une variable pointée par le registre r3
s’écrit [r3].

[llustrons cette syntaxe par quelques exemples en supposant que les instructions de calcul du
processeur offrent un large choix de modes d’adressage :

Q@ r6 = r7 - r8

3L’adressage immédiat n’est pas applicable au résultat qui n’est pas une constante.
4Excepté pour écrire des programmes qui ne dépendent pas de ’endroit ot ils sont chargés en mémoire
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sub r6, r7, r8 Q@ (reg dir, reg dir, reg dir)

@m3 = ml - m2
sub [120000], [100000], [100004] @ (abs, abs, abs)

@ r7 = r8 - 11112222
sub r7, r8, #11112222 Q@ (reg dir, reg dir, imm)

Q@ ml = m2 - 12345678
sub [100000], [100000], #12345678 @ (abs, abs, imm)

@ un autre exemple de modes d’adressages
add [r1], [r2,r3], [r2, 12] @ (reg ind, index, base+depl)

La derniére instruction spécifie de retrancher le contenu de la mémoire dont I’adresse est donnée
par le contenu du registre r2 auquel on ajoute 12 (adressage base plus déplacement), du contenu
de la mémoire dont 'adresse donnée est la somme des contenus des registres r2 et r3 (adressage
indexé), et de stocker le résultat dans I'emplacement mémoire pointé par rl.

Le contenu de la section text correspondant aux quatre premiéres instructions ce programme
est décrit sur la figure 4.1. Le code opération de chaque instruction occupe un mot. Celui de la
deuxiéme instruction est suivie dans la section text des trois adresses (de m3, m1 et m2) et celui
de la quatriéme des deux adresses (de ml et m2) et de la constante immeédiate. L’instruction
d’addition finale pourrait occuper deux mots : un code opération et la constante 12.

4.3 Jeux d’instructions CISC et RISC

4.3.1 Approche CISC

Dans I"approche qualifiée de CISC (Complex Instruction Set Code), chaque instruction de cal-
cul offre une un large choix de modes d’adressages, ce qui permet de manipuler directement des
variables rangées en mémoire.

Chaque instruction de calcul existe en autant de variantes que de combinaisons de choix de
modes d’adressage pour et les opérandes gauche et droit. La complexité réside dans la combina-
toire de choix : avec 8 modes d’adressages on peut déja définir de 'ordre de 500 variantes® de la
méme instruction d’addition, avec des tailles et des durées d’exécution différentes.

L’affectation r6 = r7 - r8 est réalisable en une seule instruction machine de soustraction. Cette
derniére n’utilise que I'adressage registre direct et n’occupe qu’un mot (le code opération). Elle
effectue un cycle d’accés mémoire (un en section text et aucun accés en section de données).

L’affectation m3 — m1 - m2 est réalisable en une seule instruction machine n’utilisant que le
mode d’adressage absolu. Cette derniére occupe quatre mots (le code opération et les 3 adresses
1000000, 10004 et 120000) et correspond a sept cycles d’accés a la mémoire (4 dans la zone text
et 3 dans la section de données).

57x8x8, I’adressage immédiat étant disponible pour les opérandes et exclu pour le résultat
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4.3.2 Approche RISC : load/store et calcul sur les registres

La stratégie RISC (Reduced Instruction Set Code) consiste au contraire a contraindre fortement
le choix de modes d’adressage. Le principe est de disposer d’un ensemble minimal d’instructions
de taille fixe réalisant chacune des actions trés élémentaires. Le programmeur décrit l'accés a
ses données par une séquence d’instructions simples plutdot qu’'une instructions dotée de modes
d’adressages sophistiqués.

Dans une machine RISC typique, les instructions de calcul sont codées sur un seul mot et ne
travaillent que sur les contenus des registres (adressage registre direct imposé). Leur durée appa-
rente® est d’un cycle d’horloge.

Une instruction load (que nous noterons 1dr : LoaD Register) lit le contenu d’un emplacement
mémoire et le copie dans un registre du processeur. Une instruction store (que nous noterons
str : STore Register) écrit une copie du contenu d’un registre dans un emplacement mémoire. Les
modes d’adressages disponibles sont registre indirect et immeédiat”.

Les approches CISC ou RISC correspondent a deux "granularités" différentes de description
des actions a réaliser : séquence courte d’instructions machines complexes et puissantes décrivant
chacune une (potentiellement) longue suite de microactions ou séquence plus longue d’instructions
simples décrivant chacune une action relativement élémentaire.

Un jeu d’instructions RISC n’est pas plus restrictif qu’un jeu d’instructions CISC : toute
instruction de calcul CISC, quelle que soit la variante de modes d’adressage utilisée, admet une
séquence d’instructions RISC équivalente.

4.3.3 Exemple de programme pour une machine RISC

Reprenons I’'exemple pour notre jeu d’instructions dans la philosopie RISC.

@ r6 = r7 - r8
sub r6, r7, r8 @ idem CISC avec adressage registre direct

@m3 = ml - m2

1dr r1, #100000 rl = 1000000
ldr r2, [ri] r2 = contenu de ml1 (Mem[1000000])
1dr 1r3, #100004 r3 = 1000000

ldr r4, [r3]
sub 10, r2, r4d
1dr «rb5, #120000
str r0, [r6]

r4 = contenu de m2 (Mem[1000000])
r0 = ml - m2

r5 = 1200000

m3 (Mem[1200000] = ml1 - m2

@ 0 © © © © ©

@ r7 = r8 - 11112222
1ldr 1rO, #11112222
sub r7, r8, r0

@ ml = m2 - 11223344
1dr ri1, #100004 @ ri
ldr r2, [ri] @ r2

1000004
contenu de m2 (Mem[1000004])

6cf le fonctionnement pipeline
“immédiat : uniquement pour load
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1dr 1r3, #11223344 @ r3 = la constante

sub r4, r2, r3 @r4d =ml - m2

1dr r5, #120000 @ r5 = 1200000

str r4, [r5] @ m3 (Mem[1200000] = ml1 - 11223344

Dans la section text, le code opération de chaque instruction occupe un mot. Pour une ins-
truction de type ldr immédiat, le mot suivant le code opération contient la constante immeédiate.
Toutes les autres instructions sont codées sur un seul mot.

4.3.4 Taille des opérandes et choix du type de variables entiéres

Les calculs peuvent porter sur des variables stockées en mémoire de tailles diverses, allant de
loctet (char) au mot complet (long).

La famille 680x0 illustre une philosophie CISC : chaque instruction de calcul existe en autant
de variantes que de tailles d’entier supportées.

La famille ARM illustre une approche opposée commune a de nombreux processeurs RISC.
L’instruction load effectue une conversion au format 32 bits lors de la lecture en mémoire de va-
riables entiéres de format inférieur au mot. Tous les calculs sont réalisés entre registres, sur des
mots complets. L’instruction store réalise une réduction de format et tronque les bits de poids
fort du résultat lors de I’écriture en mémoire du contenu d’un registre dans une variable de taille
inférieure.

Un processeur RISC 32 bits typique offrira donc huit instructions d’accés a la mémoire : ldr
(entiers 32 bits), Idrh et ldrsh (entiers 16 bits naturels et signés), ldrb et ldrsb (entiers 8 bits
naturels et signés), str, strh, strb. A noter : la distinction entre entiers naturels et signés ne
s’applique qu’a I’extension a 32 bits du format de I'entier, donc uniquement a I'instruction 1dr.

L’approche RISC a cependant un petit inconvénient si le processeur n’est pas doté d’une paire
d’indicateurs C et V (et d’un jeu de branchements conditionnels pour les tester) spécifiques a
chaque taille d’opérande. C’est le cas du ARM, dont les indicateurs C et V ne sont significatifs
que dans le cas d’un calcul sur des entiers de la taille du mot.

Pour que C et V du processeur ARM signalent les débordements correspondant effectivement
a un calcul sur 8 (respectivement 16) bits, le programmeur peut décaler les opérandes a gauche
de 24 (respectivement 16) bits, réaliser I'opération, puis décaler de 24 (respectivement 16) bits a
droite le résultat.

Notons que pour respecter la compatilibité le jeu d’instructions 32 bits, les concepteurs de la
version 64 bits du SPARC ont choisi de la doter d’indicateurs et d’instructions de branchement
distincts pour les modes 32 et 64 bits.

4.3.5 Choix du type des variables entiéres

Lors de la traduction de son algorithme en langage C, le programmeur doit choisir le type
(naturel ou signé) et la taille de ses variables entiéres .

Le type unsigned est destiné aux grandeurs qui ne prennent pas de valeur négative : age d’une
personne, date, indice de boucle de parcours de tableau, adresse d’une variable (pointeurs), etc. Il
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permet de représenter des valeurs entiéres maximales doubles de celles de type signé.

La taille des variables logées en mémoire peut étre ajustée au plus prés des besoins pour ré-
duire la consommation de mémoire du programme. Pour les variables stockées dans des registres,
I’argument ne tient plus et on pourra faire I'impasse sur les sous-multiples du mot.

Il convient de garder a l'esprit que les intervalles de valeurs entiéres codables sur 8 et 16 bits
sont sévérement limitées (cf tableau 1.8). L’éventail de valeurs représentables sur 32 bits peut
sembler important et mettre le programmeur a l’abri des débordements. La lecture d’un journal
financier donnant la capitalisation boursiére de sociétés cotées dissipera vite cette illusion : celles
dont le capital dépasse les 4 milliards ne sont pas rares.

Les anciennes architectures travaillant sur 16 bits ont disparu des postes de travail® parce
qu’incapable de gérer plus de 64 Koctets de mémoire. Pour les mémes raisons que a 1’époque des
machines a 16 bits, la migration progressive de 32 bits a 64 bits est en cours : aujourd’hui, des
serveurs dotés de plus de 4 Goctets de mémoire centrale sont disponibles & un coftit raisonnable
dans le commerce.

Le risque de débordement est nettement plus faible sur 64 bits : les grandeurs utilisées dans la
vie courante susceptibles de dépasser 10'® sont rares. Sur 64 bits, le choix entre entiers naturels et
signés est moins crucial.

4.3.6 Mise a jour des indicateurs arithmétiques

Pour certaines opérations, il est important de tester ’absence de débordement ou la nullité du
résultat. Il est alors indispensable que U'instruction de calcul mette a jour les indicateurs (ZNCV)
a partir desquels une décision sera prise. Ce genre de décision correspond souvent a la traduction
d’une condition d’une construction algorithmique, du genre if (a <= b) ....

Ce genre de test est en revanche rarement effectué sur certains types de calcul, tels que les
calculs d’adresse pour l'indicage des tableaux.

La majorité des machines RISC laisse le choix de mettre a jour les indicateurs ou non et offre
deux variantes de chaque instruction de calcul. Les instruction addS (ARM) et addce (SPARC)
mettent a jour le registre d’état. L’instruction add (ARM et SPARC), au contraire, laisse les in-
dicateurs inchangés.

Seules instructions de calcul sans mise a jour des indicateurs peuvent étre librement insérées
entre un branchement conditionnel et la comparaison a partir de laquelle le branchement prend
une décision.

Les machines CISC n’offrent généralement pas cette souplesse et la liste des indicateurs modi-
fiés est définie instruction par instruction par le concepteur du jeu d’instructions. Cette restriction
économise un bit dans le code opération (souvent limité a 8 ou 16 bits).

8Mais sont encore utilisées dans des systémes embarqués
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4.4 Jeux d’instructions limités a un ou deux opérandes

Les concepteurs de jeux d’instructions ont été confrontés a la taille du code opération, qui
dépend du nombre de registres, de modes d’adressages utilisables et de type de calculs réalisables.

Considérons un processeur doté de 32 registres, supportant 16 variantes de modes d’adressage
et capable de réaliser 32 types d’opérations différentes. Supposons qu’il soit doté d’un jeu d’ins-
tructions dit a trois opérandes (opérandes gauche et droit, résultat). La taille minimale du code
opération d’un tel processeur est de 5 bits (nature du calcul) plus 4 bits de mode d’adressage et
5 bits de numéro de registre® par opérande, soit 32 (3x9-+5) bits.

Dans le passé, la taille et le débit de la mémoire étaient sévérement limités. Les concepteurs de
processeurs ont alors cherché a concevoir un encodage des instructions trés compact en restreignant
le choix des modes d’adressage et/ou en ne spécifiant pas tous les opérandes de maniére implicite.

4.4.1 Le 68000 : exemple d’instructions & deux opérandes

Examinons a titre d’exemple les contraintes appliquées au jeu d’instruction de la famille 680x0
pour que la taille du code opération soit de 16 bits.

Les instructions de calcul ne spécifient que I'opérande gauche et I’'opérande droit. Une conven-
tion implicite spécifie que le résultat est stocké a la place de I'opérande gauche. Toutes les opé-
rations sont alors de la forme destination = destination opération source (ce qui correspond aux
opérateurs +=, -=, *=_ ... du langage C). L’initialisation de la destination est réalisée par une
instruction move qui réalise une simple copie de la source vers destination.

Il existe un deuxiéme restriction' : 'adressage d’au moins un des deux opérandes (source ou
destination) est de type registre direct (parmi 8 registres de données).

Le code opération sur 16 bits des instructions de calcul est structuré comme suit :

— 4 bits spécifient la nature de I'instruction (type de calcul)

— 2 bits si le calcul porte sur des entiers de 8, 16 ou 32 bits,

— 3 bits encodent le numéro du registre,
1 bit spécifie si le numéro de registre précédent correspond a l'opérande source ou a la
destination,
6 bits (3 pour encoder le mode d’adressage parmi 8 et 3 autres pour le numéro du registre
éventuellement utilisé par le mode d’adressage) spécifient le mode d’adressage de 'autre
opérande.

Avec la syntaxe de description des modes d’adressage que nous avons définie dans ce chapitre'!,
les quatre affectations de notre exemple seraient traduites en dix instructions 68000. Le sufixe 1
indique une taille de calcul de 32 bits.

move.l d6, d7 @ destination a gauche : reg_d6 <- reg_d7

sub.1l d6, d8 @ reg_d6 <- reg_d6 - reg_d8 (reg direct x 2)
move.1l [120000], [100000] @ m3 <- mil (absolu, absolu)
move.l do, [100004] Q@ reg_d0 <- m2 (red direct, absolu)

9Pour les modes d’adressage spécifiant explicitement un registre
10Cette restriction ne s’applique pas & I'instruction move
" Les assembleurs 68000 disponibles dans le commerce utilisent des notations différentes
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sub.1l [120000], dO @ m3 <- m3 - reg_d0 (absolu, reg direct)
move. 1 d7, d8 @ 47 <- d8 (reg direct, reg direct)
sub.1 d7, #11223344 @ d7 <- d7 - cte (reg direct, immediat)
move.l [120000], [100000] @ m3 <- mi (absolu, absolu)

move.l do, 100004 Q@ reg_d0 <- m2 (red direct, absolu)
sub.1l [120000], dO @ m3 <- m3 - reg_d0 (absolu, reg direct)

4.4.2 Machines & accumulateur : instructions a un opérande

Les microprocesseurs 8 bits des années 70 étaient doté d’un registre de travail unique appelé
accumulateur et éventuellement d’un ou deux registre(s) d’index utilisé avec les modes d’adressage
de type registre indirect.

Par convention implicite, les instructions de calcul sont de la forme accu = accu opération opérande
et le code opération spécifie un seul mode d’adressage (pour l'opérande droit).

Le code opération est un octet, dont on peut utiliser par exemple 3 bits pour choisir un mode
d’adressage de l'opérande droit parmi 8 possibles, et 5 bits pour spécifier un type d’opération
parmi 32.

L’instruction load effectue une lecture de la mémoire et la copie dans 'accumulateur. L’ins-
truction store écrit dans la mémoire et y copie le contenu de 'accumulateur. Le fragment de code
ci-dessous illustre la traduction des affectations de variables m1 et m3.

La traduction de notre d’exemple (toujours avec les méme notations de mode d’adressage) n’a
de sens que pour les variables stockées en mémoire (en 1'absence de registres de travail utilisables
pour stocker les variables).

@m3 = ml - m2

load [100000] @ accu = contenu de ml (absolu)
sub [100004] @ accu = accu - contenu de m2 (absolu)
store [120000] @ m3 <- accu (absolu)

Q@ ml = ml1 - 12345678

load [100004] @ accu = contenu de m2 (absolu)
sub #12345678 @ accu = accu - 12345678 (immédiat)
store [100000] @ ml = accu (absolu)
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Chapitre 5

Réservation et initialisation de la mémoire

5.1 Notion d’étiquette et de fichier relogeable

5.1.1 Notion d’etiquette

L’utilisation d’adresses numériques rend notre exemple de programme machine présenté au
chapitre 4 difficile a lire. Considérons a titre d’exemple sub [120000], [100000], [100004] : le
lecteur doit consulter en permanence la table des adresses auxquelles sont rangées les variables
pour remonter de cette instruction machine a I'instruction C d’origine m1 = m2 - m3.

Les erreurs de transcription des adresses numériques sont tout aussi difficiles & repérer : si
la premiére adresse est accidentellement remplacée par 1200000, la présence d'un chiffre a zéro
excédentaire dans la constante adresse risque fort de passer inapercue.

Le langage d’assemblage permet de définir des étiquettes. Une étiquette permet d’associer un
nom symbolique & une adresse. Lors de I’assemblage, 1’assembleur sustituera chaque utilisation de
I’étiquette (comme opérande d’une instruction ou d’une directive de réservation de mémoire) par
I’adresse numérique associée a 1’étiquette.

5.1.2 Notion de programme relogeable

Le fichier exécutable décrit le contenu initial que devra avoir la mémoire a l'instant auquel
I’exécution du programme sera lancée. Programmer en langage d’assemblage revient a décrire,
dans 'ordre croissant des adresses, le contenu initial des sections text et data.

La description de la section text débute par la directive text et celle de la section data par la
directive data. Chaque ligne contenant une directive de réservation de mémoire décrit le contenu
d’un ou plusieurs octets et définit éventuellement une étiquette.

Ce contenu inital de text et data peut dépendre des adresses auxquelles sont placées les sections
text, data et bss et le contenu initial de tous les mots contenant une adresse dans ces sections est
a modifier si I'implantation des sections dans la mémoire centrale change.

Dans la section text, il peut s’agir d’une instruction CISC utilisant un mode d’adressage ab-
solu! pour accéder au contenu d’une variable stockée dans la section data (ou bss) : un des mots
de l'instruction machine contient I’adresse mémoire de la variable.

lou d’une séquence équivalente d’instructions RISC
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Dans la section data, ce cas figure correspond généralement a une variable pointeur initialisée
dans sa déclaration avec ’adresse d’une autre variable.

A titre d’exemple, le contenu de la section text de 'exemple détaillé figure 4.1 n’est valable
que pour une exécution telle que les sections data et bss débutent aux adresses 100000 et 120000.
Si la section bss débutait a 'adresse 140000, tous les adresses 120000 (correspondant a 'adresse
de m3) contenues dans les instructions de la section text devraient étre remplacées par 140000.

Il existe au moins trois cas de figures tels que les adresses des sections text, data et bss ne sont
pas connues du programmeur au moment de 1’assemblage du fichier.

Le programme peut étre congu pour étre exécuté sur plusieurs machines dans lequelles I'inter-
valle d’adresses correspondant a la mémoire vive utilisable varie d’une machine a 'autre. Il s’agit
alors d’un probléme de portabilité entre machines.

D’autre part, le programme peut étre écrit sous la forme de modules compilés séparément
et fusionnés en un fichier binaire exécutable unique lors d’'une étape d’édition de liens. Méme si
I’adresse de début des sections est connue a 'avance, ’adresse a laquelle une variable sera stockée
a I'intérieur de sa section dépend de 'ordre dans lequel la fusion est effectuée.

Le programme peut aussi étre destiné a un systéme multitache dans lequel I’espace mémoire est
partagé entre plusieurs programmes en cours d’exécution. L’adresse de chargement d’une section
du programme est susceptible de varier d’une exécution a I’autre, en fonction de ce que le systéme
d’exploitation aura alloué aux autres programmes.

Les assembleurs et compilateurs générent donc un fichier binaire dit relogeable, dans lequel
tous les emplacements dont le contenu initial dépend de I'adresse de chargement d’une section
sont repérés.

Le systéme d’exploitation et la chaine de compilation collaborent de telle sorte que le contenu
du fichier relogeable est corrigé lorsque les adresses des sections text, data et bss sont connues.
Au plus tard, cette correction, appelée réimplantation, est effectuée juste avant 'exécution de la
premiére instruction du programme.

Outre une lisibilité accrue du code, le mécanisme d’étiquette permet au programmeur de spé-
cifier une adresse dans une section, méme si I’adresse de début de section n’est pas encore connue
a I’assemblage.

5.2 Reéservation et initialisation de mémoire dans data

5.2.1 Directive byte et définition d’étiquette

La directive byte permet de réserver de la place et de spécifier la valeur initiale d'un octet.
Chaque directive de réservation peut petre précédée d'une définition d’étiquette, auquel cas le
nom de 'étiquette apparait en début de ligne, suivi de deux points (caractére :). La valeur initiale
doit étre une constante entiére codable sur 8 bits.

L’exemple ci-dessous décrit une table des 6 premiére puissances de 2, codées chacune sur un
octet, suivie de 254 et 255 et du code ASCII de "A’ et de 'B’.

ASCII_DE_B = 0x42
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.data
debut_tab: .byte 1
.byte 2
.byte 4
huit: .byte (1 << 3) @ 1 << 3 : la constante 8
fin_tab: .byte 0x10 @ meme effet que .byte 16
.byte 254 @ 254 pris comme entier naturel
.byte -1 @ -1 pris relatif équivalent a 255
.byte A’ @ ’A’ signifie 0x41
.byte ASCII_DE_B @ meme effet que .byte 0x42

La troisiéme ligne de I'exemple définit une étiquette : elle associe le nom d’étiquette debut tab
a l'adresse du premier octet de la section data. La directive .byte 1 réserve ce premier octet et
spécifie que son contenu initial est 1.

La quatriéme ligne spécifique le contenu initial (2) du deuxiéme octet de la section data, et
ainsi de suite. La sixiéme ligne associe le nom d’étiquette huit a ’adresse de la section data plus
3 (adresse de 'octet initialisé a 8). De méme, la derniére ligne définit I'étiquette fin tab comme
I’adresse de la section data, plus quatre.

La valeur initiale peut étre une constante numérique ou une expression ne contenant que des
constantes. La directive = ne réserve pas de place, mais permet de donner un nom symbolique a
une constante : I'assembleur remplacera chaque occurence ultérieure du symbole ASCII DE B
par 0x42. Son équivalent C s’écrirait #define ASCII DE B 0x42.

5.2.2 Directive word et utilisation d’étiquette

La directive word permet de réserver de la place et spécifier une valeur initiale pour un mot.
Elle équivaut a une séquence de quatre? directives .byte spécifiant chacune un octet du mot?.
L’opérande de .word est une constante numérique ou une étiquette.

.data
debut: .word 1234
adr_x: .word O @ int x = 0
adr_ptr_x: .word adr_x @ int *ptr_x = &x

La ligne .word 1234 réserve quatre octets et les initialise a la valeur entiére 1234 (codée sur
32 bits). La troisiéme ligne associe a I'étiquette adr_x I’adresse de début de la section data, plus
quatre et réserve de la place pour un mot, initialisé a 0.

La derniére ligne définit I'étiquette adr ptr x comme 'adresse de la section data, plus huit.
Elle réserve un mot dont le contenu est 1’adresse de la section data, plus 4. Notons au passage que
nous aurions pu remplacer I'opérande adr _x de la directive .word par debut + 4.

Si la section data débute a I'adresse 20001y (respectivement 4000), le troisiéme mot est stocké
a Padresse 2008;, (respectivement 4008) et son contenu initial est 2004 (respectivement 4004).
L’étiquette adr x est un nom symbolique de I'adresse du deuxiéme mot de la section data (soit
2004 ou 4004 selon I'adresse a laquelle débute la section data).

2pour une machine 32 bits
3en tenant compte de I'ordre de stockage des entiers en mémoire, cf 3.2.3
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5.2.3 Directive .short

Outre byte et word, il existe une directive pour chaque autre sous-multiples du mot. Pour
réserver des paquets de 16 bits, le langage d’assemblage GNU pour ARM supporte la directive
.short (synonyme .hword).

5.3 Réservation et initialisation de mémoire dans text

Il est possible de décrire tout un programme avec les directives byte, short et word, utilisables
de la méme maniére dans les sections text et data.

La section text est habituellement réservée aux constantes® et aux instructions.

Le programmeur peut écrire chaque instruction machine sous forme symbolique. L.’assembleur
se charge alors de convertir cette description symbolique en une séquence équivalente d'une ou
plusieurs directives .word décrivant chacune un mot de la représentation en binaire de I'intruction.

L’exemple suivant calcule dans r3 le quadruple de la valeur de r2, plus 2. La deuxiéme instruc-
tion (add r3, r3, #1) incrémente r3 de 1. Elle est ici décrite par son code en hexadécimal, via
une directive .word. Réciproquement, a la place de la derniére instruction, nous aurions pu utiliser
une directive .word spécifiant son code machine (0xe2833003 pour add r3, r3, r3).

@ calcul de 4r2 +2

.text
fois2: add r3, r2, r2 Q@ r3 <- 2 xr2
plus_un: .word 0xe2833001 @ ou add r3, r3, #1 : r3 <-r3 + 1
re_fois2: add r3, r3, r3 @ ou .word 0xe2833003

Notons qu'’il est possible d’associer plusieurs étiquettes & la méme adresse, ce qui est trés
utile dans la traduction des contructions algorithmiques. Dans I'exemple suivant, les étiquettes
corps while et debut if (respectivement fin if et test while) sont toutes les deux associées a
Iadresse de la section text plus quatre (respectivement plus 24).

b test_while @ x : r0
corps_while: @y :ril
debut_if: cmp r0, ri @ while (x !'= y)

ble sinon @ if (x > y)
alors: sub r0, r0, ri 6] X=X -Y;

b fin_if @ else
sinon: sub rl, r1, r0 @ y =Y - X;
fin_if:
test_while: cmp r0, ril

bne corps_while

5.4 Reéservation de mémoire sans valeur initiale

La directive .skip permet de réserver n octets consécutifs. Elle ne specifie pas de valeur ini-
tiale : les octets seront implicitement initialisés a 0.

“4Les constantes peuvent cohabiter avec les instructions dans la section text, ou étre regroupées dans une section
de données initialisées protégée contre les écritures (rodata).
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La directive skip est utilisable pour toutes les déclarations de variables en mémoire sans initia-
lisation. Voici un exemple de réservation de place pour deux variables entiéres x et y sur 32 bits
et 2 variables a et b sur 16 bits.

.data
adr_x: .skip 4 @ long int x
adr_y: .skip 4 @ long int y
adr_a: .skip 2 @ short int a
adr_b: .skip 2 @ short int b

Le méme effet aurait pu étre réalisée avec une seul directive skip spécifiant 12 octets, mais ne
permettrait pas de définir une étiquette pour chaque emplacement.

5.5 Alignement

Considérons 'ensemble de déclarations de variables C suivant.

¢ .data
short int s1 = 0x1234; Q@ si: .short 0x1234
char c1 = ’a’; Q@ ci: .byte ‘a’

@ sauter ici 3 octets pour X4
long int 1 = 0x12345678; Q@ 1: .word 0x12345678
char c2 = ’b’; Q@ c2: .byte ’b’

@ sauter ici 1 octet pour X2
short int s2 = 3; Q@ s2: .short 3

Prise individuellement, chacune des déclarations C est facile a traduire en langage d’assem-
blage, comme le montrent les commentaires. En revanche, la traduction de 1’ensemble pose un
probléme d’alignement des demi-mots et des mots (qui doivent étre stockés a des adresses respec-
tivement paires et multiples de 4).

Supposons que la section data débute & une adresse multiple de 4 (donc une adresse A telle
que A — 4X). La variable C1 sera stockée a une adresse paire (4X+2) et | sera a I’adresse suivante
(4X+3), qui n’est pas multiple de 4. Il existe un probléme potentiel d’alignement chaque fois
qu’une variable est suivie en mémoire par une autre variable d’une taille supérieure (short aprés
byte, word aprés byte ou short).

Une stratégie consiste a réordonner les déclarations par ordre décroissant de taille pour éviter
tout probléme d’alignement. Cette stratégie présente I'inconvénient de ne pas respecter 'ordre des
déclarations du programme C d’origine.

L’autre technique consiste a sauter le nombre d’octets nécessaires pour rétablir I’alignement.
Dans l'exemple, il convient d’insérer une réservation de 3 octets (.skip 3) entre cl et 1, pour que
I'adresse | redevienne un multiple de 4 | et une réservation d’'un octet (.skip 1) entre c2 et s2 de
telle sorte que l'adresse s2 soit paire.

Supposons que nous insérions apres coup une variable c3 de type char apreés cl : il ne faudra

laisser plus que deux octets d’alignement avant 1. La vérification manuelle des contraintes d’ali-
gnement, fastidieuse, est simplifiée par 'existence d’'une directive d’alignement : .align.
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La directive .align T saute automatiquement le bon nombre d’octets pour aligner I'adresse
de I'objet qui suit align sur un multiple de T. Dans notre exemple initial, il suffit d’insérer une
directive .align 4 (respectivement .align 2) devant tout réservation .word (respectivement .short)
précédée d'une réservation de taille inférieure.

Dans I'exemple initial, la déclaration de 1 sera précédée de .align 4 qui générera I’équivalent
de .skip 3 et celle de s2 suivra .align 2 dont l'effet sera identique a .skip 1.

Attention : pour le processeur ARM, il faut utiliser la variante balign car la directive GNU
align pour ARM aligne sur 2" au lieu de n.

5.6 Reéservation et initialisation de chaines

Les directives .asciz et .ascii permettent de réserver de la place pour les chaines de caractéres,
respectivement avec et sans marque de fin de chaine.

