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Obje
tifs de 
e do
umentCe do
ument est une introdu
tion au langage ma
hine et au langage C. Le but est de donnerau le
teur une notion des a
tions élémentaires e�e
tuées dans la ma
hine et un aperçu du pro-
essus de tradu
tion manuelle des 
ontru
tions d'un langage évolué (C en l'o

uren
e) en suited'instru
tions élémentaires du langage ma
hine d'un pro
esseur RISC.En pratique, la tradu
tion est automatisée et 
on�ée à des programmes tradu
teurs : les 
om-pilateurs, dont il n'est pas question d'aborder i
i le fon
tionnement interne. Les notions présentéesi
i sont en revan
he su�santes pour permettre la 
ompréhension du 
ode ma
hine généré par le
ompilateur gnu en l'absen
e d'optimisation poussée.Ce do
ument 
ouvre un surensemble des prérequis du module "Ar
hite
tures Logi
ielles et Ma-térielles" de troisième année de la li
en
e d'informatique de Grenoble, enseignées dans le moduleéponyme de deuxième année (INF241).Les deux premiers 
hapitres introduisent la représentation des nombres en base 2 et les typeset expressions 
orrespondant du langage C.Quelques 
on
epts essentiels d'ar
hite
ture des ordinateurs sont ensuite présentés dans les
hapitres 3 et 4 : l'organisation générale d'un ordinateur, et les notions de langage ma
hine etd'assemblage, de jeux d'instru
tions et de modes d'adressage.La suite du do
ument est 
onsa
rée à la programmation en langage d'assemblage d'un pro
es-seur RISC �
tif inspiré des pro
esseurs 32 bits ARM et SPARC v7. Elle insiste sur les primitivesimportantes du langage C et sur la te
hnique de tradu
tion systématique du C en langage d'as-semblage.La notion d'étiquette, les dire
tives de réservation de mémoire en langage d'assemblage et latradu
tion des dé
larations de variables sont abordées dans le 
hapitre 5.Les 
hapitres 6 et 8 regroupent les prin
ipes de base de la tradu
tion du C en langage d'assem-blage. Les opérateurs * et & du C, la notion de pointeur et la tradu
tion des a

ès aux variablessto
kées en mémoire font l'objet du 
hapitre 6. Les 
onstru
teurs algorithmiques du C (tels quefor, while, et
), leur tradu
tion et le 
on
ept de bran
hement sont présentées dans le 
hapitre 8.Quelques points parti
uliers sont traités dans des 
hapitres spé
i�ques. Il s'agit des stru
tures,des tableaux et de leurs liens ave
 les pointeurs, de la gestion des pro
édures et de la 
ompilationséparée.Le dernier 
hapitre expli
ite quelques spé
i�
ités du pro
esseur ARM par rapport au pro
es-seur RISC �
tif de référen
e 
onsidéré dans les 
hapitres pré
édent.3



4 Outre le dernier 
hapitre, le le
teur déjà familiarisé ave
 le langage d'assemblage d'un autrepro
esseur, (par exemple 680x0 ou famille 80x86), pourra se 
on
entrer sur les 
hapitres 4 et 6,ainsi que 5 s'il ne maîrise pas la syntaxe GNU des dire
tives de réservation mémoire, et en�n lesinstru
tions ldm et stm (présentées ave
 les pro
édures sans ré
ursion),
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Chapitre 1Codage des nombres et 
al
ul en base 2Un ordinateur peut être vu 
omme une ma
hine qui manipule des (représentations d') infor-mations. Il s'agit souvent de réaliser un 
ertain nombre de 
al
uls.La manipulation de grandeurs analogiques ou 
ontinues est malaisée. Il est di�
ile de réaliserdes 
ir
uits éle
troniques analogiques à la fois pré
is, rapides et insensibles aux variations de tem-pérature. Les ordinateurs sont des 
al
ulateurs digitaux (ou numériques) qui travaillent sur desinformations de nature dis
rète 
odées sous forme de nombres. Les 
ir
uits éle
troniques digitauxfon
tionnant en tout ou rien o�rent l'avantage d'une bonne immunité au bruit et une vitesse de
al
ul élevée.Un ordinateur manipule don
 des variables booléennes qui ne peuvent prendre 
ha
une quedeux valeurs : 0 ou 1. Ces deux symboles représentent la propriété vraie (1) ou fausse (0) d'uneproposition logique. Mais ils 
orrespondent aussi aux 
hi�res de la base 2.Une variable booléenne dont les valeurs vrai et faux sont équiprobables en
ode une unité élé-mentaire d'information : le bit. Mais le bit est plus souvent dé�ni 
omme un 
hi�re élémentaire(BInary digiT) dans la représentation des nombres en base deux. Les paquets de 4 bits et 8 bitssont appelés respe
tivement quartet et o
tet.Les 
ir
uits des ordinateurs traitent don
 les 
hi�res des entiers (é
rits en binaire) 
omme desvariables booléennes. Ils réalisent des fon
tions boolénnes qui 
orrespondent aux règles de 
al
ularithmétique en base 2.Les ordinateurs sont dimensionnés pour traiter des mots (paquets de bits a