.data
aurevoir: .asciz "bye"

équivalent avec .byte
aurevoir: .byte ’b’

.byte ’y’

.byte ’e’

.byte 0  (ou .byte ’\0’)
salut: .byte ’h’

.byte ’0’

.byte ’p’

salut: .ascii "hop"

© 0 0 0 0 0 0 ©

5.7 Contenu d’un fichier exécutable relogeable et section bss

5.7.1 Contenu d’un fichier objet

Un fichier objet issu de ’assemblage comprend un en-téte, le contenu initial de la section text,
celui de la section data, les tables de réimplantation et une table des symboles.

L’en-téte du fichier contient les rensignements suivant :

des informations spécifiques permettant de reconnaitre le format de fichier exécutable utilisé
(typiquement ELF pour un unix ou linux récent),

— des informations sur la nature de la machine auquel il est destiné (par exemple un ARM 32
bits configuré en mode big endian),
la position respective des tables et des contenus de text et data dans le fichier,
la taille des sections text, data et bss,

— le point d’entrée, autrement la position (dans la section text) de l'instruction par laquelle
I’exécution doit commencer.

La table des symboles recense les définitions des étiquettes. Elle est utilisée par 1’éditeur de
liens lors de la fusion de fichiers compilés séparément ou par les débogueurs (tels que gdb).

Il existe une table de réimplantation pour le contenu de la section text et une pour celui de
data. Ces tables indiquent les corrections & appliquer au contenu initial de text et data en fonction

des adresses de chargement des sections text, data et bss.

Le lancement de ’exécution d’'un programme met en jeu les étapes suivantes :
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ouverture du fichier et lecture de I'en-téte,
allocation de portions de mémoire centrale aux sections text, data et bss,
recopie du contenu initial des sections text et data du fichier exécutable en mémoire centrale

forcage a 0 de tout le contenu de bss

A

application des corrections spécifiées dans les tables de réimplantation au contenus de text
et de data,

6. initialisation du compteur ordinal avec I’adresse du point d’entrée du programme : I'exécution
des instructions du programme commence.

5.7.2 Bss : une section destinée aux variables non initialisées

Le fichier exécutable ne contient pas de copie du contenu initial de bss, qui est implicitement
0 pour tous les octets. L'utilisation des directives byte, short et word dans la section bss est donc
prohibée.

En théorie, on peut se passer de section bss. Toutes les variables (y compris les tableaux)
peuvent étre stockées dans la section data, méme si elles sont déclarées sans initialisation, mais
au détriment de 'espace disque.

En effet, le fichier exécutable contient une copie de la valeur initiale de chaque octet de la
section data, méme si celle-ci est nulle. Supposons que 'on déclare un tableau d’un million d’élé-
ments de type entier 32 bits, sans valeur initiale.

Si le tableau est déclaré dans la section data, le fichier exécutable contiendra une copie du
contenu initial du tableau, donc quatre millions d’octets a 0. Si le méme tableau est déclaré dans
la section bss, I’en-téte du fichier exécutable indiquera simplement que la taille de la section bss
est de quatre mégaoctet. Mais le fichier exécutable ne contiendra pas les quatre millions d’octets a
0 : lors du lancement de I’exécution, le systéme d’exploitation se contentera d’exécuter une boucle
d’initialisation a 0 de la section bss en mémoire centrale.

En théorie, la section bss pourrait ne contenir qu'une unique directive skip spécifiant en une
seule fois la taille totale bss. Il est cependant intéressant d’utiliser autant de directives skip que
de déclarations de variables sans initialisation : cela permet d’associer une étiquette a chaque
emplacement de variable. Ces étiquettes seront utilisées comme contenus des pointeurs de variables
initialisés, présents dans la section data ou dans les instructions de la section text.
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Chapitre 6

Variables et pointeurs, opérateurs * et &

Les variables des programmes C peuvent étre stockées dans les registres du processeur ou dans
la mémoire centrale (dans les sections data ou bss).

Dans le chapitre 2 , nous avons vu comment gérer les expressions et affectations C n’utilisant
que des variables stockées dans des registres du processeur.

La traduction des déclarations de ces variables se limite & de simples commentaires indiquant
quels registres du processeurs sont alloués a quelles variables. Aprés réécriture dans un format C
intermédiaire faisant apparaitre les temporaires, la traduction en langage d’assemblage est triviale,
chaque opération en C se traduisant par une instruction machine de calcul dont les opérandes et
le résultat sont stockés dans des registres.

Ce chapitre détaille au contraire les aspects spécifiques au stockage des variables en mémoire,
la méthode de décomposition des expressions en opérations élémentaires étant supposée acquise.

6.1 Processeur RISC fictif de référence

Sauf précision contraire, nous utiliserons le langage machine et d’assemblage d’un processeur
RISC 32 bits fictif, légerement simplifié par rapport aux familles de processeurs RISC réelles, et
fortement inspiré de la famille ARM. Ce processeur dispose de trente-deux registres généraux de
travail, notés r0 a r31

Toutes les instructions, a I'exception de mov32, sont codées sous la forme d’un mot de 32 bits
encodant la nature de l'instruction, les numéros de registres utilisés et éventuellement une petite
constante entiére. L'instruction mov32 (en fait une instruction load immédiat) charge une entiére
constante quelconque dans un registre. Mov32 occupe deux mots de 32 bits, le deuxiéme contenant
la constante a transférer dans le registre!.

Toutes les instructions de calcul existent en deux versions : avec et sans mise a jour des in-
dicateurs NZCV (exemple : sub sans mise a jour, subS avec). Elles prennent leurs opérandes et
déposent leur résultat dans I'un des seize registres généraux (notés r0 a r15) du processeur. Il
existe une version réduite d’adressage immeédiat pour 'opérande droit qui peut étre au choix un
registre ou une petite constante entiere codée 8 bits.

!Nous détaillerons ultérieurement comment charger une constante 32 bits quelconque dans un registre d'un
processeur SPARC ou ARM, dont toutes les instructions sans exception sont codées sur un seul mot.
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Les instructions arithmétiques permettent de réaliser ’addition, la soustraction et la soustrac-
tion inversée (opérande droit - opérande gauche) avec (addc, sube, rsubc) ou sans (add,sub,rsub)
prise en compte de C comme retenue initiale. Aprés une soustraction, C indique la retenue finale,
comme pour un processeur ARM.

Le jeu d’instructions comprend aussi les décalages logique a gauche (Isl), a droite (Isr) et arith-
métique a droite (asr), ainsi que les opérations bit a bit et (and), ou (or) et ou exclusif (eor).

L’instruction move not (mvn) n’a pas d’opérande gauche. Elle copie le complément a 1 de "'opé-
rande droit dans le registre résultat. Sa variante move (mov) copie sans complémenter. Comme
pour les instructions de calcul, 'adressage immédiat est limité a des constantes codables sur 8 bits.

L’instruction cmp est une forme de subS qui n’utilise pas de registre résultat : elle met a jour
les indicateurs comme la soustraction, mais ne stocke pas le résultat apparent de l'opération dans
un registre.

Les instructions d’accés a la mémoire sont load (1dr) et store (str). L’adresse de load ou store,
notée entre crochets, est la somme ou la diférence entre le contenu d’un registre général d'une part
et le contenu d’un autre registre général ou une petite constante immédiate entiére codable sur
8 bits d’autre part. Cette constante est supposée nulle si les crochets ne contiennent qu'un registre.

La taille des variables stockées en mémoire est le mot ou le sous-multiple du mot, celle des
registres est de 32 bits. La lecture en mémoire des sous-multiples du mot réalise une extension a
32 bits du format de représentation? et I’écriture une réduction par troncature (élimination des
bits de poids forts excédentaires®). Les variantes de tailles pour load et store sont : les mots de 32
bits (ldr, str), les entiers sur 16 bits (Idrh pour les entiers naturels, ldrsh pour les entiers signés,
strh) et les octets (Idrb, 1drsb, strb).

Il existe des variantes de ldr et str avec préincrémentation et postincrémentation, présentées a
la fin de ce chapitre.

Il existe aussi des variantes de load et store sur 32 bits pour effectuer des transferts de contenu
entre une liste ordonnée de registres et un ensemble d’emplacements mémoire contigiis. L utilisa-
tion de ces instructions (ldm et stm) est présenté dans le chapitre 10.

@ Cette instruction range en mémoire les registres

@ rO, r2, r3, r4, rb, r6 et r8 dans une zone mémoire
@ pointée par rl12. Les registres sont rangés par ordre
@ croissant de numéros.

stm {r0, r2-r6, ri10}, [r12]
@ Elle remplace cette suite d’instructions

str r0 ,[r12,#0]
str r2 ,[ri12,#4]
str r3 ,[r12,#8]
str rd ,[ri12,#12]
str r5 ,[ri12,#16]

2ajout en poids fort de 0 pour un entier naturel ou recopie du bit de signe pour un entier signé
3quelque soit la nature de l’entier transféré
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str r6 ,[ri12,#20]
str r10,[r12,#24]

@ Le transfert en sens inverse s’écrit
ldm {r0, r2-r6, ri10}, [r12]

Les instructions de branchement seront détaillées au chapitre 8.

6.2 Traduction des déclarations de variable en mémoire

6.2.1 Exemple de déclarations de variables en C

unsigned char c3 = ’a’
char csli;

unsigned short int si;
short int ssi1, ss2;
unsigned short int s3
unsigned short int s4
short int ss3;
unsigned long int 11, 12;
long int 1s1,182;
unsigned long int 13
unsigned long int 14
long int 183 = -2;

0x1234;
3;

0x12345678;
1;

6.2.2 Principe de traduction

Chaque déclaration de variable C (sans attribut register, donc supposée stockée en mémoire)
sans initialisation est traduite par une directive skip de réservation dans la section bss d’autant
d’octets que la taille du type de la variable.

Chaque déclaration avec initialisation sera traduite par une directive (byte, short, word, ascii,
asciz) de réservation de place dans data spécifiant la valeur initiale de la variable.

Dans les deux cas, la directive de réservation sera accompagnée d’une définition d’étiquette
donnant un nom symbolique a I’adresse de stockage de la variable.

En présence de plusieurs variables, la principale précaution a prendre concerne le respect des
contraintes d’alignement, détaillées au chapitre 5.

Notons que pour la réservation de place, seule la taille (cf 'opérateur C sizeof) de la variable
compte, (la nature de la variable est sans importance). A titre d’exemple la directive .skip 4
réserve un emplacement pour n’importe quelle variable codée sur 32 bits, qu’elle soit de type float,
long int ou unsigned long int, ou encore de type pointeur.

6.2.3 Sections data et bss de ’exemple

Examinons 'application de ce principe sur I’exemple précédent. Chaque directive de réserva-
tion de place peut étre précédée d'une directive d’alignement sur une adresse multiple de sa taille,
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mais cette précaution n’est nécessaire que si la réservation précédente est de taille inférieure.

Notons au passage que 11 étant précédé de 8 octets (char, octet d’alignement, 3 fois short), il
serait naturellement & une adresse multiple de 4.

Rappelons également que si les variables C étaient déclarées dans I’ordre décroissant de tailles,
il n’y aurait aucun octet d’alignement perdu dans data et bss.

.data
adr_de_c3: .byte ’a’
.align 2 @ saute 1 octet devant short qui suit
adr_de_s3: .short  0x1234
adr_de_s4: .short 3
.align 4 @ saute 2 octets devant long qui suit
adr_de_13: .word 0x12345678
adr_de_14: .word 1
adr_de_1s3: .word -2
.bss
adr_de_cs1: .skip 1
.align 2 @ saute 1 octet devant short qui suit
adr_de_ss1: .skip 2
adr_de_ss2: .skip 2
adr_de_ss3: .skip 2
.align 4 @ saute O octet, pourrait &tre omis
adr_de_11: .skip 4
adr_de_12: .skip 4
adr_de_1s1: .skip 4
adr_de_1s2: .skip 4

Pour bien faire apparaitre dans cet exemple que les étiquettes sont des noms symboliques des
adresses des variables, leurs noms sont tous préfixés par adr_de .

6.3 Opérateur &, * et type adresse

6.3.1 Opérateur & : "adresse de"

L’opérateur C & donne I'adresse de son opérande : si v est une variable stockée en mémoire,
&v désigne I'adresse a laquelle est est stockée. En d’autres termes, appliqué a un opérande de type
Mem|adr]|, il permet d’en désigner I'adresse adr.

La déclaration d’une variable C de type T sans attribut register a deux effets :
réserver (et éventuellement spécifier une valeur initiale différente de 0) sizeof(T) unités adres-
sables (donc T octets) et

— associer la constante symbolique &v a I'adresse du premier octet réserveé.

Soit XX le nom d’une variable de notre exemple. Par définition, il est clair que la constante
&XX en langage C et 'étiquette adr _de XX en langage d’assemblage sont deux noms symbo-
liques de ’adresse du premier octet réservé pour stocker XX.
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A titre d’exemple &ssl en C et I'étiquette adr de ssl en langage d’assemblage sont deux
noms symboliques de 'adresse du troisiéme octet de la section bss, (soit 1002 si la section bss
débute a I'adresse 1000).

6.3.2 Affectation et opérateur *

Appliqué a une adresse adr, 'opérateur * permet de désigner le contenant mémoire Mem |adr|
a cette adresse. L’opérande adr peut étre une constante ou une expression (qui sera évaluée pour
calculer 'adresse). L’opérateur unaire® * fonctionne a I'inverse de celui de 'opérateur &.

Une variable var stockée en mémoire peut étre désignée en utilisant 'opérateur * sur son
adresse (&var) et par définition, var est synonyme de*&var. Sa signification est la suivante :
Mem|[adresse de stockage de var].

Une affectation est de la forme membre gauche — membre droit. Membre gauche spé-
cifie un contenant qui prend pour nouveau contenu le résultat de I’évaluation du membre droit. Un
contenant est soit un registre (pour les variables de type register), soit un emplacement mémoire
identifié par son adresse.

Membre droit est une expression composée d’opérateurs de calcul, de constantes et de conte-
nants. L’affectation évalue I'expression en appliquant les opérateurs de calcul sur les contantes et
sur les contenus des contenants appartenant a membre droit.

A titre d’exemple, sl et s3 étant stockées en mémoire, 'affectation s1 = s3 - 2 peut ausi
s’écrire sous la forme C détaillee *&s1 — *&s3 - 2. On pourrait I'écrire plus explicitement
* (short int *) &s1 = *(short int *) &s3 - (short int) 2 pour faire apparaitre les types spé-
cifiés par les déclarations de ssl et ss3.

Cette derniére notation C signifie Meml|adresse de sl| prend pour nouvelle valeur
Mem|adresse de s3] - 2: lire le contenu (entier relatif sur 2 octets) de la mémoire a I'adresse
a laquelle est stockée s3, retancher la constante (entiére sur 16 bits) 2 et écrire le résultat (entier
sur 2 octets) en mémoire a I'adresse a laquelle est stockée sl.

L’opérateur unaire * tout a gauche du membre gauche de I'affectation correspond a une écri-
ture (du résultat de la soustraction) en mémoire (dans la variable affectée).
Le ou les autres opérateurs unaires * présents dans la forme détaillée de 'affectation corres-
pondent a des lectures (du contenu des variables utilisée dans I'expression).

L’affectation prise en exemple pourrait étre traduite en langage d’assemblage par en une ins-
truction CISC de calcul spécifiant un mode d’adressage absolu pour l'opérande gauche ainsi que
pour le résultat et un mode d’adressage immédiat pour 'opérande droit : sub [s1], [s3], #2.

Pour notre processeur RISC fictif, nous devons décomposer le travail en plusieurs étapes :
charger les adresses sl et s3 dans des registres, lire en mémoire le contenu de s3, effectuer la
soustraction, écrire en mémoire le résultat dans sl.

Cette traduction suppose l'introduction de variables intermédiaires de type pointeur, dont nous
allons au préalable présenter la syntaxe de déclaration.

4unaire : & seul opérande

(©Philippe Waille UJF /UFR IMA 6 juillet 2006



74 CHAPITRE 6. VARIABLES ET POINTEURS, OPERATEURS * ET &

6.3.3 Type "adresse de"

Notons que l'opérande * utilise deux informations : 'adresse et le type d’objet a accéder a
cette adresse. Le type d’élément pointé définit le nombre d’octets a lire ou a écrire et la maniére
d’en interpréter le contenu.

Les constantes adresses sont du type "adresse de", mais il existe autant de variantes de types
"adresse de" que de types d’élément adressable.

I1 semblerait logique de noter (& T) le type "adresse d’élément de type T". Cette notation
a été retenue par les concepteurs du langage C-+-+ (extension orientée objet de C) pour le type
"référence & un objet de la classe T".

Les concepteurs du langage C ont préféré noter le type "adresse d’élément de type T" (T *).
La justification de cette notation est la suivante : en appliquant 'opérateur * a une entité de ce
type, on obtient un élément de type T.

Notons que tous les types "adresse de" ont la méme taille : celle d'une adresse, & ne pas
confondre avec la taille de I'objet pointé. Ainsi, pour une machine 32 bits sizeof(char) = 1 et
sizeof(long) = 4, mais sizeof(long *) = sizeof(char *) = 4.

6.3.4 Conversion de type pointeur

Le forceur de type (T *) ne modifie pas la constante adresse ou le contenu du pointeur auquel
il s’applique, mais indique au compilateur de considérer cette adresse comme 'adresse d’une entité
de type T.

Le type (void *) représente le type "adresse d'un élément de type non spécifié". Mais on ne
peut appliquer I'opérateur * sur une variable ou une constante de type (void *) : le type (void *)
doit d’abord étre converti en (T *), T étant un type autre que void.

Soit une primitive d’allocation dynamique de mémoire retournant un pointeur de type void *
ou char * : ce pointeur sera converti en T * lors de ’allocation d’un objet de type T.

6.3.5 Constante NULL

L’opérande de l'opérateur unaire * doit étre 'adresse d’une entité du programme (variable ou
procédure). Elle doit appartenir & une des sections mémoire du programme exécuté (text, data,
bss ou tas® , pile) : une variable stockée dans un registre n’a pas d’adresse.

Y

Le langage C définit un nom de constante adresse invalide : NULL. NULL est utilisée pour
indiquer qu’'un pointeur ne répére aucun élément. L’application de opérateur unaire * & NULL
est illégale.

NULL est le plus souvent définie comme (void *) 0. Tout pointeur stocké dans bss (implicite-
ment initialisée & 0) sera donc automatiquement initialisé & NULL et le matériel est généralement
capable de générer une interruption au premier acceés a l'adresse 0, qui a pour effet d’arréter
immeédiatement ’exécution de programme.

SLe tas est la zone utilisée pour I'allocation dynamique de mémoire (fonction malloc). Le tas constitue le plus
souvent une extension de la section bss qui croit avec les demandes d’allocation.
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6.4 Variables pointeur stockées en registre

On appelle variable pointeur de type T une variable de type (T *) : elle contient une adresse
(d’un élément supposé étre) de type T.

Comme toute variable, une variable de type pointeur peut étre stockée dans un registre (nous
la déclarerons alors avec l'attribut de stockage register) ou en mémoire. Dans ce chapitre, nous
n’utiliserons que des pointeurs stockés dans des registres.

Aprés affectation de 'adresse &v d’une variable v a un pointeur p, p repére v : v peut étre
accédée en appliquant 'opérateur * a p. V et *p (en remplagant p par son contenu) équivalent
en C a *&v et désignent tous les deux 'emplacement mémoire (Mem|&v]|) réservé au stockage de v.

Voici un exemple de code C dans lequel le pointeur ptrss repére successivement et permet de
manipuler les variables ss1, puis ss3.

unsigned short int ssl, ss2, ss3;
register unsigned short int rss;

register unsigned short int *ptrss; /* un pointeur d’entier court */
ptrss = &ssi /* ptrss repere ssi */
*ptrss = 2; /* ss1 = 2 : *(&ssl) =2 x/
ss2 = ssl; /* ss2 = ssl : *&ss2 = x&ssi */
ss3 = *ptrss; /% 883 = ssl1 : *&ss3 = *(&ssl) */
ptrss = &ss3; /* ptrss repere ss3 */
*xptrss += 3; /* 883 +=3  : x&ss3 = *&ss3 + 3 x/

Trois opérations élémentaires peuvent étre réalisées sur une variable pointeur stockée dans un
registre :

1. affecter ’adresse d’une variable a un pointeur : ptrss — &ssl,

2. lire : prendre une copie du contenu de la variable pointée (par exemple pour affecter a une
variable stockée dans un registre) : rss = *ptrss,

3. écrire : affecter a la variable pointée un nouveau contenu (par exemple celui d’'une variable
stockée dans un registre) : *ptrss = rss.

@ r5 : ptrss
@ r2 : rss

@ exemple d’affectation d’une adresse : ptrss = &ssli
mov32 r5, #adr_de_ssli @ adresse : 1ldr 32 bits

@ exemple de lecture : rss = *ptrss
ldrsh  r2, [r5] @ sh : signed halfword

@ exemple d’écriture : *ptrss = rss
strh r2, [r5] 6] h : halword

Chacune de ces opérations se traduit en une seule instruction machine de notre processeur

RISC :

1. Une instruction mov32 pour charger une constante adresse sur 32 bits dans un registre.
En langage C la constante adresse &ssl correspond a l'étiquette adr de ssl en langage
d’assemblage.
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2. L’instruction de lecture est de type load avec adressage registre indirect, correspondant a la
taille et au type d’objet pointé (entier naturel court signé dans le cas de ptrss).

3. L’instruction d’écriture est de type store avec adressage registre indirect, correspondant a la
taille d’objet pointé.
Rappelons que le format des entiers stockés sur 8 ou 16 bits est étendu a la taille d'un mot lors
de leur lecture de la mémoire dans un registre, en tenant compte de la nature de I'entier (naturel
ou signé).

6.5 Décomposition d’une affectation en instructions RISC

Pour guider la traduction des instructions C en langage d’assemblage, nous utiliserons uen
forme de C intermédiaire équivalente (et acceptée par le compilateur) mettant en évidence la
décomposition en étapes élémentaires et l'utilisation de registres de stockage d’informations tem-
poraires. Chaque instruction C de cette forme intermédiaire correspond a une instruction machine
de notre processeur RISC virtuel.

Dans une expression n’utilisant que des variables stockées dans des registres, les temporaires
ne servent qu’a stocker des résultats de calcul intermédiaire (cd 2).

Dans le cas général, des registres sont utilisés pour stocker temporairement les adresses et les
contenus de variables rangées en mémoire.

Considérons a titre d’exemple les deux affectations suivantes.

/* affectations a traduire */
ssl = 2; /* decomposee en *&ssl
ss3 = ssl1 - ss2; /* decomposée en *&ss3

2 x/
x&ssl - *&ss2 x/

Voici la version décomposant ces affectations en instructions C plus élémentaires.

short int ri1, r2, r3; /* -——> rl, r2, r3 de la machine */
short int *rp0; /* --> r0 de la machine */

rl = 2;

rp0 = &ssi;

*xrp0 = ri;

rp0 = &ssi; /* peut etre omis : deja fait */
rl = *rp0; /* inutile : rl contient deja Mem[rpO] */
rp0 = &ss2;

r2 = *rp0;

r3 =r1 - r2;

rp0 = &ss3;

*rp0 = r3;

Chaque instruction C de la forme intermédiaire a une traduction directe en langage d’assem-
blage.

@ r1l, r2, r3 temporaires pour contenus de ssl, ss2, ss3
@ ro0 temporaire pour adresses de ssl, ss2, ss3
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mov32 rl, #2 Qrl1 =2

mov32 r0, #adr_de_ssl @ rp0 = &ssli
strh r1, [r0] @ *rp0 = r1
mov32 r0, #adr_de_ssl @ rp0 = &ssi
ldrsh r1, [rO] @ r1 = *rp0
mov32 r0, #adr_de_ss2 @ rp0 = &ss2
ldrsh r2, [rO0] Q@ r2 = *rp0
sub r3,rl,r2 @r3 =r1r1-r12
mov32 r0, #adr_de_ss3 @ rp0 = &ss3
strh 13, [r0] Q@ *rp0 = r3

La consommation de registres peut étre optimisée en examinant finement les instants auxquels
ils contiennent simultanément une information utile. Voici & tire d’exmple une traduction de
Iaffectation ss3 = ss1 - ss2; qui n’utilise que deux registres.

mov32 rl1, #adr_de_ssi
ldrsh r1, [ri]
mov32 r2, #adr_de_ss2
ldrsh r2, [r2]
sub r2,rl,r2
mov32 rl, #adr_de_ss3
strh r2, [ri]

Le registre rl est utilisé pour stocker ’adresse de ss1 jusqu’a la fin du cycle de lecture mémoire
spécifié par la premiére instruction ldrsh. Lorsque le cycle de lecture mémoire réalisé par ldrsh
se termine, ’adresse contenue dans rl n’est plus nécessaire et peut étre remplacée dans rl par le
contenu de ssl lu en mémoire. De méme, a la fin du calcul de la différence entre les contenus des
deux registres, le résultat peut prendre la place d'un des opérandes (dans r2).

6.6 Variables pointeur stockées en mémoire

Les pointeurs sont des variables C comme les autres. En 1’absence de l'attribut de stockage
register, une variable pointeur est stockée en mémoire et posséde une adresse.

La variable pointeur est stockée dans la section data si la déclaration spécifie une valeur ini-
tiale® et dans la section bss sinon.

Une variable pointeur stockée en mémoire a une adresse, que I'on peut donc éventuellement
stocker dans une variable pointeur (de pointeur). La déclaration d’une variable ppt pointeur de
pointeur de T est de forme T**ppt = &var de type T¥*, la spécification de valeur initiale
(— &var_type T*) étant facultative.

Le principe de traduction des accés aux variables stockées en mémoire s’applique de la méme
maniére aux variables pointeurs stockées en mémoire.

6.6.1 Exemple d’utilisation de pointeurs stockés en mémoire

[llustrons la gestion de pointeurs stockés en mémoire sur un exemple simple.

6Cette valeur initiale étant I’adresse d’une autre variable
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char x = 2;

char y;

char *ptr_init = &x; /* pointeur initialise dans la declaration */
char *ptr; /* pointeur non initialise */
y = *ptr_init + 1; /* equivaut ay = x + 1 */
X = x + 4; /* la valeur pointée peut changer */
ptr = ptr_init; /* copie de pointeur : ptr repére egalement x */
*xptr += 5; /* equivaut a x = x + 5 */
ptr = &y; /* ptr repére y */
*ptr = *ptr_init; /* equivaut a y = x; */

La premiére étape préalable a la traduction en langage d’assemblage de notre processeur RISC
fictif consiste & remplacer dans les instructions chaque occurence d’une variable v stockée en
mémoire par *&v. Dans notre exemple, cette étape concerne quatre variables : x, y, ptr_init et
ptr.

/* déclarations omises */

gy = **&ptr_init + 1; /* Mem[&y] = Mem[Mem[&ptr_init]] */
*gX = *&x + 4; /* Mem[&x] = Mem[&x] + 4 */
*xgptr = *&ptr_init; /* Mem[&ptr] = Mem[&ptr_init] */
**gptr += b5; /* Mem[Mem[&ptr]] = Mem[Mem[&ptr]] +5 */
*xgptr = &y; /* Mem[&ptr] = &y */
*xkgptr = **&ptr_init; /* Mem[Mem[&ptr] = Mem[Mem[&ptr_nit]] */

6.6.2 Introduction des temporaires et traduction

L’étape suivante consiste a introduire les temporaires stockés dans des registres pour stocker
les contenus de variables entiéres (contenus de x et y), les contenus des pointeurs (ptr, ptr_init)
et les adresses des pointeurs (&ptr, &ptr_init), puis a décomposer en instructions élémentaires.

.data
char x = 2; adr_x: .byte 2
char y; .align 4
char *ptr_init = &x; adr_ptr_init: .word adr_x
char x*ptr;
.bss
adr_y: .skip 1
.align 4
adr_ptr: .skip 4

register char tO0;
register char *t2 , *t3;

t0 : registre r0
t2 : registre r2
t3 : registre r3
t4 : registre r4
tb : registre rb

register char xxt4d, *xtb;

© 0 © 0 ©

Dans cet exemple, quatre temporaires pointeurs ont été introduits, tous stockés dans des re-
gistres : deux pointeurs de short (t2 et t3) et deux pointeurs de pointeurs de short (t4 et t5).
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/* *&y = **x&ptr_init + 1 %/ .text

t4d = &ptr_init; mov32 r4, #padr_tr_init
t2 = xt4; ldr r2, [r4]

t0 = *t2; ldrsb r0, [r2]

t0 = t0 + 1; add r0, r0, #1

tl = &y; mov32 rl1, #adr_y

*tl = t0; strb r0, [ri]

/* *&x = *&x + 4 %/

t2 = &x; mov32 r2, #adr_x
t0 = *t2; ldrsb 10, [r2]

t0 = t0 + 4; add r0, r0, #4
*t2 = t0; strb r0, [r2]

/* *&ptr = *&ptr_init */

t4d = &ptr_init; mov32 r4, #adr_ptr_init
t2 = xt4; ldr r2, [r4]

tb = &ptr; mov32 rb5, #adr_ptr
*t5 = t2; str r2, [t5]

/* *xgptr += 5 x/

t4d = &ptr; mov32 r4, #adr_ptr
t2 = xt4; ldr r2, [r4]

t0 = *t2; ldrsb 10, [r2]

t0 = t0 + 5; add r0, r0, #5
*¥t2 = t0 strb r0, [r2]

/* x&ptr = &y */

t2 = &y; mov32 r2, #adr_y
td = &ptr; mov32 r4, #adr_ptr
xtd = t2; str r2, [r4]

/% **%&ptr = **x&ptr_init */

t4 = &ptr_init; mov32 rd4, #ptr_init
t2 = xt4; ldr r2, [r4]

t0 = *t2; 1drb r0, [r2]

tb = &ptr; mov32 rb, #adr_ptr
t3 = *t5; ldr r3, [r5]

*t3 = t0; strb r0, [r3]

6.7 Symboles étiquettes sans préfixe adr

Jusqu’a présent nous avons préfixé les symboles étiquettes qui correspondent a des adresses de
variables (&var en C) par adr . Dans la suite du document nous abandonnerons ce préfixe qui
s’appliquerait a toutes les étiquettes. Mais le lecteur devra se souvenir que I'étiquette x en langage
d’assemblage est I'adresse de stockage de x (et non sa valeur) et correspond a &x en C.

6.8 Pointeurs de pointeurs en mémoire

L’exemple précédent a illustré 'utilisation de pointeurs de pointeurs stockés dans des registres.
Voici maintenant un exemple d’utilisation de pointeurs de pointeurs stockées en mémoire.
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6.8.1 Programme & traduire

char ¢ = ’a’;
char d;
char *ptr_c = &c; /* ptr_c repére c */
char *ptr_car; /* un autre pointeur de char */
char *xptr_ptr_car; /* un pointeur de pointeur de char */
register char **reg_ptr_ptr;

/* le meme dans un registre */
c=c+ 1; /* equivaut a ¢ = ’Db’ x/
*xptr_c ++; /* manipulation par pointeur : c¢ = ’c’ %/
ptr_car = &d /* ptr_car repére d */
*ptr_car = c + 2; /* manip de d par ptr : d = ’e’ */
reg_ptr_ptr_car = &ptr_car; /* reg_ptr_ptr_car repére ptr_car */
ptr_ptr_car = &ptr_car; /* ptr_de_ptr_car repére ptr_car */
ptr_c = *ptr_ptr_car; /* ptr_c affecte par pointeur */

/* ptr_c repére maintenant d */
ptr_car = &c; /* ptr_carx repére c */
*x*ptr_ptr_car = ’x’; /* c modifie via un ptr ptr char */
d = x*xreg_ptr_ptr_car; /* d = c par reg ptr ptr char */

6.8.2 Mise en évidence des accés a la mémoire

*gC = *&c + 1; /* 1 x/
**xgptr_c = **&ptr_c +1; /* 2 %/
*gptr_car = &d; /*x 3 %/
**gptr_car = *&c + 2; /x4 x/
reg_ptr_ptr_car = &ptr_car; /* B x/
*¥ptr_ptr_car = &ptr_car; /*x 6 */
*¥ptr_c = **&ptr_ptr_car; /x T */
*gptr_car = &c; /*x 8 %/
***gptr_ptr_car = ’x’; /*x 9 */
*§d = **reg_ptr_ptr_car; /* 10 */

6.8.3 Traduction en langage d’assemblage RISC

.data
char ¢ = ’a’; C: .byte ’a’
char *ptr_c = &c; .align 4
ptr_c: .word C
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.bss
char d; d: .skip 1

.align 4
char *xptr_car; ptr_car: .skip 4
char *xptr_ptr_car ptr_ptr_car: .skip 4
register char *xreg_ptr_ptr_car; @ r8 : reg_ptr_ptr_car;
register char rO; @ r0 & r6 : registres de méme noms
register char *rl *r2;
register char **xr3 , *xr4;
register char *xxxrb, **xr6;
rl = &c; mov32 rl, #c
r0 = *xri; ldrsb 10, [ri]
r0 = r0 + 1; add r0, r0, #1
*rl = r0; strb r0, [ri]
r3= &ptr_c; mov32 r3, #ptr_c
rl = *xr3; ldr rl, [r3]
r0 = xri; ldrsb 10, [ri]
r0 = r0 + 1; add r0, r0, #1
*xrl = r0; strb r0, [ri]
rl = &d; mov32 rl, #d
r3 = &ptr_car; mov32 r3, #ptr_car
*r3 = ril; str rl, [r3]
rl = &c; mov32 rl, #c
r0 = *xri; ldrsb r0, [ri]
r0 = r0 + 2; add r0, r0, #2
r3 = &ptr_car; mov32 r3, #ptr_car
r2 = *r3; ldr r2, [r3]
*xr2 = r0; strb r0, [r2]
reg_ptr_ptr_car = &ptr_car; mov32 r8, #ptr_car
r3 = &ptr_car; mov32 r3, #ptr_car
rb5 = &ptr_ptr_car; mov32 rb, #ptr_ptr_car
*r5 = r3; str r3, [r5]
rb = &ptr_ptr_car; mov32 rb5, #ptr_ptr_car
r3 = *r5; ldr r3, [r5]
rl = *xr3; ldr rl, [r3]
r6 = &ptr_c; mov32 r6, #ptr_c
*r6 = ri; str rl, [r6]
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rl = &c; mov32 rl, #c

r3 = &ptr_car; mov32 r3, #ptr_car
*r3 = ri; str rl, [r3]

r0 = ’x’; mov32 r0, #’x’

rb = &ptr_ptr_car; mov32 rb5, #ptr_ptr_car
r3 = *r5; ldr r3, [r5]

rl = *r3; ldr rl, [r3]

xrl = r0; strb r0, [ri1]

rl = *reg_ptr_ptr_car; ldr rl, [r8]

r0 = *xri; ldr r0, [ri]

r2 = &d; mov32 r2, #d

*xr2 = r0; strb r0, [r2]

6.9 Préincrémentation et postincrémentation des pointeurs

Il est possible de combiner les opérateurs - - et ++ avec l'opérateur * sur les pointeurs.
[’opérateur * est appliqué sur la valeur initiale du pointeur si 'opérateur - - ou +- est a droite
du pointeur ou sur la valeur modifiée s’il est & gauche du pointeur

void copie2 (int *s, int *d, int t)

{
int 1i;

*d++ = kg++; /* *d = %s  avant  */
} /* d++ et s++ */

void copie3 (int *s, int *d, int t)

{
int i;
for {i=t; i>=1; i--}
*—-d = *--s++; /* d-- et s-- avant */
} /* *d = *s */

La traduction en langage d’assemblage ne pose pas de probléme particulier :

@ r0 = x++ril
ldr rO0, [r1,#-4] @ adresse = registre pointeur - 4
sub ri1, r1, #4 @ mise & jour registre pointeur

@ r0 = *ri++
ldr r0, [r1] @ adresse = registre
sub rl, rl, #4 @ mise a) jour registre pointeur

Nous supposerons que notre processeur fictif dispose de variantes de ldr et str avec acces
mémoire et préincrémentation ([reg,#ajout|!) ou postincrémentation ([ |,#ajout) du registre
d’adresse utilisé, le tout en une seule instruction.

@ r0 = *x++ri
1dr r0, [r1,#-4]! : préincrémentation
@ r0 = *ri++
ldr rO, [ri1], #-4 : postincrémentation
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Chapitre 7

Structures et unions

Le type enregistrement, appelé structure en C et record dans d’autres langages, permet de
regrouper en un seul objet stocké dans un espace mémoire contigu un ensemble d’objets de types
différents, appelés membres de la structure.

7.1 Structures

7.1.1 Syntaxe de déclaration

La déclaration d’objets de type structure est normalement réalisé en deux étapes : définition
d’un type de structure et déclaration de variables en utilisant le type défini.

La syntaxe de la définition d’un type de structure est la suivante : le mot clé struct, précédant
le nom du type de structure défini et suivi, entre accolades, d'une liste de déclarations de membres
de la structure.

#define TAILLE_NOM 50
#define TAILLE_PRENOM 30
/* Definition du type struct prsonne */
struct personne {

char nom[TAILLE_NOM] ;

char prenom[TAILLE_PRENOM];

unsigned short int age;

unsigned int code_postal;

/* d’autres membres éventuels */

}
/* Declaration de 3 variables de type struct personne */
struct personne proprietaire, locataire, client;

L’utilisation de typedef permet éventuellement d’éviter de répéter le mot struct dans chaque
déclaration de variable.

typedef struct s_point{

int x;
int y;
} point;
/* ecriture equivalente */
point px,py; /* equivaut a struct s_point px, py; */

83



84 CHAPITRE 7. STRUCTURES ET UNIONS

point centre; /* equivaut a struct s_point centre; */
point sommet; /* equivaut a struct s_point sommet */

Il est possible de combiner la définition du type de structure et la déclaration des variables
en une seule déclaration, le nom du type de structure pouvant éventuellement étre omis. Il suffit
d’ajouter aprés la définition de type les noms des variables a déclarer.

La séparation de la déclaration du type structure de la déclaration des variables proprement
dite est cependant recommandée. Elle permet d’identifier clairement la définition de type et rend
la déclaration des variables plus lisible.

typedef enum colori {BLEU, BLANC, ROUGE, JAUNE, NOIR};

/* Declaration combinee du type struct pixel */
/* et des variables sommetl, sommet2 et centre * /
/* ainsi que du pointeur de struct pixel ptr_pixel */

struct pixel {
int x;
int y;
colori couleur;
int intensité;
} sommetl, sommet2, centre, *ptr_pixel;

/* Declaration de deux variables structure cerclel et cercle2 x/
struct { /* pas de nom de type struct */
int x;
int y;

float rayon; } cerclel, cercle2;

L’omission d'un nom de type de structure est vivement déconseillée : nommer le type de
structure permet ensuite de déclarer facilement des champs de type pointeur du type de structure
en cours de définition.

typedef struct s_doublet {

long valeur; /* contenu */
struct s_doublet *suivant; /* pointeur de chainage */
} doublet;

doublet cellules [NB_CELLULES];
doublet x*tete, *queue;

Notons que dans cet exemple, le membre suivant ne pourrait étre déclaré par doublet *suivant,
le type doublet n’étant pas encore défini a ce stade.

[’omission d'un nom de type de structure est également génant pour la passage de parameétres
aux procédures. En 'absence de nom de type, toute la spécification des membres de structure
devra étre dupliquée, avec tous les risques d’erreur que cela comporte.

/* Declaration d’une procédure d’effacement de pixel */
void effacer_pixel(struct pixel *p)

{

p -> intensité = 0;
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}

/* Déclaration d’une fonction acceptant cerclel ou cercle2 */
/* comme paramétre et retournant la surface */
/* L’absence de nommmage du type de structure impose de */
/* redéclarer les membres de la structure x/

float aire_du_cercle (struct{int x; int y; float rayon;} *cercle)
{

float surface;

surface = PI * cercle-> rayon * cercle->rayon;

return(surface);

}

7.1.2 Structures contenant des structures

Il est possible de construire des structures dont les membres sont eux-mémes des structures.
Dans un logiciel graphique, on peut définir un vecteur par ses extrémités et il peut étre commode
de regrouper les coordonnées (x,y) de chaque extrémité dans une structure. On peut aussi imaginer
qu’une structure décrivant un employé contienne une structure représentant son adresse.

struct fleche {
struct s_point origine;
struct s_point destination;

}

7.1.3 Initialisation

Une constante structure est une liste de valeurs initiales des membres de la structure, entre
accolades et séparées par des virgules. Si un membre est lui-méme une structure, sa valeur initiale
est elle-méme une liste de valeurs initiales entre accolades.

#define XINITIAL 4
#define YINITIAL 5

point origine;
point p = {XINITIAL, YINITIAL};
struct s_point q = {6, 2};

point pl = {3,4};

point p2, p3,
point *ptpoint = &p3;
int z;

struct fleche f1 = {{1,2},{3,4}};

7.1.4 Réservation de mémoire, alignement et taille

La réservation de mémoire pour une structure n membres est traitée comme n déclarations
de variables de méme type que les membres, a ceci prés qu’on ne définit pas une étiquette pour
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chaque membre.

En revanche, il est commode d’utiliser des constantes symboliques pour repérer la position de
chaque membre dans la structure, ainsi que pour la taille totale de la structure.

S_POINT_X=0 /* le membre x est au début de la structure */
S_POINT_Y=4 /* le membre y est d& 4 octets du début */
TAILLE_S_POINT=8 /* la structure occupe 8 octets */

S_FLECHE_QORIGINE=0
S_FLECHE_DESTINATION=TAILLE_S_POINT
TAILLE_S_FLECHE=2*TAILLE_S_POINT

.data

XINITIAL=4

YINITIAL=5

/* tout est de type mot : align 4 inutile */
/* entre variables */

p: .word XINITIAL

.word YINITIAL
q: .word 6

.word 2
pl: .word 3

.word 4
f1: .word 1

.word 2

.word 3

.word 4
ptpoint: .word p3

.bss
origine: .skip TAILLE_S_POINT
p2: .skip TAILLE_S_POINT
p3: .skip TAILLE_S_POINT
zZ: .skip 4

La position relative des membres par rapport a I’adresse de la structure est fonction de la taille
et des contraintes d’alignement qui s’appliquent aux membres.

struct s16et32 {
short int h;
long int w;}

short s = 10000;
struct s16et32 sti
struct s16et32 st2

{0x3344, 0x556677887};
{0Oxaabb, Oxccddeeff};

(©Philippe Waille UJF/UFR IMA 6 juillet 2006



7.1. STRUCTURES 87

/* Déclaration en langage d’assemblage */
gag g

S_S16ET32_H=0
S_S16ET32_W=4

.data
S: .hword 10000
/* aligner stl sur une adresse multiple de 4 */
.align 4 /* AL1 */
stl: .hword 0x3344
ici: .align 4 /* AL2 x/
wl: .word  0xbb667788
/* 1’adresse de st2 est déja alignée sur un multiple de 4 */
.align 4 /* ne saute aucun octet */
st2: .hword 0x3344
ici2: .align 4 /* AL4 x/
w2: .word  0x55667788 /* membre w de st2 */

Pour que le nombre d’octets séparant deux membres soit le méme dans tous les exemplaires
un méme e de structure, I'adresse d’une structure doit respecter les mémes contraintes d’ali-
d’ éme type de structure, 'ad d’ tructure doit ter | é traintes d’al
gnement que son membre de plus grande taille.

Dans I'exemple précédent, sila directive d’alignement AL1 était omise, ’adresse ici serait déja
un multiple de 4 et la directive AL2 ne sauterait aucun octet. En revanche I'adresse ici2 n’est
pas un multiple de 4 et la directive AL3 sauterait 2 octets : wl - st1 ne serait pas égal a w2 - st2.

La taille d’une structure peut étre supérieure a la somme des tailles de ses membres. Appliqué
a un type structure, 'opérateur sizeof tient compte de tous les octets d’alignement & prévoir pour
le stockage d'un ensemble de structures de ce type dans un tableau.

7.1.5 Affectation, opérateurs . et ->

Un membre m d’une structure s est désigné en suffixant le nom de la structure par 'opérateur
point (’.”) suivi du nom du membre : s.m.

Soient deux structures de méme type a n membres. L’affectation d’une structure a une autre
équivaut a n affectations portant chacune sur un membre de la structure.

Pour manipuler un membre m d’une structure repérée par un pointeur p, il faut appliquer
d’abord l'opérateur *, puis I'opérateur . pour accéder au membre : (*p).m. L’opérateur . étant
prioritaire sur lopérateur *, les parenthéses sont obligatoires : *s.ptr est interprété comme
*(s.ptr) et retourne le contenant repéré par le membre ptr (qui doit étre de type pointeur)
de la structure s.

Pour faciliter la manipulation de structures avec des pointeurs (par exemple pour gérer des listes
chainées), on peut utiliser 'opérateur -> . La notation p -> m n’est qu’un raccourci syntaxique
de (*p).m.

p2.x = 3;
p2.y = pl.y;
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p3 = pl; /* p3.x = pl.x; p3.y = pl.y */
z = (*ptpoint) .x /* z = pl.x %/

ptpoint->y = 5; /¥ pl.y =5 x/

ptpoint.x++; /% pl.x ++ x/

Les opérateurs de comparaison ne sont pas applicables aux structures : seuls les membres
peuvent étre comparés.

7.1.6 Traduction en langage d’assemblage des accés aux structures

Comme pour les variables ordinaires, la traduction en langage d’assemblage sera guidée par
deux réécritures du programme C d’origine, 'une mettant en évidence tous les accés a la mémoire,
I’autre détaillant toutes les utilisations de variables temporaires.

*&(p2.x) = 3;

*&(p2.y) = *&(pl.y);

*&(p3.x) = *&(pl.x);

*&(p3.y) = *&(pl.y);

*§z = (**&ptpoint).x; /* z = (*ptpoint).x */
(x*&ptpoint) .y = 5; /* (*ptpoint).y = 5 */

(#x&ptpoint) .x = (**&ptpoint).x + 1; /* (xptpoint).x++ %/

Comme pour les variables ordinaires, chaque opérateur * correspond & une instruction load
ou store, I'opérateur . ayant pour effet d’ajouter a I’adresse la position relative du membre par
rapport au début de la structure.

register int rint; /* r0 */

register int *rpint; /* rl x/

register struct point *rpoint; /* r2 %/

register struct point **rppoint; /* r3 %/

rint = 3; mov r0, #3

rpoint = &p2; mov32 r2, p2

xrpoint.x = rint; str r0, [r2, #S_POINT_X]
rpoint = &pil; mov32 r2, pl

rint = *rpoint.y; ldr rO0, [r2, #S_POINT_Y]
rpoint = &p2; mov32 r2, p2

xrpoint.y = rint; str r0, [r2, #S_POINT_Y]
rpoint = &pil; mov32 r2, pl

rint = *rpoint.x; ldr r0, [r2, #S_POINT_X]
rpoint = &p3; mov32 r2, p3

*rpoint.x = rint; str r0, [r2, #S_POINT_X]
rpoint = &pil; mov32 r2, pl

rint = *rpoint.y; ldr r0, [r2, #S_POINT_Y]
rpoint = &p3; mov32 r2, p3

xrpoint.y = rint; str r0, [r2, #S_POINT_Y]
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rppoint = &ptpoint; mov32 r3, ptpoint

rpoint = *rppoint; ldr r2, [r3]

rint = (*rpoint).x; ldr r0, [r2, #S_POINT_X]
rpint = &z; mov32 rl, z

xrpint = rint; str r0, [ri]

rint = 5; mov r0, #5

rppoint = &ptpoint; mov32 r3, ptpoint

rpoint = *rppoint; ldr r2, [r3]

xrpoint.y = rint; str r0, [r2, #S_POINT_Y]
rppoint = &ptpoint; mov  r3, ppoint

rpoint = *rppoint; ldr r2, [r3]

rint = *rpoint.x; ldr r0, [r2, #S_POINT_X]
rint = rint + 1; add r0, r0, #1
*rpoint.x = rint; str r0, [r2, #S_POINT_X]

7.2 Unions

Les unions sont des variantes particuliéres de structures dont les membres sont tous logés a
la méme adresse en mémoire (a I’adresse de I'union). Elles remplacent les structures dont certain
champs ne peuvent pas contenir de valeur simultanément et permettant d’économiser de la mé-
moire.

Considérons a titre d’exemple une procédure de dessin de fleches. Les extrémités de la fleche
peuvent étre décrites en coordonnées cartésiennes (x,y) ou polaires (rayon, angle).

struct xy { /* point en coordonnées cartésienne (x,y) */
int x;
int y;
}
struct rt { /* point en coordonnées polaires (r, theta) */
float r;
float t;
}
struct fleche {
int polaire; /* type coordonnées : polaire si != 0 */
struct xy orig_xy; /* coordonnées origine */
struct rt orig_rt;
struct xy dest_xy; /* coordonnées destination */
struct rt dest_rt;
}

void fleche (struct fleche f)
{
int xorig,yorig;
int xdest,ydest;
if (f.polaire)
{
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/* calculer xorig, xorig a partir de f.orig_rt.r */
/* calculer xdest, xdest a partir de f.dest_rt  */
}
else
{
xorig = f.orig_xy.x; yorig = f.orig_xy.y;
xdest = f.dest_xy.x; ydest = f.dest_xy.y;
}
/* dessiner la fléche */

}

L’allocation simultanée de place pour les deux types de coordonnées n’est pas utile. Il convient
de définir une union dont les membres sont les coordonnées a usage mutuellement exclusif.

union point {
struct_xy Xxy;
struct_rt rt;

3

struct fleche {
int polaire;
union point orig;
union point dest;

}
fleche f£f;

/* Allocation de mémoire pour f : */

/x f : polaire */

/* f+4 : xorig ou rorig */

/* f+8 : yorig ou torig */

/* £+12 : xdest ou rdest */

/* f£+16 : ydest ou tdest */

f.dest.rt.t = 3.0; /* accés au membre t du membre rt de 1’union dest */

f.dest.xy.y = 4; /* accés au membre y du membre xy de 1l’union dest */
S_XY_X=0
S_XY_Y=4

TAILLE_S_XY=8

S_RT_R=0
S_RT_R=4
TAILLE_S_RT=8

/* Dans 1’union point, xy et rt sont tous les deux au déplacement 0 */
S_POINT_XY=0

S_POINT_RT=0

TAILLE_S_POINT=8 /% max (TAILLE_S_XY,TAILLE_S_RT) x*/
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S_FLECHE_POLAIRE=0

S_FLECHE_ORIG=4

S_FLECHE_DEST=12

TAILLE_S_FLECHE=20 /* sizeof(int) + 2*TAILLE_S_POINT x/

.bss

f: .skip TAILLE_S_FLECHE

TROIS_FLOTTANT=0x..... /* écrire représentation hexa de 3.0 */

.text
mov
mov32
str

mov
mov32
str

r0, #TROIS_FLOTTANT
rl, £
r0, [r2, #S_FLECHE_DEST+S_POINT_RT+S_RT_T]

r0, #4
rl, £
r0, [r2, #S_FLECHE_DEST+S_POINT_XY+S_XY_Y]
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Chapitre 8

Sauts et constructeurs algorithmiques

8.1 Notion de saut ou branchement

8.1.1 Définition

Le processeure exécute les instructions séquentiellement (par adresses croissantes) dans I'ordre
ot elles sont rangées en mémoire. L’instruction courante est par le registre compteur ordinal (PC).
L’exécution de l'instruction courante se termine par une incrémentation du compteur ordinal pour
pointer sur l'instruction suivante.

Une instruction de branchement (on dit aussi de saut) est une instruction qui affecte au comp-
teur ordinal 'adresse d’une instruction cible (autre que la suivante en mémoire) qui sera exécutée
aprés l'instruction courante de banchement. Une instruction de branchement introduit une rupture
de séquence dans le flot d’instructions exécutées.

On parle de branchement en avant lorsque ’adresse de branchement est supérieure a celle de
I'instruction qui suit celle de branchement, et en arriére dans le cas contraire. Un branchement
en avant saute une séquence d’instructions du programme. Un branchement en arriére réexécute
une séquence d’instructions qui précédent l'instruction de saut et sert a réaliser les boucles dans
I’exécution du programme.

On parle de branchement absolu lorsque l'instruction de branchement spécifie directement
I’adresse a charger dans le compteur ordinal. La destination du branchement reste la méme quelque
soit I'emplacement de I'instruction de saut. Une instruction de branchement relatif (sous entendu
au compteur ordinal) spécifie un déplacement (négatif pour un saut en arriére, positif pour saut
en avant) a ajouter au compteur ordinal, donc par rapport a 'emplacement de 'instruction de saut.

[Mlustrons ce concept par une analogie. Supposons que vous soyez dans la rue de la poste et que
quelqu’un vous demande I’emplacement du bureau de poste. Vous pouvez lui donner le numéro
du batiment ou sa distance en métres depuis le début de la rue (adresse absolue) et votre réponse
ne dépend pas d’out vous vous trouvez. Vous pouvez aussi lui donner I'information par rapport
(adressage relatif) a I’endroit auquel vous vous trouvez : la poste est & plus ou moins x métres (ou
numéros) dans telle direction.

La rupture de séquence peut avoir lieu seulement dans certaines situations (branchement condi-
tionnel) ou au contraire systématiquement (branchement inconditionnel). Pour les sauts condition-
nels, la décision est prise en fonction des indicateurs ZNCV du registre d’état du processeur.

Les processeurs performants utilisent une technique plus ou moins poussée de travail a la
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chaine (pipeline) qui leur permet de débuter I'exécution d’une nouvelle instruction a chaque cycle
d’horloge. Il en résulte que lorsque instruction courante consulte le contenu du compteur ordinal,
ce dernier est en avance d’une ou plusieurs instructions par rapport a l'instruction courante. Le
calcul du déplacement dans les branchements relatifs doit en tenir compte.

8.1.2 Les instructions de saut du processeur RISC de référence

Notre processeur RISC fictif posséde des instructions de branchement relatif conditionnels,
notée beong' destination. En langage d’assemblage, I'opérande de I'instruction est soit déplace-
ment (entier signé), soit une étiquette que I’assembleur convertit en un déplacement par rapport
a l'instruction b.gpg.

L’instruction b.,,q est codée sur un seul mot dont quatre bits indiquent qu’il s’agit d’un bran-
chement relatif conditionnel, quatre autres spécifient la nature de condition testée et les vingt
quatre autres encodent le déplacement signé exprimé en nombre d’instructions (a multiplier par
quatre avant ajout au compteur ordinal).

Les branchements conditionnels sont généralement utilisés aprés une comparaison (cf figure
8.3). Les pincipales conditions sur les entier naturels testent Z et C (LOwer ou Carry Clear, Lower
or Same, Hlgher, Higher or Same ou Carry Set), celles sur les entiers relatifs testent Z, N et V
(Less Than, Less or Equal, Greater Than, Greater or Equal). Le test de Z est valable pour les
deux types d’entiers (EQual, Not Equal). La condition ALways est toujours vraie : elle correspond
a un branchement relatif inconditionnel.

L’instruction de branchement (inconditionnel) non relatif est jmp regl + reg2 ou #-cte8.
Elle est identique a une instruction d’addition qui déposerait son résultat dans le compteur or-
dinal plutot que dans un registre de travail ordinaire : 'adresse de la prochaine instruction est
la somme du contenu du premier registre et au choix du contenu d’un autre registre ou d’une
petite constante entiére sur 8 bits. En langage d’assemblage, 'opérande de jmp peut se limiter a
un registre : jmp reg sera interprétrée comme jmp reg + #0.

Les variantes beongl (branch and link) et jmpl (jump and link) sont destinées aux appels
de procédures. Avant le branchement, elles sauvegardent le compteur ordinal (qui repére alors
I'instruction qui suit beongl ou jmpl) dans un général nommé Ir (link register).

8.2 Etiquettes, goto et programmation structurée

Nous avons vu que le langage d’assemblage permet d’associer des noms symboliques aux
adresses : les étiquettes. Via les pointeurs, le langage C offre I'équivalent des étiquettes pour
les adresses de variables et de fonctions.

Le langage C permet de plus de définir des étiquettes dans le corps des procédures et I'instruc-
tion goto permet de réaliser des sauts a ces étiquettes. Il est possible de décrire des branchements
conditionels sous la forme if (condition) goto étiquette, chacun correspondant & une instruction
machine.

Dans les langages de programmation de premiére génération (exemple : FORTRAN IV), les
étiquettes (souvent numeériques) et les instructions de branchement étaient les seules primitives
offertes aux programmeurs pour la prise de décision dans les programmes. Depuis, les techniques

heq, bne, bee, bge, ... (voir tables 1.2 et 1.12)
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dites de programmation structurée ont été généralisées. Elles évitent 1'utilisation anarchique de
branchements et permettent d’obtenir des programmes plus facile a lire et maintenir.

Les programmes sont aujourd’hui batis a partir d’'un ensemble de constructeurs algorithmiques
intégrés dans la définition des langages, tels que si alors sinon, tant que, ou les boucles itérées
et la programmation a base de if et goto est a proscrire.

La suite de ce chapitre montre comment passer d'un programme C normal & un programme
C équivalent en remplacant toutes les occurences des constructeurs algorithmiques classiques par
I'utilisation d’étiquettes et de goto, pour guider sa traduction en langage d’assemblage.

L’instruction goto et les étiquettes ne sont pas évidement pas destinées a la programmation
ordinaire d’applications en C, bien que leur utilisation ponctuelle peut parfois simplifier la gestion
de la remontée des erreurs?. Nous n’utilisons la forme intermédiaire avec if et goto que comme une
notation (que le compilateur peut traduire, ce qui permet d’en vérifier la justesse) de décomposi-
tion en actions élémentaires pour la traduction en langage d’assemblage.

Le programme C de départ a traduire en langage d’assemblage doit étre écrit normalement,
autrement dit sans goto, en utilisant les constructeurs algorithmiques classsiques (if, while, for,
switch, etc). Réservez les étiquettes et instructions goto a 1’étape intermédiaire de traduction d’un
programme C normal en langage d’assemblage : n’utilisez jamais une programmation non
structurée a base de if et goto pour programmer une application.

8.3 Constructeurs algorithmiques C

8.3.1 Instruction vide, instruction composée et accolades

Les accolades permettent de délimiter une séquence d’instructions (séparées par des carac-
téres point-virgule) a considérer comme une unique instruction composée. Il est ainsi possible de
considérer que le corps d’une boucle ou d’une autre construction ne contient qu’'une instruction :
instruction simple ordinaire ou suite d’instructions délimitée par les accolades.

Le caractére point virgule (;) est un marqueur de fin d’instruction. Utilisé seul, il correspond
a une instruction vide.

8.3.2 if (condition) instr alors else instr sinon

Noter ’absence de mot-clé then entre la condition et la branche alors.

Le comportement de la construction dépend de la valeur de la condition placée entre paren-
theses. Les fleches illustrent le flot d’exécution, les sauts étant représentés en trait pointillé.
Les fléches sont étiquetées avec un condition vraie (c¢) ou fausse (/c).

L’expression condition ¢ est évaluée. Une valeur non nulle est interprétée comme VRAI 3, et
indique que seule instruction alors doit étre exécutée. Une valeur nulle est interpétée comme
FAUX et signifie que seule instruction sinon doit étre exécutée.

2pour laquelle le mécanisme d’exception a été indroduit dans les langages orientés objet.
3cf 2.2.4 : interprétation booléenne de variables entieres
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Ilc c
if (C) L. if (Ic) goto sinon;
instruction_alors, b { alors. instruction_alors;
else P goto fin_si;
instruction_sinon; ' ) X sinon: instruction_sinon
instruction_suivant_if; l Y . fin_si: instruction_suivant_if;

Fi1Gg. 8.1 Transformation d’un si alors sinon

/* Passage a la forme goto + etiquettes */

if (x<y) /* debut_si: if (x>=y) goto sinon */
{ /% */
m = y; /* m = y; */
inferieur ++; /* inferieur ++; */
} /% goto fin_si; */
else /* sinon: x/
m = x; /* m = Xx; */
X++; /% X++; */
maximum = m; /* fin_si: maximum = m; */

Le lecteur notera le branchement au sinon sur la condition (x >=y) opposée a celle du if
(x < y) (la condition inverse d’une inégalité stricte inclut aussi le cas d’égalité).

La branche sinon est facultative, auquel cas else et instr sinon sont omis. Instr alors et

instr sinon peuvent elles-mémes étre des constructions if, while, for, etc. En cas d’ambiguité, le
else se rattache a I'instruction if la plus proche.

if ((d <= a) && (d <= b) && (d <= c))

mini = d;

else if ((c <= a) && (c <= b) && (c <= 4))
mini = c;

else if ((b <= a) && (b <= ¢) && (b <= d))
mini = b;

else
mini = a;

/* signifie */

if ((d <= a) & (d <= b) && (d <= c))

mini = d;
else
{
if ((c <= a) && (c <= Db) && (c <= d))
mini = c;
else
{
if ((b <= a) && (b <= ¢) & (b <= d))
mini = b;
else
mini = a;
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}

D’autre part, compte tenu de l'interprétation booléenne des valeurs entiéres, si var ent est
une variable entiére, alors if (var ent) et if (var _ent!= 0) sont synonymes.

Notons enfin une variante de traduction possible basée sur un branchement conditionnel utili-
sant la condition du if, non inversée, pour sauter a la branche alors. Cette variante peut paraitre
plus simple a comprendre, mais présente I'inconvénient de générer deux instructions de branche-
ment méme en la branche sinon de l'instruction if est absente.

if (c) goto alors;
sinon: instruction_sinon;
goto fin_si;
alors: 1instruction_alors;
fin_si: instruction_suivant_if;

8.3.3 Tant que et répéter jusqu’a (while et do...while)

La condition du tant que est évaluée avant exécution du corps du tant que. Si I’évaluation
retourne vrai, le corps du tant que est exécuté. Le processus est répété jusqu’a ce que la condition
retourne la valeur faux.

Le lecteur notera I’absence de ";” apreés la condition et que la condition n’est pas la condition
de sortie de boucle, mais celle de continuation.

Ic
while (c) | C test: if (Ic) goto suite
instruction_corps; o r“ corps. instruction_corps;
v( Tl goto test;
instruction_apres, suite: instruction_apres;

FiG. 8.2 Transformation d’un tant que

Le schéma de traduction précédent présente I'inconvénient d’exécuter deux instructions goto
par tour de boucle. Pour I'éviter, il suffit de placer le test de la condition (non inversée) apreés le
corps du tant que et d’ajouter un branchement inconditionnel a ce test devant le corps du tant
que.

/* Passage a la forme goto + etiquettes */

while (x != y) /* goto test; */
{ /* corps: %/
x =x + 1; /* x =x + 1; */
y=y/ 2; /% y =7y / 2; */
} /% test: if (x!=y) goto corps; */
Z = X; /% zZ = X; *x/

Remarque : while(1) définit une boucle infinie (voir aussi I'instruction break).
Le constructeur do...while correspond a la primitive répéter jusqu’a. Il se comporte comme

while, mais le corps est exécuté au moins une fois avant évaluation de la condition. Sa transfor-
mation est identique a celle de while, & ’omission du branchement initial au test prés.
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/* Passage a la forme goto + etiquettes */

do
{ /* corps: %/
X =x + 1; /* x =x +1; */
y=y/2; /* y=y/2; */
}

while (x != y); /% test: if (x!=y) goto corps; */

zZ = X; /* Z = X; x/

8.3.4 Boucles for itérées et génériques

Considérons 'exemple de boucle suivant.

/* Calcul des puissances de 2 */

int tab_puissance[32]; /* un tableau a remplir */
int i; /* variable de boucle principale */
int deux_puissance_i; /* variable de boucle secondaire */

/* Initialisation (des variables) de la boucle */
i=0;

deux_puissance_i = 1;

/* Condition de boucle */

while (i < 32)
{
/* corps de la boucle */
tab_puissance[i] = deux_puissance_i;

/* mise & jour des variables de boucle */
1 ++;
deux_puissance_i <<= 1; /* multiplication par 2 par decalage */

}

Une boucle générique manipule une ou plusieurs variables de (controle de la) boucle et combine
quatre éléments :

1. la séquence d’initialisation des variables de boucle (i = 0 et deux puissance i = 1),
2. la condition de continuation?, testée avant chaque exécution du corps de la boucle (i<32),

3. la mise a jour (souvent une incrémentation) des variables aprés exécution du corps du boucle
(i-+-+ et deux puissance i «— 1)

=~

. le corps de la boucle (affectation a tab_puissanceli]).

Le corps de la boucle for regroupe les instructions exécutées a chaque tour de boucle, test de la
condition et mise & jour des variables de boucles exclues. Il est possible de spécifier un corps vide
avec une paire d’accolades n’encadrant aucune instruction. A noter : on peut aussi spécifier (sou-
vent involontairement) un corps vide en ajoutant un point-virgule aprés la parenthése fermante.

4For spécifie une condition de continuation : si elle est vraie le corps est exécuté (répéter tant que la condition
reste vraie). NB : en algorithmique, il est courant de spécifier & I'inverse une condition de sortie (répéter jusqu’a
ce que la condition devienne vraie).
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La syntaxe du for C est la suivante (remarquer 'absence de ’;’ aprés la parenthése fermante) :

for (initl, init2, ..., initn ; condition ; majl, maj2, ..., majn)
instruction_simple_ou_composee;

Réécrivons notre exemple de boucle avec une instruction for :

/* le meme exemple avec une boucle for */
for (i=0, deux_puissance_i = 1; i < 32; i++, deux_puissance_i <<= 1)
tab_puissance[i] = deux_puissance_i;

La partie gauche du contenu des parenthéses (initl, init2, ..., initn) est la séquence des ins-
tructions d’initialisation des variables, séparées par des virgules. Dans 'exemple ci-dessus, initl
correspond a ¢ — 0 et init2 & deux puissance 1 — 1.

Le premier ’;” sépare l'initialisation de la condition de continuation de la boucle, ici ¢ < 2.

La partie droite aprés le deuxiéme ’;’ est la séquence des instructions de mise a jour des
variables & chaque tour de boucle. Notre exemple en comprend deux : majl (i ++) et maj2

(deuz puissance i «= 1).

A titre d’exemple, l'itération C classique de 0 a n-1 de parcours d’un tableau de n éléments 5
s'écrit comme suit :

/* calcul de la somme des elements d’un tableau */
const TAILLE_TAB = 10;
int tableau[TAILLE_TAB] = { ... }; /* Liste de valeurs d’élements %/

int cumul_elements = O;
int 1i;

for (i=0; i<TAILLE_TAB; i++)
cumul_elements += tableauli];

Chacun des trois composants (initialisation, condition, mise a jour) peut étre omis. La boucle
for (;;) est une boucle infinie °.

8.3.5 Instructions continue et break

L’instruction continue est utilisée dans les boucles for, while ou do...while. Elle arréte 1’exé-
cution de l'itération courante (dans le cas d’une boucle for, les instructions de mise a jour des
variables de boucles sont cependant exécutées).

/* Calcul de la somme des éléments et remplacement */
/* par la valeur absolue */

for (i = 0; i< TAILLE_TAB; i++)
{

5Nous verrons que les tableaux C sont indicés & partir de 0.
6Voir aussi I'instruction break.
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somme += tableaul[i]; /* version equivalente */
if (tableau[i] >= 0) continue; /* sauter changement de signe */
tableaul[i] = - tableaulil; /* si élément déja >= 0 x/
}

Son exécution est suivie de I’évaluation de la condition de boucle et (selon le résultat) de
I’exécution de l'itération suivante ou de la sortie de la boucle. L’instruction continue correspond
a un branchement incondtionnel au test de la condition de boucle.

i=0;

test: if (i >= TAILLE_TAB) goto suite;
somme += tableauli];
if (tableaul[i] >=0) goto test;
tableaul[i] = - tableaulil];
goto test;

suite: /x ... x/

L’instruction break a pour effet de terminer immeédiatement ’exécution de I'instruction switch,
while, do...while ou for a l'intérieur de laquelle elle est exécutée.

/* version equivalente */

while (x < N) /* while(1) A */
{ /* if (1(x < N)) break; x/
y += x; /* y += x; */
} /* } */

L’utilisation de I'instruction break revient en général a exécuter une instruction goto vers une
étiquette apres la fin de la boucle.

test_while: /* neant : condition toujours vraie */
corps_while: if (x >= N) goto suite;
y = x5
goto test_while;
suite: VE Y
8.3.6 Constructeur selon (switch ... case)

L’instruction switch a pour paramétre une expression (en général une variable), notée entre
parenthéses, dont le contenu sera comparé a différentes constantes entiéres’.

Le corps du switch est une séquence d’instructions C étiquetées par des gardes. Une garde est
un sorte d’étiquette un peu particuliére. Une garde ordinaire est de la forme case constante : .

Deux gardes distinctes ne doivent pas porter sur la méme constante. Une instruction peut étre
étiquetée par plusieurs gardes.

La valeur de I'expression est comparée aux constantes des différentes gardes dans 1'ordre ou
elles sont écrites. En cas d’égalité avec la constante d’une garde, I'exécution se poursuit a partir
de cette garde . En I'absence de garde répondant au critére, I’exécution de l'instruction switch se

11 peut s’agir d’expressions évaluables & la compilation.
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termine.

Il est possible de définir une garde particuliére, identifiée par default :, a placer en dernier, et
qui est sélectionnée si aucune autre garde ne correspond a la valeur de la variable.

Chaque séquence d’instructions gardées se termine en principe par une instruction break, de
telle sorte que les instructions associées aux gardes suivantes ne soient pas exécutées

A titre d’exemple, décrivons un programme ayant le comportement suivant :

— les nombres pairs & un seul chiffre sont traités individuellement,

— le chiffre 1 est affiché,
un message est affiché pour tous les nombres impairs & un seul chiffre (1 inclus),
un traitement commun est appliqué a tous les nombres a plusieurs chiffres.

switch (v) {

case O: printf ("v est égale a 0\n");
traiter_la_valeur_nulle ();
break; /* fin de branche normale */

case 2: printf ("v est egale a 2\n");
traiter_la_valeur_deux ();
break;

case 4: printf ("v est egale a 4\n");
traiter_la_valeur_quatre ();
break;

case 6: printf ("v est egale a 6\n");
traiter_la_valeur_six ();
break;

case 8: printf ("v est egale a 8\n");
traiter_la_valeur_huit ();
break;

case 1: printf ("v est egale a 1\n");
/* pas de break : poursuite en ligne avec afficher impair */

case 3:

case b:

case T7:

case 9: printf ("C’est un chiffre impair\n");
break;

default: traiter_pas_un_seul_chiffre ();

}

L’absence volontaire de break en fin de branche d’un switch passe facilement inapercue a la
lecture du programme, et mérite un commentaire.

Comme les autres constructeurs, switch sera converti en version a goto + étiquettes en vue de
sa traduction en langage d’assemblage :

test_0: if (v != 0) goto test_2;
printf ("v est égale a 0\n");
traiter_la_valeur_nulle ();
goto fin_switch;
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test_2: if (v != 2) goto test_4;
printf ("v est égale a 2\n");
traiter_la_valeur_deux ();
goto fin_switch;

test_4: if (v != 4) goto test_6;
printf ("v est égale a 4\n");
traiter_la_valeur_quatre ();
goto fin_switch;

test_6: if (v != 6) goto test_8;
printf ("v est égale a 6\n");
traiter_la_valeur_six ();
goto fin_switch;

test_8: if (v != 8) goto test_1;
printf ("v est égale a 8\n");
traiter_la_valeur_huit Q);
goto fin_switch;

test_1: if (v != 1) goto test_3;
printf ("v est egale a 1\n");
goto trouve_impair;

test_3: if (v == 3) goto trouve_impair;
test_5: if (v == B) goto trouve_impair;
test_7: if (v == 7) goto trouve_impair;

test_9: if (v != 9) goto default;
trouve_impair:
printf ("C’est un chiffre impair\n");

goto fin_switch;
default:
traiter_pas_un_seul_chiffre ();
fin_switch: /* instructions aprés le switch */

Remarque : Lorsque les valeurs des gardes sont nombreuses et forment un sous-ensemble dense
d’un intervalle de valeurs entiéres, il est plus intéressant de recourir & un tableau de branchement
indicé par la variable du switch. Cette technique économise I’exécution d’une longue séquence de
if (...) goto, et permet de sélectionner la branche du switch en temps constant.

8.4 Quelques piéges liés a la syntaxe C

Les particularités syntaxiques du langage C réservent quelques piéges classiques aux program-
meurs habitués a d’autres langages de programmation tels que PASCAL ou ADA.

Le programmeur novice en langage C ou confronté a un comportement anormal de son pro-
gramme a tout intérét a relire son code pour vérifier s’il n’a pas commis une des étourderies
classiques passées revues ici.

8.4.1 Affectations dans les conditions

Une erreur classique consiste a écrire les affectations i := et les comparaisons = comme dans
d’autres langages.
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L’utilisation de := dans les affectations est facile a détecter (le compilateur C signalera l'er-
reur) et a corriger par une simple commande de substitution de texte.

En revanche, I'oubli de doubler le signe — dans les comparaisons est un piége redoutable a
cause de l'absence d’erreur de compilation. L’utilisation d’une affectation C, (qui est une aussi
une expression retournant la valeur de son membre droit) comme condition est parfaitement légale

en C.

L’utilisateur habituel de langage PASCAL ou ADA croira programmer une comparaison entre
x et y en écrivant le code C suivant.

if (x=y) /* Erreur : if (x=y) au lieu de if (x==y) */
printf("egalite \n");

else
printf("x et y sont différents\n");

Il n’est rien : Paffectation C sera éxécutée et (en tant qu’expression) retournera la valeur de y.
Une valeur de y différente de 0 sera considérée comme une condition vraie, une valeur nulle comme
une condition fausse. Le fragment de programme précédent est en réalité équivalent a la séquence
C suivante, dont le comportement est tres différent de ce que souhaitait le programmeur :

X = y;
if (y !'= 0)

printf ("egalite \n");
else

printf ("x et y sont différents\n");

8.4.2 Corps de boucle vide

Il est tres facile d’écrire des boucles dont le corps est vide. La condition d’une boucle while,
notée entre parentheéses, est suivie du corps de boucle, sans caractére de séparation entre les deux.
Le corps peut se limiter a une simple instruction terminée par le caractére ’;’.

Or le caractére ’;” utilisé seul est une instruction : l'instruction vide. Ajouter un ’;” derriére
la condition d’une boucle constitue une autre étourderie classique. Un programmeur souhaitant
écrire un calcul du plus grand commun diviseur (PGCD) de x et y et maitrisant encore mal

(]

I’emploi du ;" en C, pourrait écrire ce genre de code :

while (x != y); /* Erreur : ajout d’un ; aprés la condition */
if (x >= y)

X=X -7Y;
else

Y=y - %

Il sera sans doute trés surpris en découvrant que son programme se comporte comme le code
suivant :

while (x != y)

{
/* corps vide : la boucle est infinie si x != y au depart */
}

if (x >= y)
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X=X -7Y;
else
Y=y - %;

Il est recommandé de mettre en évidence l'utilisation volontaire de corps de boucles vides en
utilisant les accolades ou via un commentaire approprié.

/* Attendre la disponibilité du périphérique */
while ((*REG_ETAT_PERIPHERIQUE) & PERIPH_PRET); /* corps vide */

/* ou encore */

while ((*xREG_ETAT_PERIPHERIQUE) & PERIPH_PRET)
{
+

8.4.3 Enchainement d’alternatives d’un selon (switch)

En D'absence de break, I'exécution d’une branche d’un switch C se poursuit en séquence avec
le code de I’alternative suivante.

switch {meteo}

{
case NEIGE : enfiler_anorak (); /* poursuite dans pluie */
case PLUIE : ouvrir_parapluie ();

/* oubli de break ici */

case SOLEIL: mettre_maillot_de_bain ();
mettre_creme_solaire ();
break;

default: ;

}

Le comportement voulu dans cet exemple est assez simple : sous la neige, le promeneur partira
abrité de son parapluie et équipé de son anorak. Si la température est assez élevée pour qu’il
pleuve au lieu de neiger, le parapluie suffira et I’anorak restera dans sa penderie.

L’oubli de I'instruction break donnera un résultat étonnant : un observateur sera surpris de voir
un promeneur enfiler un maillot de bain et s’enduire d’huile solaire aprés avoir passé un anorak et
ouvert son parapluie pour affronter la neige . ...

8.5 Traduction de if. .. goto en langage d’assemblage
Chaque instruction C if (condition) goto etiquette se traduit en langage d’assemblage par

une séquence d’instructions mettant a jour les indicateurs Z, N, C et V en fonction de la condition
a tester, et (au moins) une instruction b.,,q etiquette.

8.5.1 Traduction de if...goto avec une comparaison

La majorité des conditions sont des comparaisons d’entiers.
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register unsigned int rl, r2, r3;
unsigned int maxi;

r3 = ri;

if (r1 < r2) goto trouve;
r3 = r2;

trouve:

maxi = r3;

Pour 'expression des conditions en fonction des indicateurs, se reporter aux chapitres traitant
de I'arithmétique entiére, et aux tables 1.2 et 1.12.

Conditions des instructions de branchement conditionnel
Type Entiers signés Naturels et adresses
Instruction C Bxx Condition Bxx Condition

goto | BAL 1110 BAL 1110

if (x==y) goto | BEQ 0000 BEQ 0000
if (x = y) goto | BNE 0001 BNE 0001
if (x < y) goto | BLT 1011 BLO, BCC 0011
if (x<— y) goto | BLE 1101 BLS 1001
if (x > y) goto | BGT 1100 BHI 1000
if (x>— y) goto | BGE 1010 BHS,BCS 0010

FiG. 8.3 — Utilisation des branchements conditionnels aprés une comparaison

Les if (condition) goto dans lesquelles la condition porte sur la valeur relative de deux entiers
seront traduits en langage d’assemblage par une instruction cmp de comparaison des deux entiers,
suivie d’une instruction de branchement conditionnel appropriée.

mov r3, ri
cmp ril, r2
blo trouve
mov r3, r2
trouve: 1dr r0, #maxi
str r3, [r0]

Les indicateurs a tester dépendent de la condition a tester et de la nature (signée ou non) des
entiers a comparer. La table 8.3 résume les regles de choix des instructions de branchement et le
codage en binaire du champ condition.

8.5.2 Autres conditions testables par b..,q

Il est aussi possible de tester quelques conditions particuliéres résumées dans la table 8.5.2.

8.5.3 Choix de condition inadaptée a la nature des entiers

L’existence pour une méme inégalité de deux variantes de branchement conditionnel est mal
comprise par de nombreux programmeurs en langage d’assemblage.
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Bxx | Codage | Indicateurs | Sigle | Commentaire

BMI 0100 N Minus | Résultat apparent < 0

BPL 0101 N Plus Résultat apparent > 0

BVS | 0110 \Y% V Set | Débordement signé

BVC | 0111 v V Clear | Pas de débordement signé
BAL | 1110 1 Always | Branchement inconditionnel

Fi1G. 8.4 Branchements testant des conditions particuliéres

Le mauvais réflexe classique est de prendre parmi les instructions de branchement condition-

nel, et ce quelque soit la nature des entiers a comparer, celle dont le sigle évoque le mieux la
comparaison écrite en C, soit BEQ, BNE, BLT, BLE, BGT et BGE.

Que se passe si I'on utilise par exemple BGE au lieu de BHS pour une condition x > y portant
des entiers x et y de type unsigned ?

Lorsque x et y appartiennent a la méme moitié de I'intervalle des entiers naturels repésentables
tout se passe bien. En effet, BGE interpréte x et y comme deux entiers de méme signe et prend
la méme décision que BHS.

Dans le cas contraire, les deux entiers différent au moins par leur bit de pids fort (supposons
que x,—1 = 0 et y,_1 = 1). BHS détecte un entier y supérieur a Uentier x, alors que BGE inter-
préte y comme un entier signé négatif, donc inférieur a I'entier signé x positif ou nul. Les deux
instructions ont dans ce cas des comportements opposeés.

Si la comparaison porte sur des adresses dans le cas d’un parcours de tableau via un pointeur,
les problémes se poseront lorsque le tableau est implanté a cheval sur les deux moitiés de I'espace
mémoire adressable (début avant Ox7FFFFFFF et fin aprés 0x80000000).

8.5.4 Gestion de conditions quelconques

Bien que les comparaisons ordinaires représentent la grande majorité des cas, I'expression de
la condition des if, while, do et for peut étre plus complexe.
Comparaison implicite a 0

Une condition se limitant & une simple variable est une comparaison implicite avec 0 : if (x) ...

est par définition équivalent a if (x!— 0) ....

register int ri;
. /* cmp ril, #0 x/
if (x) goto ailleurs;  /x bne ailleurs */

Calculs et affectations dans les conditions

La condition peut étre une expression a calculer, éventuellement affectée a une variable au
passage, et dont la valeur est implicitement a comparer a 0.

Le calcul peut étre déplacé avant 1’évaluation de la condition, en introduisant au besoin un
temporaire.
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register int ril, r2;
if ((r1 + r2) & 1) goto somme_impaire;

/* transformation */
register int reg_temp; /* 3 */

reg_temp = (rl + r2) & 1;
if (reg_temp != 0) goto somme_impaire;

Dans ce cas de figure, il est possible d’économiser une instruction de comparaison si la derniére
instruction de calcul de I’expression met a jour les indicateurs.

add r3, ri, r2
andS 1r3, #1 ; met & jour ZNCV
bne somme_paire

8.5.5 Conditions composées (|| et &&)

Les constructons algorithmiques a conditions composites obtenues par assemblage de conditions
simples seront transformées en un assemblage équivalent de constructeurs et if...goto utilisant
chacun une condition simple

if ((a<b) && (b<c)) milieu = c;

/* version equivalente */
if (a<b)
if (b<c) milieu = c;

/* version equivalente transformee en if() goto */
if (a >= b) goto fin_si;
if (b >= c¢) goto fin_si;
milieu = c;
fini_si:

if ((a>9) || (a<0)) printf ("Pas un chiffre\n");

/* transformation */

if (a>9) goto print;

if (a>=0) goto fin_si;

print: printf ("Pas un chiffre\n");
fin_si:
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Chapitre 9

Tableaux et arithmétique sur les pointeurs

La notion de tableau correspond & une collection d’objets de méme type, identifiés par des
numéros (ou indices), et stockés a des emplacements mémoire consécutifs®.

En C, il n’existe pas a proprement parler de type tableau : les accés aux tableaux sont en fait
réalisés via les primitives de manipulation des pointeurs. Pour permettre la gestion de tableaux,
le langage C offre les facilités suivantes :

1. la réservation d’emplacements contigus en mémoire pour n éléments de méme type, avec ou
sans valeurs initiales,

2. une convention de numeérotation : les éléments d’un tableau C de n éléments sont indicés a
partir de 0 et jusqu'a n — 1,

3. T'opérateur d’indigage et I'arithmétique associée sur les adresses et les pointeurs (] |),

4. une convention d’ordre de stockage des tableaux de tableaux, pour les tableaux a plusieurs
dimensions.

9.1 Déclaration de tableau & une dimension

9.1.1 Syntaxe de la déclaration

Une déclaration de tableau avec réservation de place comprend dans I'ordre :
le type des éléments du tableau,

— le nom du tableau déclaré,

— sa taille encadrée par des crochets et exprimée en nombre d’éléments, qu’il est conseillé de
définir par une constante symbolique.
une spécifiation optionnelle de valeur initiale, a savoir le signe égal suivi d'un contenu de
tableau,

— le marqueur de fin (caractére ’;’).

Le role de la déclaration est triple :
associer une information de type (type d’éléments et dimensions) au tableau en vue de
vérifier la concordance de type dans les instructions utilisant le tableau,

— réserver de la mémoire pour contenir le tableau et 'initialiser le cas échéant,
associer une étiquette du nom du tableau a I’adresse du contenant : I'adresse du premier
élément du tableau est celle du premier des octets réservés au stockage du tableau : la
déclaration d’un tableau t définit implicitement t comme synonyme de la constante adresse
&(t[0]) 2.

.. .en respectant les contraintes d’alignement. . .

2(C’est la raison pour laquelle opérateur & ne s’applique par a un tableau : &t signifierait &&(t]0]).

109



110 CHAPITRE 9. TABLEAUX ET ARITHMETIQUE SUR LES POINTEURS

Pour la traduction en langage d’assemblage, une déclaration de tableau de n éléments est trai-
tée comme n réservations de place pour un élément. En ’absence de valeur initiale explicite, le
tableau sera stocké dans la section bss.

Attention : la taille du tableau n’est pas stockée en mémoire avec ses éléments et aucune
vérification dynamique de validité de l'indice n’est effectuée a I'exécution. L’exécution d’un accés
a tli| avec i égal a -1 n’est pas légal, mais réalisera vraisemblablement un accés a la variable
déclarée avant le tableau t, sans générer d’erreur durant 1’exécution.

9.1.2 Syntaxe de l'initialisation

La syntaxe C décrivant un contenu de tableau est un ensemble d’autant de constantes que
d’éléments, séparées par des virgules, et encadré par des accolades.

La partie initialisation d’'une déclaration de tableaux peut spécifier moins de valeurs que d’élé-
ments déclarés (dimension) du tableau, les derniers éléments du tableau seront implicitement
initialisés a 0.

Lorqu’un tableau est déclaré avec initialisation, la taille de sa dimension peut étre omise : elle
est alors définie implicitement & partir du nombre d’éléments dans la partie initialisation.

9.1.3 Exemple sans initialisation

#tdefine TAILLE_NOM 35
char nom[TAILLE_NOM] ;
int puis2 [4];

Dans la traduction en langage d’assemblage, il est possible de définir une étiquette pour chaque
élément du tableau.

.bss
nom: /* adr tableau = adr ler element */
adr_nom_0: .skip 1 /* stockage de nom[0] =/
adr_nom_1: .skip 1 /* stockage de nom[1] */
adr_nom_2: .skip 1 /* stockage de nom[2] */
adr_nom_34: .skip 1 /* stockage de nom[34] */

.align 4

puis2:
adr_puis2_0: .skip 4 /* stockage de puis2[0] */
adr_puis2_1: .skip 4 /* stockage de puis2[1] */
adr_puis2_2: .skip 4 /* stockage de puis2[2] */
adr_puis2_3: .skip 4 /* stockage de puis2[3] */

Toutefois, ’adresse d’un élément est calculée a partir de son indice et de I'adresse (du premier
élément) du tableau. Il suffit donc de ne définir qu’une étiquette, du nom du tableau, sur I'empla-
cement du premier élément.

.bss
nom: .skip 35
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.align 4
puis2: .skip 16

9.1.4 Exemple avec initialisation

#tdefine TAILLE_NOM 35

#tdefine TAILLE_PUIS2 4

char nom[TAILLE_NOM]={’c’,’0’,’n’,’t’,’e’,n’,’u’};
int puis2 [TAILLE_PUIS2] = {1,2,4,8};

La déclaration d’un tableau initialisé de n éléments est traitée comme n déclarations d’éléments
initialisés séparéments. Cependant les éléments doivent étre contigus : si un des éléments est
initialisé explicitement, tous les éléments du tableau seront stockés dans la section data.

.bss
nom: .byte ’c’ @ 7 elements avec initialisation
.byte ’o’
.byte ’n’
.byte ’t’
.byte ’e’
.byte ’n’
.byte ’u’
.skip 28 @ 28 elements sans initialisation
.align 4
puis2: .word 1
.word 2
.word 4
.word 8

Notons que nous aurions pu remplacer les sept directives .byte par la directive .ascii "contenu".

9.1.5 Un autre exemple

short int tab[b] = {3,6,10,15,-5};
short int x = 4;
short int y;

.data
adr_tab_0: @ cette etiquette est inutile mais rappelle
@ que tab est equivalent a &(tab[0])
tab: .short 3
.short 6
.short 10
.short 15
.short -5
X: .short 4
.bss
y: .skip 2
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9.1.6 Tableaux de chaines de caractéres

Rappelons que les chaines de caractéres sont représentées comme des tableaux, la fin de chaine
étant signalée par le code ASCII 0.

Pour stocker une chaine de n caractéres, on doit déclarer un tableau de n+1 éléments de type
char (ou unsigned char). La taille retournée par la fonction strlen n’inclut pas le 0 de fin de chaine
(strlen("ab") retourne 2).

char reponse[4]="oui"; /* ou char reponse[4] = {’0’,’u’,’i’,0}; */

.data
reponse: .asciz "abc"

9.2 Indicage de tableau et arithmétique sur les adresses

9.2.1 Adresse du "¢ élément d’un tableau

La différence entre deux adresses d’éléments consécutifs d’un tableau de type type t est si-
sime

zeof(type t). Les éléments étant indicés a partir de 0, 'adresse du "¢ élément d’un tableau est
égale a I'adresse du (premier élément du) tableau plus i fois la taille d’un élément.

&(t[i]) vaut t + i * sizeof (type_t)

9.2.2 Arithmétique sur les adresses et indicage

L’opérateur d’indigage de tableau en C est | | : t[i] est la notation du "¢ ¢lément de t. Rap-
pelons que 'adresse du premier élément (d’indice 0) est celle du tableau : t est synonyme de &(t[0]).

L’opérateur C d’addition d’un entier ¢ & un pointeur p (ou une constante adresse) multiplie
implicitement I'entier par la taille du type d’objet reperé par p avant d’effectuer 1’addition. Il
permet de se déplacer de ¢ éléments dans un tableau : si le contenu de p est I'adresse d’un élément
de tableau t|k|, alors I'expression p + i est 'adresse de 'élément de tableau t|k-+i|. Pour ce faire,
I’entier ajouté a un pointeur ou une constante adresse est implicitement multiplié par la taille du
type d’élément pointé.

Considérons I'affectation p = p + 3. Elle incrémente le contenu de p de 3 si p est de type
(void *), (char *) ou (unsigned char *), de 6 si p est de type (short int * ) ou (unsigned short
int *) et de 12 si p est un pointeur d’entier sur 32 bits.

Par définition de [ | et *, tli] est strictement équivalent a *(t-+i) que 'on peut aussi écrire

*(&(t[0]) + 1).

9.3 Traduction des accés aux tableaux

La méthode de traduction en langage d’assemblage des manipulations de tableaux en passe
par deux réécritures du programme C d’origine dans des formes de C intermédiaire.

La premiére réécriture remplace les opérateurs d’indigage || par des opérateurs *. La deuxiéme

fait apparaitre les variables intermédiaires pour les adresses et les contenus et met en évidence les
multiplications par la taille des éléments.
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9.3.1 Exemple a traduire

short int tab[5] = {3,6,10,15,-5};
short int x = 4;
short int y;

register short int reg_ptr;

y = tab[3];

tab[4] = 5;

*tab = -2; /* tab[0] = -2 %/

reg_ptr = tab; /* reg_ptr repere tab[0] */
xreg_ptr = 3 /* tab[0] = 3 */

reg_ptr += 2; /* reg_ptr repere tab[2] */
tab[x] = (xreg_ptr) + 4; /* tab[x] = tab[2] + 4 */
y = *(reg_ptr+2) /* y = tabl[4] */

}

9.3.2 Elimination des opérateurs | |

La premiére version intermédiaire est obtenue remplacant systématiquement toute expression
t|i] par *(t+i) et toute variable v stockée en mémoire par *&v.

*gy = * (tab + 3);

*(tab + 4) = 5;

reg_ptr = tab;

xreg_ptr = 3;

reg_ptr += 2;

*x (tab + *&x) = *reg_ptr+4;
*x&y = x (reg_ptr+2);

9.3.3 Forme intermédiaire pour la traduction

Cette deuxiéme version intermédiaire destinée a la traduction met en évidence I'utilisation des
temporaires, comme pour la traduction des affectations et expressions utilisant des variables ordi-
naires. Elle met aussi en évidence les multiplications implicites par la taille d’un élément de tableau.

Dans cette forme intermédiaire, nous utilisons un registre pointeur de type (void *), dont le
type est converti en (short *) avant application de lopérateur *. Ainsi, lorsqu’il est ajouté a
reg adr, le contenu de reg ajout n’est pas multiplié par sizeof(short int).

La conversion du contenu de reg_ptr en (void *) indique au compilateur de ne pas multiplier
implicitement I’ajout par sizeof(short).

register void *reg_adr;

register int reg_vall, reg_val2;
register int reg_ajout;

reg_adr = tab; Q@ *&y = * (tab+3)
reg_ajout = 3 *x 2; @ 3 *sizeof (short int)
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reg_vall = x (short *) (reg_adr + reg_ajout);
reg_adr = &y;
*(short *) reg_adr = reg_vall;

reg_vall = 5; @ *(tab+4) =5
reg_adr = tab;
reg_ajout = 4 *x 2; @ 4x sizeof (short int)

* (short *) (reg_adr + reg_ajout) = reg_vall;

reg_ptr = tab;

reg_vall = 3 @ *reg_ptr = 3
xreg_ptr = reg_vall;

reg_ptr = (short *) ((void *) reg_ptr + 2 * 2); @ + 2 * sizeof(short )

@ *(tab + *&x) = *reg_ptr+4
reg_ajout = 4 *x 2; @ 4 xsizeof (short)
reg_vall = * (short x) ((void *)reg_ptr + reg_atout);
reg_adr = &x;
reg_val2 = *reg_adr;
reg_adr = tab;

reg_ajout = reg_val2 * 2; @ 2 *xsizeof (short)
* (short*) (reg_adr + reg_ajout) = reg_vall;

reg_ajout = 2 x sizeof (short int); Q@ *&y = *(reg_ptr+2)
reg_vall = x (short int *) (reg_ptr + reg_ajout);

reg_adr = &y;

xreg_adr = reg_vall;

9.3.4 Traduction en langage d’assemblage

La traduction en langage d’assemblage suppose une attribution arbitraire des registres géné-
raux du processeur aux variables reg adr, reg ajout, reg vall, reg val2 et reg_ptr.

Les opérations entre registres sont traduites en instructions mov et add. Les affectations du
type *regad — regval et regval — *regad correspondent respectivement aux instructions store
et load.

Les multiplications par 2” correspondent a des instructions de décalage de x bits & gauche
(Isl reg, reg, #x). Les constantes adresses sur 32 bits sont chargées par mov32, les constantes
codables sur 8 bits par mov.

@ r0 : reg_ajout

@ r1, r2 : reg_vall , reg_val2
@ r3 : reg_adr

@ r6 : reg_ptr

.text
mov32 r3, #tab @ reg_adr = tab
mov  r0, #6 @ reg_ajout = 3 *sizeof(short int) : 3 x 2
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ldrsh r1, [r3, rO0] @ reg_vall = * (short *) ((void *) reg_adr + reg_ajout)
mov32 r3, #adr_y reg_adr = &y
strh r1, [r3] * reg_adr = reg_vall

@ ©

mov rl, #b @ reg_vall =5

mov32 r3, #tab @ reg_adr = tab

mov  r0, #8 @ reg_ajout = 4 *sizeof(short int) : 4 x 2

strh r1, [r3, r0] @ *x (short *) ((void *) reg_adr + reg_ajout) = reg_vall
mov32 r6, #tab @ reg_ptr = tab

mov rl, #3 @ reg_vall = 3

strh r1, [r6] Q@ *reg_ptr = regvall

add r6, r6, #4 @ reg_ptr += 2

@

mov r0, #8
ldrsh r1, [r6, rO]

reg_ajout = 4 * sizeof(short int) : 4 x 2
reg_vall = x (short *) ((void *) reg_ptr + reg_ajout)

(&)

mov32 r3, #adr_x @ reg_adr = &x

ldrsh r2, [r3] Q@ reg_val2 = x reg_adr

mov32 r3, #tab @ reg_adr = tab

1s1  r0, r2, #1 @ reg_ajout = reg_val2 * 2 (decale G 1 bit)

strh r1, [r3, r0] @ * (short *) ((void *) reg_adr + reg_ajout) = reg_vall
mov  r0, #4 Q@ reg_ajout = 2 *sizeof (short int)

ldrsh r1, [r6,r0] @ reg_vall = * (short *) ((void *) reg_ptr + reg_ajout)
mov32 r3, #adr_y @ reg_adr = &y

strh r1, [r3] Q@ * reg_adr = reg_vall

Il est & remarquer que toutes les instructions store correspondent a un opérateur * situé tout
a gauche des affectations dans la premiére forme C intermédiaire du programme.

9.4 Boucles de parcours d’un tableau a une dimension

9.4.1 Boucle de parcours avec indice

La maniére habituelle de parcourir les éléments d'un tableau de N éléments est d’utiliser une
variable de boucle parcourant 'intervalle des indices [0, N-1] (autrement dit [0, N[ : intervalle de
0 inclus a N exclus).

A titre d’exemple, I'extrait de code suivant calcule la somme des puissances de deux contenues
dans le tableau puis2 (de taille paire).

short int somme_puis2 = 0;
int indice;

/* Rappel : indice ++ pourrait s’ecrire indice = indice + 1 %/
for (indice = 0; indice < TAILLE_PUIS2; indice++)

{

somme += puis2 [i];

}
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9.4.2 Boucle de parcours avec pointeur

Une autre maniére simple de parcourir un tableau est d’utiliser un pointeur parcourant les
adresses des éléments successifs (ici de &puis2|0] jusqu’a &puis2[TAILLE PUIS2| exclue).
Rappelons que ces adresses peut aussi s’écrire puis2 et puis2 + TAILLE PUIS2.

short int somme_puis2 = O;
short int *ptr_short;

/* Rappel : ptr_short ++ pourrait s’ecrire ptr_short = ptr_short + 1 x/
/* ptr_short ++ signifie se decaler d’un element dans le */
/* tableau repere par ptr_short */

for (ptr_short = puis2; ptr_short < puis2 + TAILLE_PUIS2; ptr_short++)
{

somme += *ptr_element;

}

9.4.3 Conversion de boucle : indice vers pointeur

Il est possible de transformer progressivement un parcours par indice en parcours par pointeur.
Considérons a titre d’exemple, la boucle suivante qui ajoute a 1’élément d’indice i le contenu de
I’élément d’indice TAILLE PUIS2 - i.

register int indice;

for (indice = 0; /* initialisation */

indice < TAILLE_PUIS2/2; /* condition x/
indice ++) /* mise a jour */
{
puis2 [i] = puis2 [i] + puis2 [TAILLE_PUIS2 - il;
}

Remarquons que le calcul des adresses dans 'affectation implique d’effectuer une soustraction
et deux multiplications (indice fois taille d’un élément de tableau) par tour de boucle?.

Chaque tour de boucle met en jeu six calculs :

1. une comparaison (condition sur l'indice)

2. une incrémentation de l'indice

3. deux multiplications et une soustraction pour le calcul des adresses
4

. une addition des contenus des éléments de tableau

La premiére étape consiste a déclarer deux pointeurs qui repérent en permanence puis2|i| et
puis2|TAILLE PUIS2 -i|. IIs sont initialisés en début de boucle d’aprés la valeur initiale (0) de
indice. A chaque tour de boucle, ils sont mis & jour en fonction de I’évolution de la variable indice.

3Plus deux additions de I'adresse de début de tableau réalisables dans une instruction load et dont la présence
n’affecte donc pas le temps d’exécution.
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int indice;
register short int *ptdebut, *ptfin;

for (indice = 0, ptdebut = puis2, ptfin = puis2 + TAILLE_PUIS2;
indice < TAILLE_PUIS2/2;
indice ++, ptdebut++, ptfin --)

{

/* Invariant : ptdebut = puis2 + indice */
/% ==> ptdebut repere puis2[il */
/* Invariant : ptfin = puis2 + TAILLE_PUIS2 - indice */
/% ==> pftin repere puis2[TAILLE_PUIS2 - indice] x*/
xptdebut = *ptdebut + *ptfin;

}

L’invariant nous permet de remplacer indice par ptdebut - puis2 dans la condition qui devient
ptdebut - puis2 < TAILLE PUIS2 /2, puis ptdebut < puis2 + TAILLE PUIS2 /2.
Aprés modification de la condition, la variable indice n’est plus utilisée ni dans le corps de boucle,
ni dans la condition de continuation et peut étre supprimée.

register short int *ptdebut, *ptfin;

for (ptdebut = puis2, ptfin = puis2 + TAILLE_PUIS2;
ptdebut < puis2 + TAILLE_PUIS2/2;
ptdebut++, ptfin --)
{
*ptdebut = *ptdebut + *ptfin;
}

Cette nouvelle version n’effectue que quatre calculs par tour de boucle :
1. une comparaison (condition sur le pointeur ptdebut)

2. une incrémentation (ptdebut-+-+)

3. une soustraction (ptfin )
4

. une addition des contenus des éléments de tableau

On trouve aujourd’hui des compilateurs optimisant capables de réaliser eux-méme ce genre
de transformation et aboutir & une boucle différente, respectant la sémantique du programme
d’origine, mais permettant de générer un code machine plus efficace.

9.5 Contraintes d’alignement et types d’éléments particu-
liers
Tous les éléments d'un tableau doivent respecter les contraintes d’alignement sur un multiple

de leur taille. La réservation de place pour le tableau sera donc éventuellement précédée d’une
directive d’alignement.

Les tableaux de pointeurs sont gérés de la méme maniére que les tableaux d’entiers longs.
Rappelons que la taille d’'un pointeur est celle d’'une adresse, & ne pas confondre avec la taille

du type d’objet pointé : quelque soient T et T’ deux types C, la propriété suivante est vérifiée :
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118 CHAPITRE 9. TABLEAUX ET ARITHMETIQUE SUR LES POINTEURS

sizeof (T *) = sizeof (T’) = sizeof (void *). Ainsi, pour une machine 32 bits, tous les poin-
teurs ont une taille de 4 octets.

L’opérateur sizeof tient compte des contraintes d’alignement propres aux structures. Ces
contraintes s’appliquent évidement entre deux champs appartenant a la méme structure, mais
elles s’appliquent aussi entre deux éléments consécutifs d’un tableau de structures. Il peut étre
nécessaire de laisser des octets inutilisés entre le dernier champ d’une structure d’indice ¢ et le
premier champ de la structure de rang ¢ + 1 pour respecter les contraintes d’alignement de ce
dernier.

L’opérateur sizeof, utilisé par I'arithmétique sur les pointeurs et les calculs d’adresse des élé-
ments de tableau, doit en tenir compte comme l'illustre I'exemple suivant. Bien que les champs
d’une structure s soient déclarés par ordre décroissant de taille et ne nécessitent donc pas d’octet
d’alignement entre eux, sizeof(struct s) retourne 8, soit la somme des tailles des champs plus trois
pour les octets d’alignement nécessaires entre deux structures de type s consécutives.

typedef struct s { /% sizeof (struct s) = 8 */

long 1; /* un long de taille 4  */
char c; /* un char de taille 1 x/
} type_s

type_s tab [2] = {{4,’a’},{5,’b’}};

/* Traduction en langage d’assemblage */

SIZEOF_STRUCT_S=8

.data
tab: .word 4 /* tab[0] */
.byte ’a’
.align 4 /* 3 octets d’alignement entre les 2 */
.byte b’ /* tab[1] */
.align 4

fin_tab:

9.6 Tableaux a deux dimensions

9.6.1 Déclaration

Un tableau a une dimension permet de représenter un vecteur.

On peut considérer une matrice (m,n) comme un vecteur de m vecteurs comprenant n éléments
chacun. Le langage C permet de déclarer directement des tableaux a 2 dimensions correspondant
a de telles matrices sans nommer le type tableau a n éléments.

Une déclaration type elem mat [M][IN] définit un tableau mat de taille M dont chacun des
éléments est lui-méme un tableau de N éléments de type type elem.

#define N 3
#define M 4

4Ce cas incluant celui des unions
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/* Deux maniéres équivalentes de déclarer des tableaux & deux dimensions */
typedef long vect [N]; /* vect : le type tableau de N entiers */

long matricel [M][N]; /* matrice (m,n) declaree directement x*/
vect matrice2 [M]; /* matrice (m,n) en tableau de tableaux */

Le procédé est généralisable a plus de deux dimensions : la déclaration int t [P][M][N] définit
un tableau t de P tableaux a deux dimensions de tailles M et N.

En langage machine, ces déclarations génére les mémes directives de réservation que la décla-
ration d'un tableau a une dimension du méme nombre d’éléments.

N=3

M=4

.bss
matricel: .skip Mx*N
matrice2: .skip Mx*N

9.6.2 Ordre de rangement et calcul d’adresse d’un élément

En mémoire, on trouve d’abord les N éléments du premier des M tableaux, puis les N éléments
du deuxiéme tableau de N éléments, et ainsi de suite.

On trouve donc au début de la mémoire allouée au tableau ’élément d’indices[0][0], suivi de
I’élément d’indices [0][1] et suivants jusqu’a 1’élément d’indices [0][N-1], puis I’élément d’indices
[1][0] suivi de I'élément d’indices [0][1] et ainsi de suite jusqu’a [M-1][N-1]. Autrement dit,
lorsque l'on parcourt les éléments du tableau dans l'ordre de leur rangement en mémoire, c’est
I'indice de la derniére dimension (indice le plus a droite) qui varie le plus vite.

Soit type t[T,]...[T5][11] un tableau a n dimensions, 'adresse de 1'élément t[i,,][i,—1] . . . [i1][io]
est : t + sizeof (type t) % ((-..(Gn * Tyo1 +in_1) * Tn_o+in_o)...)x 11 +i1) * Ty + ip).

Comme le montre I'expression ci-dessus, pour calculer I'adresse d'un élément de tableau a n
dimensions, il faut connaitre la taille des n-1 derniéres dimensions.

] e el I RCIOURODREOC

o T, T e T T T TR

Y Ty Ty T - b ~C - | = X -
Tyo Ts1 T3 Ti=2]: Ty Ty Ty T12][0] T[%l[l] T[2]2]

Thie3: To T o RN

Fi1G. 9.1 Décomposition d'un tableau 4,3 en tableau de 4 tableaux
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9.6.3 Initialisation

Pour I'initialisation, un tableau a deux dimensions est considéré comme un tableau de tableaux.
La valeur initiale du tableau est une suite d’éléments entre accolades, chacun de ces éléments étant
lui-méme une suite de valeurs initiales entre accolades, séparées par des virgules.

Voici a titre d’exemple l'initialisation de la matrice de la figure 9.1.

#define valTO0O 1000
#define valTO1 1001
#define valT02 1002
#define valT10 1010
#define valT11 1011

#define valT32 1032

long T [41[3] = { A{valT00, valTO1, valTO02}, /* TLO] */
{valT10, valTi11l, valTi12}, /% T[1] */
{valT20, valT21, valT22}, /* T[2] */
{valT30, valT31, valT32} /% T[3] */
};

En langage d’assemblage, la réservation avec initialisation est traitée comme celle d’un tableau
a une dimension.

valT00=1000
valT01=1001
valT02=1002
valT10=1010
valT11=1011

valT32 1032

.data

T: .word valTO00 @ debut du tableau T[0]
.word valTO1
.word valTO02
.word valT10 @ debut du tableau T[1]
.word valTi11

.word valT32 6] fin du tableau T[3]

9.6.4 Boucle de parcours par pointeur

Considérons le probléme du calcul de la somme des éléments d’un tableau a 2 dimensions. La
méthode classique utilise deux boucles emboitées parcourant chacune les indices d’une dimension.

for (ligne = 0; ligne < 4; ligne++)
for (colonne = 0; colonne < 3; colonne++)
somme += t[ligne] [colonne];

Mais on peut mettre a profit le fait que les éléments du tableau sont parcourus dans 'ordre de
I'ordre stockage en mémoire et n’utiliser qu’une seule boucle avec un pointeur :
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for (ptr = t; ptr < &(t[4]1[3]);ptr++)
somme += *ptr;

9.6.5 Passage de tableau & n dimensions en paramétre

Une procédure recevant un tableau passé en paramétre ne peut l'indicer correctement sans in-
formation sur la taille des n — 1 derniéres dimensions du tableau. Lorsque celles-ci sont constantes,
elles peuvent étre indiquées a la déclaration des arguments de la procédure.

Une déclaration d’'un paramétre t de type int t [ |[4][3] dans un prototype de fonction n’est

pas une déclaration réservant de la place pour stocker un tableau. Elle indique simplement la
géométrie du tableau dont I'adresse est passée a la procédure.
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Chapitre 10

Procédures sans récursion

Ce chapitre présente la gestion simplifiée des appels de procédures, qui ne serait applicable
qu’aux appels sans récursion. La méthode de gestion générale appliquée a tous les cas sera présentée
dans le chapitre suivant.

10.1 Notion de procédure

10.1.1 Principe

Soit une méme suite d’opérations a exécuter dans différentes parties d’'un programme. Pour
réduire la taille des programmes et éviter les problémes de mise a jour de copies multiples en
cas de modification, il est préférable de n’inclure qu'un seul exemplaire de la suite d’instructions
correspondante, qui constituera le corps d'une procédure. Le programmeur peut passer des argu-
ments a la procédure pour en paramétrer le fonctionnement.

Chaque utilisation de la suite d’opérations constitue un point d’appel de la procédure. En
chaque point d’appel est inséré une instruction de branchement aller vers le début (ou prologue)
de la procédure. L’épilogue de la procédure contient une instruction de branchement retour vers
I'instruction qui suit le point de branchement.

10.1.2 Exemple sans procédure

Soient les déclarations de variables suivantes.

long t
long x

. e

long y
long z

1] 1l
D O BN

int a
int b
int c
int d

e woe

Il
O = O =

register long *pl, *p2;
register long il, i2;

Considérons un extrait de code, qui réalise quatre échange de contenus de deux variables.

123
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void main ()

{

X--;

/* échanger les contenus de x et y si a != 0 */

if (a = 0)

{

pl = &x;

P2 = &y;

i1 = *pi; /* debut sequence d’instructions commune */
i2 = *p2;

*pl = i2;

*p2 = il; /* fin  sequence d’instructions commune */
}

y =74

/* échanger les contenus de x et z si b != 0 %/

if (b !=0)

{

pl = &x;

p2 = &z;

i1 = *pi; /* debut sequence d’instructions commune */
i2 = *p2;

*pl = i2;

*p2 = il; /* fin  sequence d’instructions commune */
}

z = z+4;

/* échanger les contenus de y et z si c != 0 */

if (c !=0)

{

pl = &y;

p2 = &z;

i1 = *pi; /* debut sequence d’instructions commune */
i2 = *p2;

*pl = i2;

*p2 = il; /* fin  sequence d’instructions commune */
}

x++;

/* échanger les contenus de t et z si d !'= 0%/

if (d !'= 0)

{

pl = &t;

p2 = &z;

i1 = *pi; /* debut sequence d’instructions commune */
i2 = *p2;

+pl = i2;

*p2 = il; /* fin  sequence d’instructions commune */
}
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t++;
}

10.1.3 Exemple avec procédures sans paramétre

Déclarons une procédure d’échange et une procédure milieu qui englobe les deux deuxiéme et
troisieme échanges :

void echanger ()

{ /* prologue */
/* début du corps */
il = *pl; /* 4 , 13 , 22, 32 %/
i2 = *p2; /* 65 , 14 , 23, 33 %/
*pl = 12; /* 6 , 15 , 24, 34 x/
*p2 = il; /*x 7 , 16 , 25, 35 x/
/* fin du corps */
iy /* épilogue + retour */ /x 8 , 17 , 26, 36 */
void milieu()
{ /* prologue */
/* debut du corps */
if (b !'= 0)
{
pl = &x; /* 11 %/
p2 = &z; /* 12 x/
echanger() ; /* B x/ /* 13 */
suiteB:
}
z = z+4; /* 18 x/
if (¢ '= 0)
{
pl = &y; /* 19 %/
p2 = &z; /* 20 */
echanger() ; /¥ C x/ /* 21 */
suiteC:
X++; /* 27 x/
}
} /* epilogue+retour */ /* 28 x/

Le programme modifié contient un appel de la procédure milieu et quatre de la procédure
échanger : la suite d’instructions dans le corps de la procédure échanger est exécutée quatre fois.

L’ordre d’exécution des instructions est noté en commentaire. La fin de chaque procédure
contient une instruction de branchement retour. Chaque appel de procédure contient une instruc-
tion de branchement vers le prologue de la procédure.

L’ordre des branchements de retour est I'inverse de celui des branchements aller. Le premier
retour est exécuté par la derniére procédure appelée : cette propriété est dite "LIFO" (Last In

First Out).
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void main ()

{

X--; /* 0 *x/
if (a !'= 0)

{

pl = &x; /* 1 %/
p2 = &y; /% 2 %/
echanger() ; /* A : point d’appel de echanger */ /* 3 */
suiteA:

}

y = y-4; /* 9 x/
milieu (); /* 10 *x/
suiteM:

if (d !'= 0)

{

pl = &t; /* 29 x/
p2 = &z; /* 30 *x/
echanger () ; /* D */ /* 31 %/
suiteD:

tH+; /* 37 */
}

} /* 38 */

10.1.4 Gestion des branchements aller et retour

La traduction de cet exemple en langage d’assemblage de notre processeur RISC fictif n’appelle
pas de commentaire particulier excepté pour la traduction des branchements aller et retour.

Il convient de définir une convention de stockage pour le paramétre implicite qu’est 1’adresse
de retour : elle pourrait étre stockée en mémoire a une adresse définie statiquement (par exemple
dans bss), ou dans un registre du processeur. Nous choisissons de la stocker dans le dernier registre
général du processeur : que nous appelerons link register. Le symbole Ir sera un synonyme de r31..

Les instructions b.ongl (branch and link) et jmpl (jump and link) sont destinées aux appels
de procédures. Avant de modifier le compteur ordinal, elles le sauvegardent dans le registre Ir.
Au moment de la sauvegarde, le compteur ordinal repére I'instruction qui suit 'instruction de
branchement b.,,4[ ou jmpl. L’adresse de branchement de retour contenue dans Ir a la fin de la
procédure échanger est suitel lors de 'appel A, suiteB lors de 'appel B, suiteC lors de 'appel C
et suiteD lors de I'appel D.

Dans I'épilogue de la procédure, le branchement retour a I’adresse contenue dans Ir correspond
a 'instruction jmp lIr.
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10.1.5 Traduction de ’exemple

.data
.word
.word
.word
.word
.word
.word
.word

Q0 T M N< M o
O =, Ok, O Ok N

.word

127

@ affectation arbitraire des registres aux variables

@ r0
.text

i1 rl: pl r2:i2

r3:p3

r4,r5: temporaires */

/* traduction de 1’appel de la procédure échanger sans paramétre */

echanger: @ prologue de echanger : vide ici
@ il faudra ajouter sauver registres modifiés */
ldr r0, [r1] @ i1 = *pl
ldr r2, [r3] Q@ i2 = *p2
str r2, [ri1] Q@ *xpl = i2
str r0, [r3] Q@ *p2= r3
@ epilogue de echanger : vide ici
@ il faudra ajouter restaurer registres modifiés */
jmp 1r @ branchement retour
@ & suiteA au premier retour
@ & suiteB au deuxiéme retour
@ & suiteC au troisiéme retour
@ & suiteD au quatriéme retour
milieu: @ prologue de milieu : vide ici
@ il faudra ajouter sauver registres modifiés */
mov32 rb5, #b
ldr r4, [r5]
cmp r4, #0
beq suiteB
mov32 rl, #x @ pl =&x
mov32 r3, #z @ p2 =&z
bl echanger @ echanger() : 1lr <- suiteB; b echanger
suiteB: Qz=2z+4
mov32 rb, #z
ldr r4, [r5]
sub rd, r4, #4
str rd, [r5]

mov32 rb5, #c
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suiteC:

main:

suitel:

suiteM:

suiteD:

1ldr
cmp
beq
mov32
mov32
bl

mov32
1dr
sub
str

@ epilogue de milieu :

rd, [r5]
r4, #0
suiteC
rl, #y
r3, #z
echanger

r5, #x

rd, [r5]
rd, r4, #1
rd, [r5]

CHAPITRE 10. PROCEDURES SANS RECURSION

@ pl =&y
@ p2 =&z

@ echanger()

0 x ++

vide ici

: 1r <- suiteC; b echanger

@ il faudra ajouter restaurer registres modifiés */

jmp

@ prologue de main :

1r

@ branchement retour (a suiteM)

@ prévoir 1l’ajout de sauver registres modifiés

mov32
1dr
sub
str

mov32
1dr
cmp
beq
mov32
mov32
bl

mov32
1dr
sub
str

bl

mov32
1dr
cmp
beq
mov32
mov32
bl

mov32
1dr
sub
str

r5, #x

r4, [r5]
rd, r4, #1
rd, [r5]

rb5, #a
rd, [r5]
r4, #0
suiteA
rl, #x
r3, #y
echanger

r5, #y

rd, [r5]
rd, r4, #4
rd, [r5]

milieu

r5, #d
rd, [r5]
r4d, #0
suiteE
rl, #t
r3, #z
echanger

r5, #t

r4, [r5]
rd, r4, #1
rd, [r5]

vide ici
Q0 x--

0 pl =&x
0 p2 =&y

@ echanger()

Qy=y -4

@ milieu ()

@ pl =&t
p2 =&z
echanger ()

e ©

Q t ++

: 1r <- suiteA; b echanger

: 1r <- suiteM; b milieu

: 1r <- suiteD; b echanger
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@ épilogue de main : vide ici
@ prévoir la restauration des registres modifiés
jmp 1r @ retour au code qui a appelé main

Notons que les branchements aller pourraient étre réalisés en utilisant I'instruction jmpl au
lieu de bl.

@ Variante utilisant jmpl au lieu de bl

suiteM: mov32 rb5, #d

mov32 r3, #z @ p2 =&z

mov32 r4, #echanger

jmpl r4 @ 1r <- suiteD, saut absolu & échanger
suiteD:

10.2 Passage de paramétre par valeur et par adresse

Il est souvent utile de passer explicitement lors de 'appel des arguments permettant de pa-
ramétrer le fonctionnement de la procédure. En C, il n’existe qu’'un seul mode de passage de
paramétre : par valeur. Chaque argument passé lors de ’appel est une expression qui est évaluée
et dont la valeur est copiée a I’endroit convenu pour le stockage des paramétres.

La procédure appelée peut modifier le contenu de son paramétre, mais le passage par valeur ne
lui permet pas de modifier les variables utilisées dans ’expression passée en argument. Méme si
I’expression passée a I'appel se limite a une variable', la procédure ne peut modifier qu'une copie
du contenu de cette variable stockée dans son parameétre, ce qui n’affecte pas la variable passée en
parameétre.

Il existe une notion de paramétre de type résultat dans des langages tels que PASCAL ou
ADA, mais pas en C. Dans d’autre langages tels que FORTRAN, les variables sont passées par
adresse, ce qui permet a la procédure appelée de les modifier.

Bien le C ne propose que le passage par valeur, il est possible de réaliser un passage par adresse
grace aux pointeurs. En passant en paramétre la valeur d’un pointeur qui repére une variable, il
est possible de modifier cette variable dans le corps de la procédure appelée via 'opérateur *.

Voici a titre d’exemple un programme définissant et utilisant deux procédures lire entier et
écrire entier.

Les procédures qui doivent modifier une variable de 'appelante utilisent un paramétre de type
pointeur : les procédures de lecture au clavier entrent dans cette catégorie. Celles qui n’ont besoin
que d’une valeur utilisent des paramétres de type normal : c’est notament le cas des procédures
d’affichage a I’écran.

/******************************************************************/
/* procédure ecrire_entier */

/* affiche en binaire un entier 32 bits & 1’écran x/
[ 5k ok ok o ok ok sk ok ok ok ok o ok ok ok ok ok ok ok o ok ok sk sk sk ok ok ok o o o ok ok sk ok ok ok ok ok o o K ok ok sk ok ok o ok o o K ok ok ok ok ok ok /

Iyariable simple ou élément de tableau ou membre de structure
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void ecrire_entier (int x)

{
int 1i;
for (i=0; i<32;i++)
{
if (x<0) /* x<0 si bit de poids fort == 1 x/
putchar (°17);
else
putchar (°0°);
}
X = x << 1; /* décaler d’un bit a gauche */
}
[ HKE KKK KKK o K oK KKK KKK KK KKK KoK KK oK KoK oK K o K oK KoK oK oK o oK o K oK K oK KKK oK KKK KoK oK K ok ok /
/* procédure lire_entier */
/* lit en binaire un entier 32 bits au clavier */

/******************************************************************/

void lire_entier (int *x)
{
int r;
r = 0;
for (i=0; i<32;i++)
{
/* Vérification omise : getchar doit retourner ’0’ ou ’1° x/
r =r << 1+ (getchar () - ’07);
b

int a;

void tester ()

{

lire_entier (&a);
ecrire_entier (3*a+1);

}

10.3 Sauvegarde et restauration des registres

10.3.1 Principe

L’intérét du mécanisme d’appel de procédure ne se limite pas a la réduction de la taille du
code machine. Les procédures constituent également un élément de structuration des programmes.
Une fois les interfaces d’appel clairement définies, le corps de la procédure appelée peut étre écrit
sans connaitre le corps de la ou les procédures qui I'appelent, et réciproquement. Le mécanisme
de gestion des procédures ne doit pas imposer de contraintes sur les appels : n'importe quelle
procédure doit pourvoir étre appelée dans le corps de n’importe quelle autre procédure.
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Toutes les procédures utilisent au moins une partie d’un ensemble de ressources communes : les
registres du processeur. Ceci pose un probléme lorsque 'appelée modifie le contenu d’un registre
que l'appelante a déja utilisé : sans précaution particuliére, au retour de I'appel de procédure
I'information que l'appelante y avait stockée est perdue.

On pourrait imaginer de faire en sorte que 'appelante et 'appelée utilise des ensembles de
registres disjoints. Cette stratégie n’est pas applicable en pratique : si l'intersection de leurs en-
sembles de registres modifiés n’est pas vide, deux procédures ne peuvent pas s’appeler entre elles.

La solution générale consiste a effectuer une sauvegarde en mémoire du contenu des registres
avant exécution du corps de la procédure appelée et une opération inverse de restauration apres
exécution du corps.

Plusieurs stratégies sont envisageables :

— sauvegarde par 'appelante : avant d’exécuter le branchement aller, 'appelante sauvegarde
en mémoire le contenu des registres dans lesquelles elle a stocké des informations.
sauvegarde par l'appelée : dans le prologue et ’épilogue, la procédure appelée sauvegarde et
restaure les registres sont elle modifie le contenu.
absence de sauvegarde : I'appelante fait en sorte de ne stocker dans les registres que des
informations qui ne sont plus utiles au moment ot un appel de procédure est exécuté (cette
stratégie n’est applicable qu’a un ou quelques-uns des registres du processeur)
approches mixtes : des politiques de sauvegarde différentes sont appliquées chacune a une
partition de I’ensemble des registres du processeur.

Pour notre processeur RISC de référence, nous choisissons de ne pas sauver un des registres
généraux lors des appels de procédures. Ce registre sera désigné sous le nom ip (intraprocédure :
conserve sa valeur tant que I'on effectue pas d’appel de procédure), synonyme de r28. Ce registre
sera entre autre utilisé comme temporaire de stockage de ’adresse de la zone de sauvegarde des
registres.

Nous utiliserons la convention suivante : la procédure appelée sauvegarde dans le prologue et
restaure dans I’épilogue le contenu de tous les registres généraux qu’elle modifie, excepté ip.

10.3.2 Instructions ldm et stm

Pour la sauvegarde des registres, nous supposerons que notre processeur RISC fictif dispose
des instructions Idm et stm pour transférer une suite de mots entre un ensemble de registres et
un bloc de mots contigus en mémoire.

L’instruction stm rp, {liste de registres} écrit le contenu des x registres spécifiés dans la
liste dans un bloc de x mots consécutifs en mémoire dont la limite est repérée par un registre
général quelconque rp. L'instruction ldm rp, {liste de registres} effectue le transfert en sens
inverse.

La liste de registres est composée d’éléments séparés par des virgules. Chaque élément peut
étre un registre unique ou un ensemble de registres dont les numéros forment un intervalle :
{r0, r3-r6, r8} décrit '’ensemble de registres {r0, r3, r4, r5, r6, r8}. L’'ordre de rangement
est prédéfini : les registres de numéros croissants sont stockés a des adresses croissantes.

Le registre rp peut repérer une case a l'intérieur ou a 'extérieur au début ou a la fin du bloc en
mémoire. La position de rp par rapport aux cases mémoires a accéder définit quatre possibilités
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illustrées par la figure 10.1 : increment after (ia), increment before (ib), decrement after (db),
decrement before (db). Le suffixe indique si I'adresse fournie par rp doit étre incrémentée ou
décrémentée avant ou aprés le transfert du premier mot.

adresses basses

stmib/stmfa rp, {r1,r2,r7} Idmda/ldmfa rp, {r1,r2,r7}
*_‘— L e

2 ——[~~=77 = i e = 12

- - p — -4--_

7 -~ el 04
stmia/stmea rp, {r1,r2,r7} Idmdb/ldmea rp, {r1,r2,r7}
*_4_ o >_> T

2 ——[~~=77 = i e = 12

- - _> T ~

7 - <--rpl p — =7
stmdb/stmfd rp, {rl,r2,r7} [dmia/ldmfd rp, {r1,r2,r7}
__\\———> ~<-—-1pl p — ==

2 —[~~=77 = i e = r2

PRaE I R N

71 e ¢ -

stmda/stmed rp, {rl,r2,r7} [dmib/Idmed rp, {r1,r2,r7}
e | ——

P D — = n
2 ~~[~~~77 = e =~ 12
P ~—rp rpl - “1 .

7 .
adresses hautes
: case vide <——  pointeur initia / final (Idm/stm rp)

_ case pleine <-——  pointeur final (Idm/stm rp!)

F1G. 10.1 — Comportement des instructions ldm et stm

Les versions normales de ldm et stm ne modifient pas le contenu du registre pointeur rp. Les
variantes ldmxx /stmxx rp!, {liste de registres} décalent l'adresse contenue dans le registre
pointeur rp d’autant de mots que de registres transférés. Il peut alors étre réutilisé tel que pour
un nouveau transfert de méme type.

Notons qu’un transfert décrit par une instruction stm peut étre réalisé par une séquence d’ins-
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truction str ordinaires 2

@ séquence d’instructions équivalentes & stmdb sp!, {r1, r2, r7}
@]
str r7, [sp,#-4]! @ ou str r7, [sp, #-4]
str r2, [sp,#-4]! @ str r7, [sp, #-8]
str rl, [sp,#-4]! @ str r7, [sp, #-12]
@ sub sp, sp, #12
@
@ séquence d’instructions équivalentes & stmda sp!, {r1, r2, r7}
6]
str r7, [spl, #-4 @ ou str r7, [sp, #0]
str r2, [sp]l, #-4 @ str r7, [sp, #-4]
str r1, [spl, #-4 Q str r7, [sp, #-8]
@ sub sp, sp, #12
6]
@ séquence d’instructions équivalentes & ldmia r0, {r5-r7}
6]
ldr r5, [r0, #0]
ldr r6, [r0, #4]
ldr r7, [r0, #8]
6]
@ séquence d’instructions équivalentes & ldmib r0, {r5-r7}
@]

1dr r5, [r0, #4]
1ldr r6, [r0, #8]
ldr r7, [r0, #12]

Les instructions ldm et stm admettent des suffixes synonymes fd, fa, ea, ed dont la si-
gnification se rapporte a la notion de pile (utilisée pour les appels de procédures autorisant la
récursion).

10.4 Gestion des paramétres et des variables locales

La déclaration d'une procédure définit une liste (éventuellement vide) de paramétres formels
en spécifiant leur type. L’instruction d’appel fournit alors une liste de paramétres réels définissant
les valeurs des parameétres pour cet appel.

Notons que I'appel fournit systématiquement un parameétre implicite : 'adresse destination du
branchement de retour en fin de procédure.

10.4.1 Convention d’appel et stockage des parameétres

Une convention d’appel doit étre définie de telle sorte que la procédure appelée puisse déter-
miner ou trouver le contenu des paramétres que la procédure appelante lui a passé.

Les deux conventions de passage des parameétres les plus simples sont :

1. stockage dans les registres du processeur

2¢f 6.9 pour les variantes de ldr et str avec préincrémentation et postincrémentation
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2. stockage dans une zone mémoire allouée statiquement a chaque procédure, par exemple dans
la section bss.

3. approche mixte : passage des p premiers paramétres dans les registres du processeur et
stockage des n-p autres paramétres dans bss.

La premeére stratégie est efficace, mais le nombre d’arguments ne peut pas dépasser le nombre
de registres disponibles. La deuxiéme stratégie accepte un nombre quelconque (mais fixé) d’argu-
ments, mais au prix de deux accés mémoire par argument (une écriture par I'appelante et une
lecture par 'appelée).

Dans ce chapitre, nous utiliserons la convention suivante : I'adresse de retour (paramétre im-
plicite) est passée dans le registre Ir du processeur, le premier paramétre explicite est passé dans
le premier registre r0, les autres parameétres sont passés en mémoire. Le choix du nombre de pa-
rameétres explicites passés dans les premiers registres du processeur (ici un) est arbitraire® et tient
compte du nombre total de registres.

10.4.2 Stockage des variables locales

Comme pour les paramétres, trois approches sont possibles pour le stockage des variables
locales :

1. stockage dans les registres du processeur
2. stockage dans une zone mémoire allouée statiquement a chaque procédure,

3. approche mixte : quelques variables stockées dans les registres du processeur et les autres en
mémoire.

Notons que la premiére la premiére méthode est plus efficace que la deuxiéme, mais n’est pas
applicable

lorsque le nombre de variables excéde le nombre de registres disponibles
aux variables dont on prend 'adresse.

Dans ce chapitre, nous utiliserons la convention suivante : toutes les variables locales sont
stockées en mémoire.

10.5 Exemple avec parameétres et variables locales

Dans notre exemple, il est judicieux de définir des procédures recevant des paramétres expli-
cites plutot que de passer les informations via les variables globales p1 et p2. Les variables il et i2,
qui ne sont utilisées que dans la procédure échanger, devennent des variables locales de celle-ci.

Cond, cond1 et cond?2 illustrent le passage de paramétre par valeur, et les paramétres pointeurs
p et q correspondent a un passage d’adresses des variables & échanger.

3Dans la convention utilisée par le compilateur C GNU, il est de 4 pour le ARM et 6 pour le SPARC
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long t = 2; void echanger (int cond, long *p, long *q)
long x = 4; {
long y = 5; long il;
long z = 6; long i2;
if (cond !'= 0)

int a = 1; {
int b = 0; il = x*p;
int ¢ = 1; 12 = xq;
int d = 0; *p = 12;

xq = 11;

}

+

void main () void milieu (int condl, int cond2)
{ {
X--; echanger (condl,&x,&z) ;
echanger (a,&x,&y) ; z = z+4;
y = y-4; echanger (cond2,&y,&z) ;
milieu(b,c); X++;
echanger(d,&t, &z); T
t++;
+

10.6 Traduction de ’exemple

Examinons la traduction des deux procédures de ’exemple avec parameétres.

La procédure échanger recoit deux paramétres de type entier long, il convient donc d’allouer
8 octets dans la section bss pour cette procédure.

Dans le corps de échanger, on ne prend pas I’adresse des variables il et i2. Il serait donc possible
de les stocker dans les registres r0 et r2 plutdét que dans bss, auquel on peut supprimer quatre
instructions d’accés a la mémoire (commentées "opt" dans le code) et réduire a 0 la constante

ECHANGER TAILLE VAR.

Pour répérer les paramétres recus de 'appelante et les variables locales, nous utiliserons un
registre a usage général, de nom fp (function parameters)4, synonyme de r29.

Pour repérer les parameétres passés a la procédure appelée, nous utiliserons un registres a usage
général de nom sp (sommet de pile®), synonyme de r30.

La figure 10.2 représente 1’état de la mémoire et des registres juste apreés la troisiéme exécution
de bl echanger.

La procédure main a utilisé le registre sp pour initialer les paramétres condl et cond2 de
milieu. Dans le prologue de milieu, le registre Ir qui contenait I’adresse de retour dans main a été
sauvegardé dans la zone param_milieu.

“4le nom officiel est frame pointer : soit pointeur de cadre en francais
5’explication de ce nom est expliqué dans le chapitre consacré 4 la gestion de procédures avec récursion
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Le corps de milieu utilise le registre pointeur fp pour repérer les paramétres recus de main

CHAPITRE 10. PROCEDURES SANS RECURSION

et sp pour initialiser les parameétres passés a échanger.

La procédure échanger sauvegardera les registres qu’elle modifie et allouera de la mémoire
pour ses variables il et i2 dans la zone mémoire réservée avant param échanger. Elle modifiera

fp pour repérer les paramétres qu’elle a recus de milieu.

param_echanger:

.text

ECHANGER_TAILLE_PARAM=8 /* taille des args
ECHANGER_P = 0 /* emplacement relatif de p
ECHANGER_Q = 4 /* emplacement relatif de g

ECHANGER_TAILLE_REGS=16 /* sauvegarde des registres

ECHANGER_TAILLE_VAR=8 /* taille des vars
/* emplacement relatif de il
ECHANGER_I1=- (4+ECHANGER_TAILLE_REGS)
/* emplacement relatif de i2
ECHANGER_I2=- (8+ECHANGER_TAILLE_REGS)

.bss
.skip ECHANGER_TAILLE_VAR + ECHANGER_TAILLE_REGS
.skip ECHANGER_TAILLE_PARAM

echanger: @ prologue de echanger

r0
rl
r2
r3
r4

fp

@ 0 0 © © ©@ ©

affectation des registres
: paramétre cond

copie du paramétre p

: valeur de i2

copie du paramétre q

: valeur de il
: pointeur de paramétres

@ sauvegarde des registres

mov32

ip, #param_echanger - ECHANGER_TAILLE_REGS

stmia ip, {ril-r4,fp}

Q@ test
cmp rO0,

de cond
#0

beq fin_echanger
mov32 fp, #param_echanger
@ récupération des paramétres p et q dans rl et r3

1dr ri,
1dr r3,

1ldr r4,
str r4,

1dr r2,

[fp, #ECHANGER_P]
[fp, #ECHANGER_Q]

[ri] @ i1 = *p
[fp, #ECHANGER_I1] Q@ opt
[r3] Q@ i2 = *q
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str r2, [fp, #ECHANGER_I2] @ opt

ldr r2, [fp, #ECHANGER_I2] Q@ xp = 12 @ opt
str r2, [ri]

ldr r4, [fp, #ECHANGER_I1] Q@ *xq = il Q@ opt
str r4, [r3]

fin_echanger:
@ epilogue de echanger :
@ restaurer contenu initial des registres

ldmia

jmp

param_milieu:

milieu:

@
@
@ r0
@ ril
Q@ r2
@

mov32

ip, {ri1-r4, fp}

1r @ branchement retour :
MILIEU_TAILLE_PARAM=4 /* taille des args */
MILIEU_COND2=0 /* position de cond2 */

MILIEU_TAILLE_REGS=24 /* sauvegarde des registres */

MILIEU_TAILLE_VAR=0 /* taille des vars x/

.bss
.skip MILIEU_TAILLE_VAR + MILIEU_TAILLE_REGS
.skip MILIEU_TAILLE_PARAM

prologue de milieu

Affectation des registres

. premier paramétre regu/passé
: temporaire adresse

: temporaire valeur

sauvegarde des registres

ip, #param_milieu - MILIEU_TAILLE_REGS

stmia ip, {r0-r2,sp,fp,lr}
@ corps de milieu

mov32
mov32

sp, #param_echanger
fp, #param_milieu

@ le paramétre condl est déja dans r0

mov32
str
mov32
str
bl

mov32
1dr
sub
str

1ldr
mov32
str

rl, #x @ echanger (condl,&x, &z)
rl, [sp, #ECHANGER_P]

rl, #z

rl, [sp, #ECHANGER_Q]

echanger @ detruit le contenu de ip

rl, #z Qz=2z+4
r2, [ri]

r2, r2, #4

r2, [ri]

r0, [fp, #MILIEU_COND2] @ echanger (cond2,&x, &z)
rl, #y
rl, [sp, ECHANGER_P]
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main:
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mov32 ril, #z
str r1l, [sp, ECHANGER_Q]
bl echanger @ detruit le contenu de ip

mov32 rl, #x Q@ x++
ldr r2, [ri]

sub r2, r2, #i1

str r2, [ri]

@ epilogue de milieu

@ restaurer registres modifiés */

mov32 1ip, #param_milieu - MILIEU_TAILLE_REGS
ldmia ip, {r0-r2,sp,fp,lr}

jmp 1r

@ extrait du code de main : appel de milieu

@

mov32 sp, param_milieu

mov32 rl, #b @ param condl = b
ldr r0, [ri]

mov32 rl, #c @ param cond2 = ¢

ldr rl, [r1]
str rl, [sp, #MILIEU_COND2]
bl milieu
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TEXT

main:

bl milieu

milieu:

bl echanger

QO QT AN X~

Adresses basses

Adresses hautes

sauvegarder ici
lesregistres
r1r2, r3, r4, fp
p=&y
q=&z

param
echanger A

\i

rO man

fp | e — rl main Valeurs

r2 main des registres
Sp main dansle corps
fp main demain

Ir main
cond2=1

param y
milieu

\/

FiG. 10.2 Etat de la machine dans le prologue de échanger

(©Philippe Waille UJF /UFR IMA 6 juillet 2006



140 CHAPITRE 10. PROCEDURES SANS RECURSION

(©Philippe Waille UJF/UFR IMA 6 juillet 2006



Chapitre 11

Procédures avec récursion

11.1 Notion de récursion

Les appels de fonctions définissent une relation de filiation entre les fonctions. Le graphe de
cette relation posséde un arc d’une fonction g vers une fonction f si et seulement si g contient un
appel de la procédure f.

Dans un programme récursif, le graphe de filiation contient (au moins) un cycle (d’appels en
cascade). Un cycle de longueur un correspond a une récursion directe et un cyle plus long a une
récursion indirecte. Une fonction récursive directe contient un appel a elle-méme.

Considérons par exemple un ensemble de fonctions récursives impliquées dans un cycle de lon-
gueur trois : la premiére fonction contient un appel a la deuxiéme fonction, qui contient un appel
a la troisiéme, cette derniére incluant un appel a la premieére.

La notion de récursion en programmation correspond a la notion mathématique de récurrence.

11.1.1 Exemple de récursion directe : la suite de Fibonacci

La suite de Fibonacci est définie comme suit : ug = uq = 1 et u,, = Uy—1 + Up_o pour n > 1.
Voici un exemple de récursion directe pour calculer cette suite.

unsigned long x = 4;
unsigned long resultat;
int m = 0;

void fibo (unsigned long *s, unsigned long n)
{
unsigned long f;
unsigned long res;
res = n;
if (n > 1)
{
fibo (&res,n-1);
fibo (&f,n-2);
res = res + f;

141
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int main ()

{
long m;

m= 6;

fibo (&resultat,x);
}

Voici une trace des appels et des retours de procédure générés par le calcul de Fibonacci(4).

Appel de fibo (...,4)
Appel de fibo (...,3)
Appel de fibo (...,2)
Appel de fibo (...,1)
Retour de fibo(...,1)
Appel de fibo (...,0)
/* point d’observation F x/
Retour de fibo(...,0)
Retour de fibo(...,2)
Appel de fibo (...,1)
Retour de fibo(...,1)
Retour de fibo(...,3)
Appel de fibo (...,2)
Appel de fibo (...,1)
Retour de fibo(...,1)
Appel de fibo (...,0)
Retour de fibo(...,0)
Retour de fibo(...,2)
Retour de fibo(...,4)

11.1.2 Exemple de récursion indirecte : calcul de X}

Voici un exemple de calcul de la somme 1424 3---4+n — 1+ n par un programme utilisant
une récursion indirecte '

unsigned long x = 4;
unsigned long resultat;
int m=0;

extern void sigma_pair (unsigned long, unsigned long *);
extern void sigma_impair (unsigned long, unsigned long *);

void sigma_pair (unsigned long n, unsigned long *s)
{
unsigned long f;
if (n==0)
f = 0;
else

{

sigma_impair (n-1,&f);

L. ~ L e . . 1
!Cette somme peut évidement étre calculée itérativement ou avec la formule X7 i = %
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void sigma_impair (unsigned long n, unsigned long *s)
{
unsigned long f;
if (n==1)
f =1,
else
{
sigma_pair (n-1,&f);
f =f + n;
}

void sigma (unsigned long n, unsigned long *sigma)
{
if ((n %2) == 0)
sigma_pair(n,sigma);
else
sigma_impair(n,sigma) ;

}

int main ()
{
sigma (x,&resultat);
printf ("sigma(%d) = %d\n",x,resultat);

Voici une trace des appels et des retours générés par 1’appel de sigma(4,...).

Appel de sigma(4,...)
Appel de pair (4,...)
/* point d’observation de la pile */
Appel de impair (3,...)
Appel de pair (2,...)
Appel de impair (1,...)
/* point d’observation S */

Retour de impair(1,...)
Retour de pair(2,...)
Retour de impair(3,...)

Retour de pair(4,...)
Retour de sigma(4,...)

11.1.3 Contraintes spécifiques liées a la récursion

La récursion se traduit par la coexistence simultanée de plusieurs instances d’appel de la méme
procédure (avec des paramétres différents).
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Au point d’observation F de 'exemple Fibonacci, cing instances d’exécutions de la procédure
fibo sont en cours, avec différentes valeurs du paramétre n : 0, 1, 2, 3 et 4. Il en va de méme dans
I’autre exemple : au point d’observation S, il existe deux instances d’exécution de sigma_impair
(pour n—1 et n—3) et deux de sigma_pair (pour n—0 et n—2).

Il n’est donc pas possible d’allouer statiquement une zone de stockage de paramétres et de va-
riables locales a chaque procédure comme nous ’avons fait au chapitre précédent. Il est nécesaire
d’allouer dynamiquement une zone de stockage a chaque nouvel appel de procédure et de la libérer
lors du retour.

Chaque instance d’exécution de procédure utilise trois blocs de mémoire distincts :
1. un bloc mémoire de parameétres recus partagé avec et alloué par la procédure appelante,

2. un espace privé de stockage de variables locales, de temporaires et de sauvegarde de registres,
alloué par lI'instance d’exécution de la procédure en cours,

3. un bloc de paramétres transmis, alloué par la procédure courante lorsqu’elle appelle a son
tour une autre procédure, partagé avec cette derniére.

De plus, la mise en ceuvre de 'allocation et la libération de mémoire lors des appels et retours
ne peut pas étre réalisé sous forme d’appel de procédure ordinaire?.

Remarquons que les allocations et libérations respectent la propriété LIFO des appels et des
retours : le dernier bloc de mémoire alloué (lors du dernier appel) est le premier bloc libéré lors
du (premier) retour.

11.2 Allocation et libération de blocs dans la pile

11.2.1 Notion de pile

La zone mémoire utilisée pour l'allocation dynamique de mémoire liée aux appels de procé-
dures est appelée la pile. La pile se présente comme un tableau d’octets alloué implicitement par
le systéme d’exploitation ou déclaré explicitement par le programmeur (cas d’applications embar-
quées sans systéme d’exploitation).

@ exemple de déclaration explicite d’une pile dans bss par le programmeur
@ 1’allocation est normalement realisee implicitement par le systeme
@ d’exploitation, dans une zone pile distincte de bss.

TAILLE_PILE = 100000 @ taille arbitraire : 100 Ko
.bss

debut_file: .skip TAILLE_PILE

fin_pile:
.text

@ initialisation du registre sommet de pile a réaliser
@ avant exécution du programme principal (main)
@ ici pour une pile de type "full descending"

init: move32 sp, fin_pile

2Le mécanisme ordinaire d’appel de procédure ne peut pas a la fois utiliser le mécanisme d’allocation de mémoire
et servir a le construire.
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Les blocs alloués sont contigus et rangés en mémoire dans 'ordre de leur allocation. Le registre
sommet de pile (sp) repére la limite entre la portion pleine de la pile allouée aux appels de procé-
dures en cours et la portion vide utilisables pour de nouveaux appels.

Autrement dit, le sommet de la pile permet de repérer la limite entre le premier bloc a libérer
parmi ceux déja alloués et le prochain bloc qui sera alloué. Allouer ou libérer un bloc de T octets
revient simplement a décaler le sommet de pile de T octets.

L’opération empiler(x) consiste a allouer un bloc dans le tableau pile, et a en initialiser le
contenu avec la valeur de x. L’opération x = dé(sem)piler()?® consiste a lire le contenu du der-
nier bloc et a libérer ensuite.

Pour empiler un ensemble de n mots, on peut effectuer n fois 'opération empiler, ou allouer
un bloc de n mots, et remplir les mots de ce bloc ensuite.

Le registre sommet peut repérer le dernier octet déja alloué ou le premier octet libre. D’autre
part, l'allocation des premiers blocs peut étre réalisée en début de pile (pile croissante) ou en fin
de pile (pile décroissante).

Il existe donc quatre conventions possibles de pile :

1. pleine, croissante (full, ascending) : premiers blocs alloués en début de pile, sp repére le
dernier octet déja alloué (case pleine),

2. vide, croissante (empty, ascending) : premiers blocs alloués en début de pile, sp repére le
premier octet libre (case vide),

3. pleine, décroissante (full descending) : premiers blocs alloués en fin de pile, sp repére le
dernier octet déja alloué,

4. vide, décroissante (empty descending) : premiers blocs alloués en fin de pile, sp repére le
premier octet libre.

La figure 11.1 illustre 1’allocation de trois blocs dans l'ordre 1, 2, 3 dans les quatre conventions
de pile :

debut_pile debut_pile debut_pile debut_pile
gl gl allouer allouer
vide A vide
A .
liberer 2 liberer | 2 | s | P T
A 3 A 3 LY T
) — o - liberer 5 liberer 5
' id ¢ | vid
Y vide v vide 1 1
allouer allouer
fin_pile fin_pile fin_pile fin_pile
1 2 3 4

FiG. 11.1 — Les quatre conventions de pile

3Le terme correct est désempiler, mais I'usage du terme impropre dépiler est trés répandu
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Dans la suite de ce document, sauf précision contraire, nous utiliserons une pile décroissante
avec sommet de pile repérant une case pleine (numéro 3 sur la figure).

Avec ce type de pile, allouer(T) signifie sp = sp - T et libérer(T) correspond asp = sp + T.
Il faut utiliser les instructions str registre, [sp,#-4] ! ou stmdb sp!, {liste regs} pour empi-
ler le contenu d’un (ensemble de) registre(s). L'opération inverse (dé(sem)piler?), correspond aux
instructions ldr rd, [sp]|, #4 ou ldmia sp!, {liste regs}

Croissance pile | Sommet | Empiler Dé(sem)piler
descendante plein | str rd, [sp,#-4]! | Idr rd, [sp|, #4
descendante vide str rd, [sp|,#-4 | 1dr rd, |sp, #4]|!
ascendante plein | str rd, [sp,#4|! | ldr rd, [sp|, #-4
ascendante vide | strrd, [sp],#4 | 1drrd, [sp,#-4]!

TaB. 11.1  Utilisation de Idr et str selon les conventions de pile

Pour le programmeur de procédures, il est plus commode de spécifier le type de pile utilisée
que l'ordre dans lequel I'incrémentation ou la décrémentation et le premier accés a la mémoire
doivent étre réalisés. C’est pourquoi I’'assembleur accepte les synonymes suivant pour ldm et stm :

Croissance pile | Sommet Empiler Synonyme | Dépiler Synonyme
descendante plein (full) stmfd stmdb ldmfd ldmia
descendante vide  (empty) | stmed stmda ldmed ldmib

ascendante plein (full) stmfa stmib ldmfa ldmda
ascendante vide (empty) | stmea stmia ldmea ldmdb

TAB. 11.2 — Utilisation de Idm et stm selon les conventions de pile

11.2.2 Allocation, libération, notion de lien dynamique

A Tétat initial, le sommet de pile repére fin pile °. L’allocation d’un bloc de taille T consiste
a déplacer le sommet de pile de T octets vers les adresses basses : (sp = sp - T). Le sommet
de pile repére alors le premier octet du bloc qui d’etre alloué. La libération consiste a I'inverse a
déplacer le sommet de pile en sens inverse (sp = sp + T).

Chaque procédure recoit un bloc de paramétres alloué et rempli par la procédure apppelante et
s’alloue deux blocs contigus : I'un de taille L pour ses variables locales, temporaires et sauvegardes
de registres, I'autre de taille A pour passer des arguments lors des appels de procédure qu’elle
exécute dans son corps.

La figure 11.2 illustre I’état de la pile lors de la premiére exécution de la procédure sigma pair.
La partie gauche de la figure illustre ’état de la pile juste avant que le corps de la procédure sigma
exécute le branchement a sigma_pair. La partie droite de la figure montre 1’état de la pile lorsque
le prologue de sigma_pair a été exécuté.

Au retour de la procédure, 'appelante libére I'espace mémoire alloué aux arguments dans la
pile. La partie utilisée de la pile croit a chaque appel de procédure et décroit a chaque retour. Dans
le cas d’une récursion directe, tous les blocs sont de méme taille et toutes les instances d’exécutions

4le fonctionnement de Idm et stm a été présenté dans le chapitre consacré aux procédures sans récursion
SRappel : nous avons choisi arbitrairement la convention (pile descendante, case pleine)
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de la procédure récursive situées a la méme profondeur dans I'arbre des appels utiliseront la méme
portion de mémoire.

Il est souvent commode de gérer deux registres pointeurs de pile :

le sommet de pile sp qui

pointe sur le début du bloc d’arguments a passer lors d’un prochain appel de procédure, et le poin-
teur d’arguments fp qui repére la limite entre le bloc de paramétres recus et le bloc de variables
locales. Cette technique est connue sous le terme de lien dynamique.

11.2.3 Principe de codage avec lien dynamique

Le code d’une procédure se compose d’un prologue, d’'un corps et d'un épilogue.

fp—»

param
sigmavers
sigma_pair

variables locales
desigma
sauvegarde des
registres par
sigma

param main
vers sigma

variables locales
demain
sauvegarde des
registres par
main

FiG. 11.2

A

Adresses basses

- - - - - - -

» —

-t

Delta

Deltay,

- - -

fp —

Delta ;

fpdemain

Adresses hautes

param
sigma _pair vers
sigma_impair

variables locales
de sigma_pair

sigma pair

param
sigmavers
sigma_pair

variables locales
desigma
sauvegarde des
registres par
sigma

param main
verssigma

variables locales
demain
sauvegarde des
registres par
main

fp desigma

La pile avant et aprés exécution du prologue de sigma_ pair

Au début du prologue, le sommet de pile sp repére le début du tableau d’arguments recus que
I’appelante a stockés dans la pile. Le code du prologue

1. sauvegarde les registres dans les mots mémoire qui précédent les arguments recus,
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2. copie sp dans fp de telles sorte que fp repére la limite entre les arguments regus et les
sauvegardes de registres et

3. déplace le sommet de pile sp de L octets, L. correspondant a I’espace mémoire occupé par
les sauvegardes de registres et les variables locales (et éventuels temporaires en mémoire) de

la procédure.

fibo(0)

fibo(4)

PILE

fibo(3)

var+sauve regs de fibo(n)
arg/param

args (versfibo(n-1))
params (de fibo(n+1))

resultat

Fi1G. 11.3 — Fibonacci : état de la pile au point F

L’épilogue effectue le travail inverse du prologue et effectue le branchement de retour.

Chaque appel de procédure :

1. empile un tableau d’arguments,

2. effectue de branchement aller & la procédure et
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3. libére la place allouée au tableau d’arguments
Dans le corps de la procédure, le i°°™¢ argument recu de 'appelante est accessible a 'adresse
fp+ A;. L’adresse d'une variable locale v est fp — A,. Le k*™¢ argument passé dans la pile lors

d’un appel de procédure est a I'adresse sp + Ay.

Le sommet de pile se déplace chaque fois que la procédure alloue ou libére de la place pour
un argument a passer a une procédure qu’elle appelle. La position relative des arguments regus
et des variables locales de la procédure par rapport au sommet de pile change au gré des appels
exécutés par la procédure. 11 est alors commode d’y accéder via le deuxiéme pointeur de pile (fp),
qui reste fixe dans tout le corps de la procédure.

La figure 11.3 illustre 1’état de la pile au point S du calcul de la suite de fibonacci.

11.2.4 Exemple avec lien dynamique

extern void al (pO, pl, p2);

extern void a2 (pO, pl, ..., p5);
void b (int recu0, recul, ..., recub)
{

int vO, v2, ...,v7;

v2 = recu3;

al (10,11,12);
a2 (20,recu0,recu2+3,23,24,25); /* 6 paramétres au total */
+

@ On suppose que b a 8 variables locales
B_TAILLE_VARS = 8x4

.text
b: @ prologue de b le sommet de pile est en spO

@ sauvegarde des registres

@ On suppose que le corps de b modifie le registre r0
@ ==> a sauver ainsi que fp et 1lr (adresse de retour)
stmdb sp, {r0,fp,lr} @ sp non modifié

@ stm a sauvegardé 4 registres
B_TAILLE_REGS = 3%4

@ fp repere les arguments regus et regs sauvegardés
mov  fp, sp

@ 1’adresse de retour est accessible en fp - 4

@ 1’ancien fp est accessible en fp - 8

@ la sauvegarde de r0 est accessible en fp - B_TAILLE_REGS
B_DELTA_1r = -4
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B_DELTA_r0O = -TAILLE_REGS

@ les positions des paramétres regus par rapport & fp

B_DELTA_recu0
B_DELTA_recul

B_DELTA_r0 @ reguO dans la sauvegarde de rO
0 @ regul en début de tableau empilé

B_DELTA_recu2 = 4 @ par 1’appelante de a

B_DELTA_recu3 = 8
B_DELTA_recu4 = 12

B_DELTA_recub = 16 @ regub en fin de tableau empilé

@ allocation de mémoire pour
@ les arguments pour 1’appel

sauvegarde, locaux et
de al et a2

sub sp, sp, #B_TAILLE_REGS+B_TAILLE_VARS

@ les positions des variables de b stockées dans la pile

B_DELTA_VO = - (TAILLE_REGS+
B_DELTA_V1 = B_DELTA_VO + 4
B_DELTA_V2 = B_DELTA_VO + 8
@ corps de b

@ affectation : v2 = reqgu3
ldr rO0, [fp, #B_DELTA_RECU3]
str r0, [fp, #B_DELTA_V2]

TAILLE_VARS)

@ etc jusqu’a 8

@ ici le sommet de pile est en spl

@ appel de al : 2 arguments en pile, le ler dans r0

mov r0O, #12

str rO, [sp, #-4]!
mov r0, #11

str r0, [sp, #-4]!
mov r0O, #10

bl ail

add sp, sp, #8

@ empiler p2 = 12

11

@ empiler pl

@ pO dans r0 10

@ libérer le bloc (pl,p2)

@ appel de a2 : b arguments en pile, le ler dans r0

mov r0O, #25

str rO, [sp, #-4]!

mov r0, #24

str r0, [sp, #-4]!

mov r0, #23

str r0, [sp, #-4]!

ldr rO, [fp, #B_DELTA_RECU2]

@ empiler pb = 25
@ empiler p4 = 24
@ empiler p3 = 23
@ empiler p2 = recu2+3
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SpZ —
+4
+8

+12
+16

Pl ——»

- 40

pl = recu0

p2 = recu2+3

p3=23

p4 = 24

p5S =25

vO

vl

V2 ...V6

v7

sauve r0

sauve fp

sauve Ir

recul

recu?2

recu3

recu4

recub

tallle vars

pl = recu0

p2 = recu2+3

p3 =23

p4 =24

p5=25

vO

vl

V2 ...V6

v7

sauver0

sauve lr

recul

recu?2

recu3

recud

recub

Fi1G. 11.4  Extrait de la pile avec (& gauche) et sans (a droite) lien dynamique

recul

20

@ ici le sommet de pile est en sp2

add r0, r0, #3

str rO, [sp, #-4]!

ldr r0, [fp, #B_DELTA_RECUO] @ empiler pi
str r0, [sp, #-4]!

mov r0, #20 @ p0 dans r0
bl a2

add sp, sp, #20

@ epilogue de b
mov sp, fp

@ sp pointe juste au_dessus de la

ldmdb sp, {r0,fp,lr}

@ libérer bloc (pl,p5)

@ libérer locaux

zone de sauvegarde

@ rétablit les contenus de fp et lr avant 1’appel

jmp

1r

11.2.5 Technique de codage sans lien dynamique

151

Une autre technique consiste a n’utiliser que le registre sp pour accéder a tous les éléments
stockés dans la pile, auquel cas le codage est nettement facilité si la position du sommet de pile

reste fixe dans tout le corps de la procédure.

Le principe consiste a préallouer dans le prologue de la mémoire pour le tableau d’arguments
a passer. Si le corps de la procédure effectue plusieurs appels de procédure, ce tableau sera dimen-
sionné pour l'appel qui passe le plus grand nombre d’arguments®.

6au prix d’un léger gaspillage de place dans la pile, ce tableau étant évidement surdimensionné pour les autres
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Le bloc d’arguments passés est alors accessible a I'adresse sp, celui des variables locales a
I’adresse sp + A et celui des paramétres recus a ’adresse sp + A + L.

A2_NB_ARGS = 6 @ proceure A2 a 6 arguments
B_NB_ARGS = 6 @ procédure B & 6 arguments
B_TAILLE_VARS = 8x4 @ 8 variables locales en pile
B_TAILLE_REGS = 2x4 @ 2 registres sauvegardés

B_TAILLE_ARGUMENTS=(A2_NB_ARGS-1) x4 @ param pl & p5 de a2

B_TAILLE_ALLOC=B_TAILLE_ARGUMENTS+B_TAILLE_VARS+B_TAILLE_REGS

.text
b: stmdb sp, {r0,1lr}
sub sp, sp, #B_TAILLE_ALLOC
@ emplacement de sauvegarde de rO : debut de TAILLE_REGS
B_DELTA_r0 = B_TAILLE_ARGUMENTS+B_TAILLE_VARS
@ les positions des paramétres regus
B_DELTA_recu0 = B_DELTA_r0 @ recuO dans la sauvegarde de r0
@ les autres dans la pile
B_DELTA_recul = B_TAILLE_ALLOC + O
B_DELTA_recu2 = B_TAILLE_ALLOC + 4
@ etc jusqu’a recub et +16
@ les positions des variables de b stockées dans la pile
B_DELTA_VO = B_TAILLE_ARGUMENTS
B_DELTA_VO = B_TAILLE_ARGUMENTS+4
@ etc jusqu’a v8 et +8
@ corps de b
@ affectation : v2 = regu3
ldr 1O, [sp, #B_DELTA_RECU3]
str r0, [sp, #B_DELTA_V2]
@ ...
@ appel de al : 2 arguments en pile, le ler dans r0
mov r0, #12 @ passer p2 =12
str r0, [sp, #4]
mov r0, #11 @ et pl =11
str r0, [sp, #0]
mov r0, #10 @ pO dans r0 =10
bl a1l
@ appel de a2 : 5 arguments en pile, le ler dans r0
appels
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mov r0, #25 @ passer pb =25
str r0, [sp, #16]

mov r0, #25 @ et p4 =24

str r0, [sp, #12]

mov r0, #25 @ et p3 =23

str r0, [sp, #8]

ldr rO, [sp, #B_DELTA_RECU2] Q@ et p2 = recu2+3
add r0, r0, #3

str r0, [sp, #4]

ldr rO, [sp, #B_DELTA_RECUO] @ et pl = recu0d
str r0, [sp, #0]

mov r0, #20 @ pO dans r0

bl a2
@ epilogue de b

add sp, sp, #B_TAILLE_ALLOC
@ sp pointe juste au_dessus de la zone de sauvegarde
ldmdb sp, {r0,lr}

jmp 1r

11.3 Taille de pile et débordement

La taille de la pile & prévoir dépend de la profondeur de I'arbre des appels, qui peut étre
élevée dans le cas de programmes récursifs. Il existe donc deux zones de données susceptibles de
grossir au cours de I'exécution d’'un programme : la pile, avec les appels de procédure, et le tas
(généralement une extension de bss) au gré des allocations dynamique de mémoire.

Deux cas de figure peuvent alors se présenter :

— Le programmeur est capable de déterminer la borne supérieure de la consommation de
mémoire de son algorithme et a dimensionné les sections bss et pile en conséquence
Le programmeur ne connait pas la consommation maximale de mémoire de son programme
(par exemple parce qu’elle dépend des données a traiter) et il doit vérifier avant chaque
allocation de mémoire (explicite ou lors d’un appel de procédure) qu’il reste assez de mémoire
libre pour le faire.

En général, on choisit de faire croitre le tas vers les adresses hautes et la pile vers les adresses
basses. En I’absence de systéme d’exploitation, le programmeur devrait inclure des tests de débor-
dement dans son code. Une technique de gestion simple consiste a placer la mémoire libre entre
le tas et la pile : la mémoire libre est épuisée lorsque le sommet de la pile et I'extrémité du tas se
rejoignent.

Sur les machines dotées d’un mécanisme de mémoire virtuelle, les débordements sont détectés
automatiquement par le matériel, qui en informe le noyau du systéme d’exploitation et ce dernier
interrompt l'exécution du programme fautif : le programmeur (ou le compilateur) peut se dispenser
de tester les débordements de mémoire.
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Chapitre 12

Procédures : cas particuliers

12.1 C ANSI et blocs a la PASCAL

Dans les langages a structure de blocs tels que PASCAL, il est possible de définir des pro-
cédures a l'intérieur d’autres procédures. Chaque procédure a alors automatiquement accés aux
variables locales et aux procédures locales des procédures qui I’englobent.

Le langage C tel qu’il a été défini initialement par Kernighan et Ritchie a une structure "plate" :
les procédures sont déclarées les unes a coté des autres et ne s’englobent pas. Le passage de para-
métres de type pointeur via un appel (des appels en cascade) est I'unique méthode permettant a
une procédure de modifier les variables locales d’'une autre procédure.

La norme ANSI définissant le langage C a enrichi la définition initiale et le C ANSI est devenu
un langage a stucture de bloc autorisant la déclaration de procédures a 'intérieur d’autres procé-
dures. Nous ne détaillerons pas la traduction en langage d’asemblage des accés aux variables et
procédures déclarés par les procédures englobantes.

12.2 Fonctions

Un fonction est une routine retournant un résultat utilisable dans une affectation. Outre la
liste des parameétres et leur type, la déclaration d’une fonction précise le type de résultat qu’elle
retourne. En C, les procédures (qui ne retournent pas de résultat) sont déclarées comme des fonc-
tions particuliéres retournant void (absence de type : pas de résultat).

Une fonction remplace habituellement une procédure qui ne calcule qu'un seul résultat.

int b, a=3;

/* variante procédure */ /* variante fonction */
void proc_fois2 (int x, int *res) int fonc_fois2 (int x)
{ {

*res = x + Xx; return (x + x);

+ }

void essaip () void essaif ()

{ {

proc_fois2 (a, &b); b = func_fois2 (a);

+ }
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La fonction appelante et la fonction appelée doivent convenir d’un emplacement de stockage
du résultat. Une convention répandue consiste a stocker le résultat en lieu et place du premier
paramétre requ. Dans notre exemple, le résultat d’une fonction sera stocké dans le premier registre
r0.

.data
a: .word 3
.bss
b: .skip 4
.text

@ x dans r0O, résultat dans rO
fonc_fois2: add rO0, r0, r0O
jmpl 1r

essaif: ce @ prologue : sauvegarde regs
mov32 rl, #a
ldr r0, [ri]
bl fonc_fois?2
mov32 rl, #Db
str r0, [ri]
@ epilogue : restauration regs + retour

12.3 Pointeurs de fonctions

Comme tout objet C ayant une adresse mémoire, une fonction' peut étre repérée par un
pointeur. L’entité obtenue en appliquant 'opérateur * au contenu d’un pointeur de fonction est
une fonction que 'on peut appeler.

int oppose (int x)
{
return (-x);

}

/* Définition du type intfint : */

/* fonction d’un entier retournant un entier */
typedef int intfint (int);

intfint *pointe_fonc =&oppose; /* un pointeur de fonction */

void main ()

{
/* appel de oppose */
b = (*pointe_fonc) (3); /¥ b= -3 %/

pointe_fonc = &fonc_fois2;

/* appel de fois2 */

Lou une procédure

(©Philippe Waille UJF/UFR IMA 6 juillet 2006



12.4. PARAMETRE DE TYPE TABLEAU 157

b = (*pointe_fonc) (b); /¥ b =-6 %/

}
.data

pointe_fonc: .word oppose @ intfint *pointe_fonc = &oppose
.text

@ extraits du code de main
@ appel b = (*pointe_fonc) (3)
mov r0, #3
mov32 rl, #pointe_fonc
ldr r1, [ri1]
jmpl ril
mov rl, #b
str r0, [ri]

@ pointe_fonc = &fonc_fois2
mov r0, #fonc_fois?2
mov32 rl, #pointe_fonc
str r0, [ri]

@ b = (*pointe_fonc) (b)
mov r0, #b
ldr r0, [r0]
mov32 rl, #pointe_fonc
ldr ri1, [ri]
jmpl ri1
mov rl, #b
str r0, [ri]

12.4 Paramétre de type tableau

Rappelons qu’'une déclaration de tableau définit simplement une constante pointeur du nom

du tableau, repérant son premier élément. Ceci a deux conséquences :

— Un paramétre tableau est toujours passé par adresse. Le prototype de la fonction peut
déclarer le paramétre comme un tableau sans préciser sa dimension, ou comme un pointeur :
les deux notations sont synonymes.

Si la procédure a besoin de connaitre la taille du tableau, celle-ci doit étre passée a part
comme un deuxiéme paramétre.

/* calcul du maximum et du minimum des éléments d’un tableau */
#tdefine TAILLE_TAB 4
long t [TAILLE_TAB] = { 5, 2, 0, 9};

long maxtab (unsigned long t[], long taille)
{

int 1i;

unsigned long max;

max = 0;
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for (i=0; i< taille; i++)

if (x(t+i) > max) max = t[i]; /* t[i] et *(t+i) synonymes */
return max
}
long mintab (unsigned long *t, long taille)
{
int 1i;

unsigned long min;
max = 0;
for (i=0; i< taille; i++)
if (t[i] > min) min = *(t+i);
return min

}

void main ()

{

unsigned long 1;

1 = mintab(t,TAILLE_TAB);
1 = maxtab(t,TAILLE_TAB);
}

12.5 Paramétre et résultat de type structure

Dans la définition initiale du C, une fonction ne pouvait accepter que des paramétres scalaires? :
entier, nombre flottant ou pointeur.

Dans la version initiale du langage C, pour passer le contenu d’une structure a une procédure, le
programmeur devait passer explicitement autant de parameétres que de membres dans la structure.
Le C ANSI autorise les paramétres de stype structures, le traducteur devant se charger de le
transformer en passage individuel de chacun des membres.

struct point { float x,y;};
struct droite {
struct point orig;
struct point dest;
}s;
struct droite dd = {{1.0, 2.0}, {3.5, 6.0}};

/* calcul de longueur : norme C ANSI */
float longueur (struct droite d)

{

float 1;

1 = (d.dest.x-d.orig.x)*(d.dest.x-d.orig.x);
1 += (d.dest.y-d.orig.y)*(d.dest.y-d.orig.y);
return sqrt(1);

}

/* calcul de longueur : */

2scalaire signifie ici stockable dans un mot ou un registre
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/* conversion a 1l’ancienne norme C Kernighan & Ritchie */

float longueur_ancien (float xorig, float yorig, float xdest, float ydest)
{

float 1;

1 = (xdest-xorig) *(xdest-xorig) ;

1 += (ydest-yorig)*(ydest-yorig);

return sqrt(l);

}

void main ()

{

float norme;

norme = longueur (dd);

norme = longueur_ancien (dd.orig.x, dd.orig.y,dd.dest.x, dd.dest.y);

}

Le méme principe s’applique au fonctions devant retourner un objet de type structure : ces
fonctions seront converties en procédures recevant un parameétre de type pointeur, soit explicite-
ment par le programmeur (norme K&R), soit implicitement par le traducteur (C ANSI).

/* exemple de resultat de type structure, nouvelle norme */
struct droite decaler ()
{

struct droite res;

res.orig.x = dd.orig.x + 2.0;
res.orig.y = dd.orig.y + 3.0;
res.dest.x = dd.dest.x + 2.0;
res.dest.y = dd.dest.y + 3.0;
return(res);

}

/* idem , norme C K&R */
void decaler_ancien(struct droite *res)

{

*res.orig.x = dd.orig.x + 2.0;

xres.orig.y = dd.orig.y + 3.0;

*res.dest.x = dd.dest.x + 2.0;

xres.dest.y = dd.dest.y + 3.0;

}

void main()

{

dd = decaler (); /* norme ANSI */
decaler_ancien(&dd); /* conversion norme K&R */
}

12.6 Gestion des appels & nombre variable d’arguments

Certaines fonctions sont concues pour accepter une liste d’arguments de taille quelconque. La
longueur de la liste peut étre définie par le contenu du premier argument, ou la liste peut étre
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délimitée par un marqueur de fin (typiquement l'entier 0 ou le pointeur NULL). A titre d’illustra-
tion de la premiére méthode, citons les fonctions printf et scanf. La primitive posix execl est un
bon exemple d’utilisation de marqueur de fin de liste.

Dans le prototype de la fonction, on note ... la liste de paramétres de longueur variable. Cette
liste est précédée d’au moins un parameétre nommeé explicitement.

Les fonctions & nombre de paramétres quelconques exploitent le fait que les arguments sont
stockés sous forme de tableau dans la pile, bien que de nombreuses conventions d’appel stipulent
que les arguments r & n sont empilés et que les arguments 0 a r-1 sont passés dans r registres du
processeur.

Pour se ramener dans tous les cas a un cas unique simple de parcours de tableau de paramétres
dans la pile, les fonctions & nombre quelconque de parameétres recopient les premiers parameétres
des registres dans la pile avant d’effectuer la sauvegarde de I'adresse de retour et des autres re-
gistres modifiés dans le corps de la procédure. La figure 12.1 illustre cette recopie pour r — 4.

varslocales
sauve autres
registres
2/f
ro i S = ags (D] PP
rl i = transmis < PLag
r2 -—b-------- - dans -
r3 e B > registres boucle de
sl T parcours
o . transmis . delaliste
recopie des premiers dans ~ d'arguments
arguments des registres lapile :
danslapile ]

F1G. 12.1 — Fonctions varargs : boucle de parcours des arguments

Dans le corps d’une telle fonction, pour parcourir le tableau d’arguments de taille variable, on
utilise une variable pointeur (nommée pt _arg dans I’exemple) de type va_list.

Pour initialiser le pointeur d’argument a ’adresse du dernier argument nommé explicitement
(r dans I'exempe), on utilise la macro va_arg(pt arg,r). Cette macro génére un code que I'on
pourrait écrire : pt arg = (va_list) &r; pt arg++ : pt_arg repére 'argument dans la pile
qui suit immédiatement ’argument r.

Pour consulter I'argument courant pointé par pt arg, I'affecter & une variable v de type t et
passer a I’argument suivant dans la liste, on utilise la macro va_arg : v=va_arg(pt_arg,t).

L’expansion de cette macro correspond a v= *(t *)pt_arg; ((t_*)pt_arg)—{——l—.

La macro va_end(pt__arg) ne génére pas de code : elle permet d’indiquer au compilateur la
portée de la déclaration du pointeur d’arguments pt _arg

#include <stdio.h>
#include <stdarg.h>
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/* Calcul la somme d’une liste d’entiers terminée par 0 */

void somme (unsigned *r,...)

{

register int s, arg_lu; /* code equivalent aux macros va_xxx */
va_list pt_arg; /* { void * pt_arg */
/* affecter & pt_arg l’adresse du premier argument */

/* de la

liste, qui se trouve juste aprés r */

va_start(pt_arg,r); /* pt_arg = &r; *((int *) pt_arg)++ */

s=0;
do
{

arg_lu = va_arg(pt_arg,int);

s+= arg_lu;

}
while (arg_lu !'= 0);
va_end(pt_arg) ; /* } fin
Xr = §;

}

void main ()

{

int x;

somme (&x, 1,2,3,4,5,0); /%
printf ("somme=%d\n",x);
somme (&x, 4,5,0); /*
printf ("somme=%d\n",x);

}

@ Traduction de somme

/* arg_lu = * (int *) pt_arg; */
/* ((int *) pt_arg)++ */

de la portée de la déclaration de pt_arg */

liste de 5 arguments + argument initial */

liste de 2 arguments + argument initial */

@ Convention d’appel : quatre premiers arguments dans registres r0 & r3
@
@ Allocation des registres (arbitraire)
@ r0 : arg_lu
@rl: s
@ r2 : pt_arg
Qr3 : r
.text
somme : @ prologue particulier

@ ici 1’appelante

a laissé le sommet de pile en spl

stmfd sp!, {r0-r3} @ recopie des 4 premiers args dans la pile

@ ici le sommet de pile est en sp2 : repére tableau d’arguments
stmfd sp!, {fp,lr} @ sauvegarde des autres registres

@ fp repére les premiers arguements

add fp, sp, #8
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DELTA_R = 0
DELTA_DEBUT_LISTE_ARGS=4

@ corps de somme

add r2, fp, #DELTA_DEBUT_LISTE_ARGS @ va_start(pt_arg,r)

mov rl, #0 @ s = 0;
corps_do: ldr r0, [r2], #4 @ va_arg(pt_arg,int)
add rl, r1, r0 @ s += arg_lu
cmp r0, #0 @ while (arg_lu != 0)
bne corps_do
ldr r3, [fp, #DELTA_R] Q@ *r = s
str rl, [r3]
@ epilogue
ldmfd sp!, {fp, 1r} Q@ restaurer registres
add sp, sp, #16 @ libérer place des
@ 4 premiers args

@ retour
mov  pc, 1r

12.7 Paramétres de main

Main est une fonction appelée par le code d’initialisation standard ajouté par défaut a tout
programme C. Main retourne un code d’erreur que le processus qui a lancé I'exécution du pro-
gramme peut récupérer. Un code de retour nul indique habituellement I’absence d’erreur.

La figure 12.2 illustre la pile lors de I’exécution d'un programme de calcul lancé avec la ligne
de commande ci-dessous. La figure suppose que la convention d’appel spécifie que le premier
parameétre est transmis dans r0.

mamachine> calcul 1234 56
mamachine>

Les parameétres de main lui permettent d’accéder aux arguments de lancement. Dans un envi-
ronnement posix, ces arguments correspondent aux chaines de caractéres représentant les mots de
la ligne de commande ("calcul", "1234" et "56") et aux définitions de variables d’environnement
(du genre "PATH— /usr/.../bin", "TERM—xterm", "SHELL~ /bin/tcsh").

Les trois paramétres standard de main sont :
1. argc : le nombre d’éléments du tableau argv,

2. argv : un tableau de argc pointeurs sur les chaines de caractéres représentant les arguments
de la ligne de commande,

3. envp : un tableau de argc pointeurs sur les chaines de caractéres représentant les arguments
de la ligne de commande, terminé par la constante NULL.

#include <stdio.h>
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FiG. 12.2 — Les paramétres de main dans la pile

int main (int argc, char *argv[], char *envp[])
{
int 1i;
printf ("argc : %d\n",argc);
for (i=0;i<argc;i++)
printf ("argv[il : %s\n", argv[il);
i=0;
while (envp[i] != NULL)
{
printf ("envp[i] : %s\n", envpl[il);
i++;
}
return 0;

}

/* Ce programme affiche le texte suivant : */
/* argc : 3 */
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/%
/%
/%
/%
/%
/*

argv[0]
argv[1]
argv[2]
envp[0]
envp[1]
envp[2]

: calcul

: 123

: 456

: PATH=/usr/.....
: TERM=/xterm

: SHELL=/bin/tcsh

CHAPITRE 12. PROCEDURES : CAS PARTICULIERS

*/
*/
*/
*/
*/
*/
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Chapitre 13

Compilation séparée et attributs de
stockage

Un programme est habituellement décomposé en modules compilés séparément en fichiers ob-
jets relogeables, fusionnés en un fichier exécutable unique lors de I'édition de liens.

Certains langages offrent une gestion des modules élaborée, telle la gestion des "paquetages"
dans le langage ADA. La notion des modules en C et en langage d’assemblage est moins élaborée
et ce confond avec celle de fichier : chaque fichier est un module. Dans ce chapitre, les termes
modules et fichiers sont synonymes.

La traduction séparée des fichiers pose deux problémes dictincts :

1. lors de la compilation du C : la cohérence de type des objets définis (et exportés) dans un
fichier et utilisés (importés) dans un autre

2. lors de I'assemblage ou de la compilation du C : la définition de la portée des symboles pour
la phase d’édition de liens,

Un symbole partagé correspond typiquement a une variable commune utilisée dans plusieurs
fichiers ou a une fonction définie dans un fichier et utilisée dans un autre.

13.1 Cohérence de type et compilation séparée en C

Un compilateur a besoin de connaitre le type d’une variable (respectivement les types des pa-
ramétres et du résultat pour une fonction) pour traduire correctement les acceés (respectivement
les appels) a celle-ci : le type spécifie la taille et I'interprétation du contenu de la variable (respec-
tivement des paramétres a passer et du résultat a retourner) a transférer.

13.1.1 Déclaration de type d’une variable

Une déclaration ordinaire de variable a un double role :
1. définir le type de la variable et

2. réserver de la mémoire pour la stocker.

Le partage entre plusieurs fichiers compilés séparéments nécessite deux types de déclarations :

1. une déclaration ordinaire avec allocation de mémoire dans le module qui définit (exporte) la
variable et
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2. une déclaration spéciale sans réservation de mémoire pour spécifier le type dans les modules
qui accédent & (importent) cette variable sans la définir.

Dans le langage C, une déclaration de variable du deuxiéme type est précédée de extern : cet
attribut de stockage indique que la déclaration spécifie uniquement le type de la variable et qu'un
autre module doit déja réserver de la mémoire pour stocker cette variable.

13.1.2 Déclaration de (proto)type d’une fonction

Une déclaration ordinaire définit le type d'une fonction et alloue de la mémoire aux instructions
qu’elle contient. La déclaration de compose de deux parties :

1. le prototype, qui spécifie le nom de la fonction et le type de résultat qu’elle retourne, ainsi
que (délimités par une paire de parenthéses) la liste des types et noms des arguments.

2. le corps de la fonction, composé d’une ou plusieurs instructions (précédées éventuellement
de déclarations de variables locales) encadrées par une paire d’accolades.

Le type de la fonction (autrement dit la maniére de I'appeler) est entiérement défini par son
prototype. Le corps de la fonction spécifie le contenu initial de la mémoire allouée a cette fonction.
Il est traduit en une suite d’autant de valeurs initiales que de mots réservés, qui correspondent au
codes des instructions machines (et éventuellement aux constantes) utilisées dans la fonction.

Une déclaration de fonction sans corps ne spécifie que le type et n’alloue pas de mémoire pour
la fonction. Pour définir le (proto)type de la fonction, la liste des types des paramétres suffit et
leur nom peut étre omis.

L’attribut extern est optionnel : une déclaration sans corps ne peut étre qu’une simple spéci-
fication du type de la fonction.

La seule déclaration du type d'une fonction est nécessaire dans deux contextes :

1. D'utilisation dans un module d’une fonction définie dans un autre fichier, comme pour les
variables et,

2. la déclaration de fonctions mutuellement récursives.

13.1.3 Gestion de la cohérence

Lors de la compilation séparée de fichiers, il convient de détecter toute discordance de type
entre la déclaration qui réserve la mémoire dans le module qui définit (exporte) une variable ou
une fonction et la ou les déclarations de type dans les modules qui l'utilisent (importent).

La technique habituelle en C consiste a placer les déclarations de type dans un fichier suffixé
.h et a Uinclure ce dernier dans tous les fichiers qui utilisent (y compris celui qui définit) les va-
riables ou fonctions citées dans le fichier .h. Toute divergence entre la spécification de type incluse
dans le fichier .h et la déclaration d’'une variable ou d’une fonction dans le module qui la définit
déclenchera une erreur lors de la compilation de ce dernier.

Un fichier truc.h inclus par la directive #Zinclude<truc.h> spécifie les types et prototypes

associés aux bibliothéques standard livrées avec le systéme d’explitation et les chaines de compi-
lation. Il appartient a un des répertoires prédéfinis décrivant ces bibliothéques.
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Un fichier monprog.h inclus par la directive #include"monprog.h" est stocké avec les
fichiers .c du programme et décrit les variables et fonctions partagées du programme a compiler.

13.1.4 Exemple

Considérons a titre d’exemple le squelette de programme suivant, composé de trois fichiers :
1. un fichier prog.h définissant le type des variables et fonctions partagées,
2. un fichier prog2.c définissant x et f et utilisant y et calcul,

3. un fichier prog.c définissant y et calcul et utilisant x et f.

/*****************************************************************/
/* fichier prog.h */
/*****************************************************************/

/* Définition du type des variables partagées */
extern long x;
extern long y;

/* Définition du prototype des fonctions partagées */
extern void calcul (long, long *);
extern long f (long);

On peut remarquer 1’absence de nom des paramétres des fonctions dans le fichier de définition
des prototypes.

/*****************************************************************/

/* fichier prog2.c */
[ FF A A KKK KKK KKK oo KK KKK ook KK KKK ook KK KK ok KK KK ok ok ok /

#include "prog.h"

/* Variable définie et exportée */
long x = 4;

/* Fonction définie et exportée */
long f(long t)

{

long r;

VA LY

calcul (y+2,&r); /* calcul et y sont définies dans prog.c */
VA LY

return (r);

}

Le fichier prog.c illustre I'utilisation des prototypes pour prédéclarer le type de fonctions mu-
tuellement récursives.

/*****************************************************************/

/* fichier prog.c */
/*****************************************************************/
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#include "prog.h"

/* Variable définie et exportée */
long y = 13;

/* Procédure définie et exportée */
void calcul (long x, long *r)

{

*r = x +3;
/* Ce prototype est nécessaire pour déclarer correctement */
/* les procédures mutuellement récursives locales */

static void recursivel (long); /* Cette déclaration est indispensable */
static void recursive2 (long); /* Cette déclaration est facultative  */

static void recursive2 (long b)

{

/% ... x/

if (b>1) recursivel(b-1);
/* ... %/

}

static void recursivel (long a)
{

/* ... %/
recursive2(a/2);

/% ... x/

}

/* Main utilise f et x définies dans prog2.c */
int main ()

{

/x .. x/
recursivel(x);
£f(11);

/*x ... %/
return O;

}

13.2 Exportation de symboles

La définition d’un symbole (variable ou fonction) dans un module correspond & la définition
d’un nom symbole associé a '’emplacement mémoire alloué au stockage du contenu de la variable
ou des instructions de la fonction.

Le langage utilisé doit permettre de spécifier si la définition d'un symbole dans un fichier est
utilisable dans les autres fichiers (définition globale/exportée) ou si la portée de la définition est
limitée au seul fichier qui la contient (définition a portée locale).
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Notons que tout symbole non défini utilisé dans un module sera implicitement réputé importé
d’un autre module. En C, en I'absence de spécification de type, le symbole sera supposé de type
int (ou retourner un résultat de type int a partir de paramétres de type int pour une fonction).

13.2.1 Exportation en langage d’assemblage

En langage d’assemblage, une étiquette a par défaut une portée limitée au module qui la
définit. La directive d’exportation d’une définition d’étiquette vers les autres fichiers compilés
séparément est .global étiquette.

Si deux variables! définies dans deux modules différents ont le méme nom, elles sont considé-
rées comme deux variables distinctes. Tout se passe comme si 'on avait implicitement préfixé le
nom de variable par le nom du fichier dans laquelle la variable est définie, pour donner deux noms
de variables différents.

Si un symbole est utilisé dans un fichier sans étre défini, il est supposé importé depuis un autre
fichier (dans lequel il aura I'attribut global) et sa définition sera connue lors de la phase d’édition
de liens.

13.2.2 Exportation en langage C

Les variables et les fonctions définies a 'intérieur d’une fonction ne sont accessibles que dans
le corps de cette fonction.

Les variables et fonctions définies a I'extérieur de toute fonction sont par défaut exportables
vers d’autres fichiers. Une variable ou une fonction locale & un fichier doit étre définie avec I'attri-
but de stockage static pour en cacher la définition aux autres modules.

Le mécanisme d’exportation par défaut du langage C est cependant criticable. Supposons que
deux programmeurs écrivant deux modules d’un méme programme utilisent fortuitement le méme
nom de variable privée (éventuellement de types différents) dans leurs fichiers respectifs.

Si dans les deux fichiers la variable est déclarée avec I'attribut static, tout est correct : elles
sont considérées comme deux variables distinctes. Si la variable est déclarée dans les deux fichiers
sans 'attribut static, I’édition de liens signalera une erreur de double définition.

En revanche, si I'un des programmeurs ne spécifie pas 'attribut static et que 'autre oublie
de déclarer sa variable, aucune erreur ne sera générée et les deux modules utiliseront une variable
partagée (du type spécifiée par le permier module) au lieu de deux variables indépendantes.

La traduction en langage d’assemblage d'une déclaration C génére donc :

1. une réservation de mémoire

2. une définition de symbole étiquette et

3. une directive .global d’exportation du symbole, omise en présence de I'attribut static.

Notons que dans les chapitres précédents, aucune des déclarations C ne spécifiait I'attribut
static. Cependant les directives .global correspondant a ces déclarations ont été omises dans la
traduction en langage d’assemblage pour ne pas perturber le lecteur.

I'méme chose pour des fonctions
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13.2.3 Exemple

Voici a titre d’exemple deux des modules (exportl.c et export2.c) d'un programme C (qui
en comporte d’autres). Ces deux modules partagent une variable (variable partagee) et deux
fonctions (f1 _partagee et f2 partagee). En revanche, chacun déclare une variable (var_ locale)
et deux fonctions de méme nom (f locale) et deux fonctions de noms différents (essai et essai2),
privées toutes les cing.

/****************************************************************/

/* fichier export.h */
/****************************************************************/

extern long var_partagee;

extern long f1_partagee (long);
extern long f2_partagee (long);

/****************************************************************/

/* fichier exportl.c */
I I I ™™™

#include "export.h"

long var_partagee = 1234;
long f1_partagee (long a)
{

return (a & 1);

}

static long var_locale = 3;

static int f_locale (int x)

{

return (3*x);

}

static void essai ()
{

/% ... %/

var_locale = f1_partagee (4);
var_partagee = f2_partagee (3);
var_locale = f_locale (2);

/*x ... %/

}

[ KKK KKK oK K oK K K oK oK K oK KK KK KoK K oK K oK oK ok K oK KK oK oK oK K oK KoK K oK K KKK Kok ok ok ok /
/* fichier export2.c */
[ H KKK KKK K KKK K KKK KK KKK KK KKK KK KK oK KoK oK K oK KoK oK oK oK KoK o K oK KoK K oK K KK oK KoK Kok ok /

#include "export.h"
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long f2_partagee (long a)
{
return (a/2);

}
static long var_locale = b;

static int f_locale (int x)

{

return (x+2);

}

static void essai2()
{

/% ... x/

var_locale=f_locale(8);
var_partagee=f1_partagee(6) ;
VA LY

}

Voici a quoi ressemble sa traduction en langage d’assemblage :

dddcdddeddddddddeeddeddedddeddeddddedddddddeddedddddeddddedddddddededddddedeeed
@ fichier exportl.s
ddcddeeldddeddeddeedddddeddeeddeddddededddddededdedddddededddededddddedededddddedeeed

.data
.global var_partagee

var_partagee: .word 1234
var_locale: .word 3
.text

.global f1_partagee

f1_partagee: and r0, r0, #1
jmp 1r
f_locale: add r0, r0, rO, LSL #1
jmp 1r
essai: @ sauvegarde et restauration
@ des registres modifies omises
Q ...
mov r0, #4
bl f1_partagee
mov32 rl, #var_locale
str r0, [r1]
mov r0, #3
bl f2_partagee
mov32 r2, #var_partagee
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str r0, [r2]

mov r0, #2

bl f_locale

mov32 rl, #var_locale
str r0, [r1]

Q ...

jmpl 1r

ddcddeeldddeddeddedddddedddededddddeddddddedededddddddeddddeddddddedededddddedeeed

@ fichier export2.s

dddcdddeddddddddeeddeddedddeddeddddedddddddeddedddddeddddedddddddededddddeeeed
.data

var_locale: .word 5

.text
.global f2_partagee

f2_partagee: mov r0, rO, ASR #1
jmp 1r
f_locale: add r0, r0, #2
jmp 1r
essail: @ sauvegarde et restauration
@ des registres modifies omises
e ...
mov r0, #8
bl f_locale
mov32 r2, #var_locale
str r0, [r2]
mov r0, #6
bl f1_partagee
mov32 rl, #var_partagee
str r0, [r1]
e ...
jmpl 1r

13.3 Attributs de stockage

La déclaration d’une variable peut étre précédée d’un attribut ou d’un qualificateur de sto-
ckage : auto, static, extern, register, const ou volatile.

13.3.1 Classes de stockage

Il n’existe que deux classes de stockage d’une variable C :

1. statique : la mémoire de stockage de la variable est allouée statiquement (sections data ou
bss) et le contenu de la variable est accessible pendant toute la durée du programme,
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2. automatique : la mémoire de stockage est allouée dynamiquement (dans la pile?) au début
et libérée a la fin de I'exécution du bloc d’instructions qui déclare la variable (aprés quoi son
contenu est détruit).

La classe de stockage d’une variable définie dans une fonction (ou dans un bloc d’instructions
inclus dans le corps d’une fonction) est implicitement automatique. D’autre part, la classe de
stockage d’une variable déclarée a 'extérieur de toute fonction est toujours statique.

La classe automatique étant implicite dans tous les cas de figure ou elle peut étre utilisée,
I’attribut de stockage auto ne sert en fait a rien et peut étre systématiquement omis.

L’attribut register, quelque peu tombé en désuétude, spécifie également une classe de sto-
ckage automatique, mais indique au compilateur de placer si possible la variable dans un registre.
L’opérateur "adresse de" (&) n’est pas applicable a une variable register.

13.3.2 Attribut de stockage static

L’attribut de stockage static a deux significations totalement différentes selon que la variable
est déclarée a I'intérieur d’une fonction ou a I’extérieur de toute fonction. Cette double sémantique
ne constitue pas le choix de conception du langage C le plus heureux.

Comme exposé précédemment, a 'extérieur de toute fonction, il masque la définition de la
variable aux autres modules composant le programme.

Une variable déclarée avec I'attribut static a l'intérieur d’une fonction a un statut hybride :
Sa classe de stockage est statique et elle conserve son contenu entre deux appels de la fonction
comme si elle était déclarée statiquement a I’extérieur de toute fonction.

Son nom n’est connu et elle n’est accessible qu’a l'intérieur du corps de la fonction : elle
reste bien une variable privée de la fonction contrairement & une variable qui serait déclarée
a l'extérieur de celle-ci.

Ce genre de déclaration est par exemple utile pour définir une fonction capable de compter
combien de fois elle a déja été exécutée.

/**********************************************************************/

/* gestion de tickets de file d’attente */
[ KKK K KKK KK KK KK KoK K oK oK oK oK oK KKK oK oK K KK oK K oK oK KoK o oK oK ok ok K ok K ok o ok Kok K ok K ok K ok Kok ok o/

static unsigned long donner_un_ticket ()
{

static unsigned long numero_courant = 1;
return numero_courant++;

}

elelcleleleleleleleleleleleleleleleleleleleleielelelelelelelelelelcIelelelelecIclcielelelcleicleleleleleleleleleleleleleleleleclelelelelelelele
.data

numero_courant_de_donner_un_ticket: .word 1

2un compilateur optimisant peut aussi décider de placer la variable dans un registre, sans changer pour autant

la durée du stockage
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.text
donner_un_ticket: stmfd sp!, {...,1r}
mov32 rl, numero_courant_de_donner_un_ticket
ldr r2, [ri]
mov r0, ril
add r2, r2, #i1
str r2, [ri]
ldmfd sp,! {....,1r}
jmp 1r

13.3.3 Qualificateurs de stockage const et volatile

Outre un attribut de stockage, une déclaration de variable peut inclure un qualificateur de
stockage : const ou volatile.

L’attribut const indique que la variable contient une constante : modifier son contenu est illé-
gal. Le compilateur peut alors vérifier ’absence d’affectation directe d’une valeur a cette variable?.

L’attribut volatile indique au compilateur que le contenu de la variable peut étre modifié en
I’absence de tout accés dans le code qu’il génére. Ce cas de figure se rencontre en particulier en
cas de partage d’une variable entre plusieurs processus ou lorsqu’une addresse correspond a un
dispositif d’entrée/sortie.

Le compilateur n’a pas le droit d’optimiser ’accés & une variable volatile stockée en mémoire
en supposant que son contenu vient d’étre lu et stocké dans un registre par les instructions préceé-
dentes.

static long nonvol=0;
static volatile long vol=0;

if (nonvol != 0) nonvol --;
if (vol '= 0) vol --;

.data
nonvol: .word O
vol: .word O

.text

mov32 rl, #nonvol
ldr r0, [ri]
cmp r0, #0
beq finnonvol
@ rO contient encore la valeur actuelle de nonvol
@ on peut donc omettre 1l’instruction ldr ci-dessous
@ 1dr ro, [ri]
sub r0, rO, #1
str r0, [ri]
finonvol: mov32 ri1, #vol

3L attribut const n’est pas une assurance "tous risques” : une modification de la variable via un pointeur i
I'insu du compilateur reste généralement possible.
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ldr r0, [ri1]
cmp r0, #0
beq finvol
@ la valeur de vol lue dans rO peut etre obsolete
@ on ne peut donc pas omettre 1’instruction ldr ci-dessous
ldr r0, [r1]
sub r0, rO, #1
str r0, [ri]
finvol:
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Chapitre 14

Spécificités du jeu d’instructions ARM

14.1 Registres, compteur ordinal et instructions de calcul

14.1.1 Registres

Un processeur ARM est doté de 16 registres généraux. Contrairement a la majorité des autres
processeurs, le compteur ordinal d'un processeur ARM est accessible en tant que registre gé-
néral : r15 (en langage d’assemblage on peut écrire au choix pc ou r15).

Lorsque pc/r15 est utilisé comme opérande, son contenu est ’adresse de 'instruction courante
qui l'utilise plus huit. Pour optimiser les performances, les processeurs sont concus de maniére
a exécuter une nouvelle instruction par cycle (techique de pipeline). Avec cette technique, le +8
s’explique par le fait que lorsque le compteur ordinal est lu par I'instruction courante, le processeur
est déja en train de lire la deuxiéme instruction qui suit.

La convention de nommage des registres est la suivante : Ir est synonyme de r14, sp de r13,
ip de r12 et fp de r11.

Les quatre octets du registre d’état, appelé cpsr', sont notés c,x,s,f, le dernier étant celui de
poids forts contenant les indicateurs NZCV. L’instruction spéciale mrs copie le contenu du re-
gistre d’état dans un registre général. L’instruction effectuant le transfert inverse est mrs, et il est
possible de ne modifier que certains octets du registre d’état.

@ transfert du registre d’état dans r2
mrs r2, CpsTr

@ transfert inverse, affectant les quatre octets du registre d’état
msr cpsr_fsxc, r2

14.1.2 Constantes entiéres sur 32 bits

Toutes les instructions ARM sont sur un seul mot de 32 bits, sans exception. Pour charger
une constante 32 bits quelconque dans un registre, on utilise une instruction ldr avec une adresse
relative au compteur ordinal, qui permet d’accéder a tout mot (de la section text) dans le voisinage
de I'instruction 1dr (I'entier ajouté a pc restant codable sur 12 bits).

L’assembleur fournit une pseudo instruction de la forme ldr reg, etiquette avec etiquette
dans le voisinage de I'instruction.

!Current Program Status Register
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@ int ajoutl (int x) int ajout2 (int x)
e { {
@ return (x+0x11111111); return (x+0x22222222);
@ } }
@
.text

ajout: ldr r1, [pc, #(ctel-ajout-8)] @ r1 <- 11111111
add r0, r0, ri2
mov pc, lr

Q
@ Utilisation de la pseudo-instruction 1ldr reg, étiquette
ici: ldr r2, cte2 Q@ génére 1ldr r2, [pc, #(cte2-ici-8)]
add r0, r0, ri2
mov pc, lr
ctel: .word 0x11111111 @ ces .word sont dans le voisinage
cte2: .word  0x22222222 @ de ajout et ici

Pour faciliter encore plus le travail, I'utilisation de la directive .ltorg et de la pseudo-instruction
Idr reg,=cte évite de déclarer les mots contenants les constantes a charger dans les registres.
Ainsi, la traduction ARM de lI'instruction mov32 r0,#12345678 s’écrit Idr r0,— 0x12345678,
suivi de (une seule fois et un peu plus loin dans la section text) .ltorg.

@ charger 11112222 dans rl
@ charger 33334444 dans r2
@ charger 55556666 dans r3
@
@

avec pseudo 1ldr = @ code expansé par l’assembleur
ldr r1, =0x11112222 @ icil: 1dr ri1, [pc, #(cl -icil -8)]
ldr r2, =0x33334444 @ ici2: 1dr r2, [pc, #(c2 -ici2 -8)]
ldr r3, =0x33334444 @ ici3: 1dr r3, [pc, #(c3 -ici3 -8)]
@ stocker les constantes ici
.1ltorg @ ci: .word  0x11112222
Q@ c2: .word 0x33334444
Q@ c3: .word 0x44445555

14.2 Instructions de calcul

Le tableau 14.1 résume les instructions ARM de calcul.

Les deux variantes d’addition add et adc utilisent respectivement 0 et I'indicateur C comme
retenue initiale. Le méme principe d’applique aux instructions de soustraction (sub, sbc) qui re-
tranchent I'opérande droit de 'opérande gauche. Il est également possible de soustraire I’'opérande
gauche de lopérande droit (rsb, rsc?).

Le jeu d’instruction comprend une instruction pour chaque opération bit a bit (and, or, eor),
ainsi que andnot (bic® : 0pgauche& OParoit)-

2Reverse SuBstract, Reverse Substract with Carry
3BIt Clear
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code-op | Nom Explication du nom Opération remarque
0000 AND AND et bit a bit
0001 EOR Exclusive OR ou exclusif bit a bit
0010 SUB SUBstract soustraction
0011 RSB Reverse SuBstract soustraction inversée
0100 ADD ADDition addition
0101 ADC ADdition with Carry addition avec retenue
0110 SBC SuBstract with Carry soustraction avec emprunt
0111 RSC | Reverse Substract with Carry | soustraction inversée avec emprunt
1000 TST TeST et bit a bit pas rd
1001 TEQ Test EQuivalence ou exclusif bit a bit pas rd
1010 CMP CoMPare soustraction pas rd
1011 CMN CoMpare Not addition pas rd
1100 ORR OR ou bit a bit
1101 Mov MOVe copie pas rn
1110 BIC Blt Clear et not bit a bit
1111 | MVN MoVe Not not (complément a 1) pas rn

TAB. 14.1 Instructions de calcul : nom rd, rn, op droit

L’instruction mov de copie d'un opérande (de type opérande droit) dans un registre destina-
tion admet une variante mvn* qui complémente 1'opérande.

Toutes ces instructions (par exemple de soustraction) déposent le résultat de I'opération dans

un registre destination et existent en deux versions (subS, sub) qui mettent & jour ou non les
indicateurs ZCNV.

Les instructions tst, teq et cmp® sont des variantes de andS, eorS et subS qui mettent a
jour les indicateurs mais ne déposent pas le résultat apparent dans un registre (ce qui évite de
détruire un contenu utile d’un registre pour faire de simples comparaisons). L’instruction cmn®
compare avec le complément de I'opérande droit.

14.2.1 Opérande droit, décalages et rotations

L’opérande droit d’une instruction de calcul peut étre un registre général ou un opérande im-
médiat, a savoir un entier naturel codable sur 8 bits a une rotation a droite d'un nombre pair de
bits pres.

Il n’y a pas d’instruction ARM spécifique de décalage et de rotation, mais il est possible de les
appliquer a 'opérande droit de toute instruction de calcul, §'il est de type registre (le contenu du
registre n’est pas modifié : le décalage est appliqué sur la copie du contenu envoyée a 'unité de
calcul)

@ Quelques exemples d’opérandes droits dans les calculs
@
mov r3, #2565 @ 255 : Oxff
add r3, r3, #520 @ 520 : 0x210, rotation de 0x21
MoV Not

5TeST, Test EQuivalence, CoMPare
6CoMpare Not
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add r2, ri1, ri1, LSL #3
mov rl, r2, ASR r3

mov rl, r2, LSR r3

and rl, rl, r2, ROR #4
orr rl, rl, r2, ROR r3
mov rl, r2, RRX

r2 9 x ril

ri r2 > r3 (r3 int)

rl = r2 > r3 (r3 unsigned int)
rotation a droite 4 bits
rotation a droite de r3 bits
rotation 1 bit & droite de (r2,C)

@
@
@
@
@
@

Sont disponibles le décalage arithmétique a droite (ASR), la rotation a droite (ROR et le
décalage logique a gauche ou a droite LSL, LSR) de b bits. Le nombre de bits b doit appartenir
a Pintervalle [1, 32|%. 11 peut s’agir d’une constante entiére codée sur 5 bits ou du contenu d’un
troisiéme registre.

L’absence de modification de 'opérande droit est traité comme un décalage de zéro bits. Une
rotation a droite de zéro bit est interprétée comme un rotation a droite d’'un bit appliquée a un
entier de 33 bits obtenu en concaténant 'opérande droit et I'indicateur C (rotation notée RRX).

14.3 Branchements et conditions

Les branchements relatifs utilisent un déplacement signé sur 24 bits exprimé en nombre d’ins-
tructions et qui tient compte du fait que PC pointe deux instructions en avance. Soit dest I'adresse
de l'instruction destination du branchement et source 'adresse de I'instruction de branchement
relatif, I’expression du déplacement est W. En pratique, le programmeur utilise des éti-
quettes et 'assembleur se charge de calculer la valeur du déplacement.

En pratique, toutes les instructions ARM ordinaires sont conditionnelles : si la condition est
fausse, l'instruction n’a pas d’autre effet que de faire passer le compteur ordinal & 'instruction
suivante. Si la condition est vraie, 'instruction est exécutée normalement. En 'absence de suffixe
de condition dans le mnémonique, la condition toujours vraie est implicitement utilisée (sub est
synonyme de subal). Cette facilité permet de traduire de petites séquences conditionnelles sans
branchement.

@ traduction de si (rO==r1) r0 = r0*2; else r1l =rl1 + 1;

@
@ sans branchement avec branchement
cmp r0, ril cmp 10, ril
bne sinon
alors: addeq 10, r0, r0 alors: add r0, r0, r0
bal finsi
sinon: addne 1ri1, ri1, #1 sinon: add rl, ri, #1
finsi: finsi:
@

@ Equivalent ARM de 1’instruction jmp r1+r2 du RISC fictif
@ add pc, rl, r2

Notons que toute addition ou soustraction stockant son résultat dans pc/rl5 est aussi un bran-
chement relatif, mais dont le déplacement est exprimé en octets et sur 8 bits seulement.

L’instruction de branchement abolu jmp de notre processeur RISC fictif correspond a une
instruction ARM add ou mov affectant pc.

T Arithmetic Shift Right, ROtate Right, Logic Shift Left/Right, ROtate with eXtension
832 codé comme 0, intervalle [0, 31] pour LSL et [1,31] pour ROR
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@ RISC de référence @ instruction ARM équivalente

jmp 1r mov pc, 1r

jmp ril+r2 add pc, rl, r2

jmpl ril mov 1lr,pc @ sauver adresse retour
mov pc, rl @ branchement

14.4 Variantes des instructions load et store

Les instructions ARM Idm et stm se comportent comme celles du processeur RISC fictif avec
une limitation : si le registre pointeur est mis a jour (variante ldm/stm reg! liste-regs), il ne doit
pas faire partie de la liste de registres a transférer (stmfd sp !, {fp,sp} n’est pas autorisé).

Il existe quelques différences mineures entre les instructions ldr et str du jeu d’instructions
ARM et celui de notre processeur RISC fictif.

Les seules instructions d’accés a la mémoire dans la premiére définition du jeu d’instructions
ARM permettaient uniquement :

1. la lecture (Idr) dans un registre et I'écriture (str) en mémoire d’'un mot de 32 bits,
2. Iécriture en mémoire d’'un octet, ? (strb),

3. la lecture en mémoire d’un octet considéré comme un entier naturel (Idrb), avec extension
de format a 32 bits par remplissage de 0 des 24 bits de poids forts du registre destinataire.

Le jeu d’instructions ARM a ensuite étendu pour inclure :

1. la lecture d’un octet considéré comme un entier relatif (ldrsb) avec extension de format a
32 bits par remplissage des 24 bits de poids fort du registre destinataire avec le bit de signe
(bit 7) de I'octet,

2. I’écriture d'un demi-mot de 16 bits (strh),

3. la lecture d’'un demi-mot de 16 bits avec extension a 32 bits appropriée, selon sa nature :
entier naturel (ldrh) ou entier relatif (1drsh).

Ce deuxiéme groupe d’instruction offre des possibilités d’adressages restreintes : il n’est pas
possible d’appliquer un opérateur de décalage ( LSL, LSR, ASR ou ROR'’, noté déc dans le ta-
bleau : ) sur le deuxiéme registre et la constante entiére codable est plus petite.

Mode adresse nouvelle Limitations sur
d’adressage utilisée valeur regl ldrsb, 1drh, lrsh, sth
[regl, + reg2| regl =+ reg2 regl

[regl, £ reg2|! regl + reg2 regl + reg2 aucune
[regl], £ reg2 regl regl + reg2

[regl, # +entier] regl + entier | regl Codage de
[regl, # + entier]! regl + entier | regl =+ entier Ientier sur
[regl|, # + entier regl regl + entier 8 bits au lieu de 12
[regl, & reg2, déc #n| | regl & reg2 & | regl

[regl, & reg2, déc #n]! | regl & reg2 & | regl =+ reg2 < Indisponible
[regl|, &+ reg2, déc #n | regl regl + reg2 <

9pris dans l'octet de poids faible d’un registre
19En pratique, seul le décalage & gauche présente un intérét dans un calcul d’adresse
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Voici quelques exemples d’utilisation de ces modes d’adressage :

ldrh r0, [r1, r2]

ldrsb r0, [rl, -r2]!

ldrsh r0, [r1], -r2

ldr r0, [r1, #-4095]

ldrh  r0, [r1, #255]!

ldr r0, [ri1], #4095

ldr r0, [r1, r2, LSL #3]!

14.5 Convention d’appel et pile du compilateur ARM GNU

La convention d’appel utilisée par le compilateur gecc est la suivante :
. Les quatre premiers parameétres explicites sont stockés dans les registres r0 a r3.
. les paramétres explicites suivant sont empilés et sp repére le premier d’entre eux.

1

2

3. L’adresse de retour est déposée dans le registre Ir.

4. La sauvegarde des registres est a la charge de I'appelée, excepté pour ip.
5

. Le résultat d’une fonction est retourné dans le registres r0.

Le prologue standard d'une fonction empile aprés les arguments transmis par la procédure
appelante :

1. Padresse de l'instruction d’allocation mémoire dans le prologue (cette information n’est pas
nécessaire a la gestion des appels, mais facilite la mise au point des programmes avec un
débogueur),

2. I'adresse de retour dans I'appelante,
3. le sommet de pile sp laissé par I'appelante,

4. le pointeur de paramétres fp de I'appelante.

P —
bloc param
fonc->g

Delta

variables

sauve autres
registres

bloc param
e->tfonc e->fonc

- - - fp
Fi1G. 14.1 Etat de la pile ARM au début (a gauche) et a la fin (a droite) du prologue
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Le pointeur de paramétres repére le premier item de ce bloc de quatre sauvegardes de registres.

Le squelette typique d’une procédure a nombre fixe d’arguments est le suivant :

fonc: @ prologue
mov ip, sp
stmfd  sp!, {fp,ip, lr, pc}
sub fp, ip, #4
alloc: sub sp, sp, #AUTRES_REGS+LOCAL+PARAM_PASSES

@ corps de la procédure

@ épilogue
ldmea  fp, {fp, sp, pc}

14.6 Divers

La directive d’alignement align x aligne sur un multiple de 2" au lieu d’un multiple de n, qui
est obtenu par la directive .balign x.

14.7 Exemple de code ARM

Considérons a titre d’exemple la séquence C suivante :

short int s = 15;
static long int x = 1234;

long int proc (long 1)

return (5x1);

}

En voici la traduction en langage d’assemblage ARM :

.data

.global s
S: .short 15

.balign 4 @ ou .align 2
X: .word 1234

.text

.global proc

DELTA_PROC=8 @ sauvagarde : r4 et rb
proc: mov ip, sp

stmfd sp!, {fp,ip, 1lr, pc}

sub fp, ip, #4
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sub sp, sp, #DELTA_PROC

str r4, [sp, #(DELTA_PROC-4)]

str r5, [sp, #(DELTA_PROC-8)]

1dr rd,= s @ mov32 r4, #s
ldrsh 5, [r4]

add r5, r5, #3

strh r5, [r4]

add r0, rO, r0, LSL #2
ldr r5, [sp, #(DELTA_PROC-8)]
ldr r4, [sp, #(DELTA_PROC-4)]

@ retour + restaurer fp,sp
ldmea  fp, {fp, sp, pc}

.1torg
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