olés) de largeur�xe (généralement 32 et 64 bits), ou des sous-multiples de 8 ou 16 bits. Ils savent gérer e�
a
ementles entiers naturels (non signés) et relatifs (signés). Il existe également une norme de représentationde nombres à virgule (ave
 une pré
ision limitée).1.1 Conversion d'entiers naturels dans les bases 2 et 16Dans une base de numération B donnée, tout entier naturel (non signé, ≥ 0) X peut êtrereprésenté par une suite de 
hi�res (ou digits) xi, tous inférieurs à la base utilisée (0 ≤ xi ≤ B−1)et tels que X =
∑n−1

i=0
xi ∗ Bi. La base est éventuellement pré
isée en indi
e à droite du dernier
hi�re ou entre parenthèses. Par défaut, il s'agit de la base 10.Le rang d'un 
hi�re sera également désigné sous le nom de poids en se référant à la puissan
ede la base par lequel il doit être multiplié. Le 
hi�re de poids fort xn−1 est é
rit à gau
he et 
elui5



6 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2de poids faible x0 à droite. Les 
hi�res sont 0 et 1 pour la base 2, 0 à 7 pour la base 8 (o
tale), 0à 9 pour la base 10 (dé
imale) et 0 à 9 et A à F pour la base 16 (hexadé
imale).Il su�t d'appliquer la dé�nition pour 
onvertir un entier exprimé en base B en base 10. Les 0à gau
he peuvent être éliminés sans 
hanger la valeur de l'entier naturel représenté.
1012 = 1× 22 + 0× 21 + 1× 20 = 4 + 1 = 5
1018 = 1× 82 + 0× 81 + 1× 80 = 64 + 1 = 65
10110 = 1× 102 + 0× 101 + 1× 100 = 100 + 1 = 101
10116 = 1× 162 + 0× 161 + 1× 160 = 256 + 1 = 257
A416 = 10× 161 + 4× 160 = 10 ∗ 16 + 4 = 164
00235 = 0× 53 + 0× 52 + 2× 51 + 3× 50 = 10 + 3 = 13.n 2ndé
imal hexa o
tal binaire dé
imal hexa 
ommentaire0 0 00 0000 1 11 1 01 0001 2 22 2 02 0010 4 43 3 03 0011 8 84 4 04 0100 16 10 un quartet = un 
hi�re hexa5 5 05 0101 32 206 6 06 0110 64 407 7 07 0111 128 808 8 10 1000 256 100 un o
tet = deux 
hi�res hexa9 9 11 1001 512 20010 A 12 1010 1024 400 1Kb11 B 13 1011 2048 800 2Kb12 C 14 1100 4096 1000 4Kb13 D 15 1101 8192 2000 8Kb14 E 16 1110 16384 4000 16Kb15 F 17 1111 32768 8000 32Kb16 10 20 10000 65536 10000 64Kb20 14 24 10100 1048576 100000 1Mb = 1K2

b = 5 
hi�res30 1E 36 11110 1̃.07× 109 40000000 1Gb = 1K3
bTab. 1.1 � Chi�res hexadé
imaux et prin
ipales puissan
es de deuxLa tradu
tion des 
hi�res hexadé
imaux et les prin
ipales puissan
es de 2 sont regroupées dansle tableau 1.1. Les pré�xes K,M ,G indiquent une multipli
ation par respe
tivement un millier, unmillion et un milliard. On notera que 210 vaut presque 1000 (2.4% d'erreur), d'où l'idée de dé�nirun pré�xe Kb pour les valeurs binaires. Les 
apa
ités de mémoire d'un ordinateur s'exprimenttoujours en pré�xes binaires et nous omettrons généralement l'indi
e indiquant qu'il s'agit d'unpré�xe binaire. 1 Ko
tet de mémoire signi�e par défaut 1024 o
tets.La 
onversion d'un entier de base 10 en une autre base est e�e
tuée en divisant répétitivementl'entier par la base jusqu'à 0 et en alignant les restes des divisions su

essives (notés→ reste dansl'exemple 
i-dessous), du premier é
rit à droite au dernier é
rit à gau
he.La représentation en binaire peut aussi être obtenue en essayant de dé
omposer l'entier ensomme de puissan
es de 2, 
ha
une 
orrespondant à un 
hi�re à mettre à 1. Exemple : on peut serendre 
ompte que 1099 = 1024(210) + 64(26) + 8(23) + 2(21) + 1(20). Dans la représentation en
©Philippe Waille UJF/UFR IMA 6 juillet 2006



1.2. ADDITIONS D'ENTIERS NATURELS 7binaire, seuls les 
hi�res de poids 0, 1, 3, 6 et 10 seront à 1, d'où 1099 = 100010010112.
11610 = 4315 ⇒ 116÷ 5 = 23→ 1  23÷ 5 = 4→ 3  4÷ 5 = 0→ 4
17110 = AB16 ⇒ 171÷ 16 = 10→ 11 (B)  10÷ 16 = 0→ 10 (A)
17110 = 2538 ⇒ 171÷ 8 = 21→ 3  21÷ 8 = 2→ 5  2÷ 8 = 0→ 2
7110 = 10001112 ⇒ 71÷ 2 = 35→ 1  35÷ 2 = 17→ 1  17÷ 2 = 8→ 1

 8÷ 2 = 4→ 0  4÷ 2 = 2→ 0  2÷ 2 = 1→ 0  1÷ 2 = 0→ 1
109910 = 44B16 ⇒ 1099÷ 16 = 68→ 11 (B)  68÷ 16 = 4→ 4  4÷ 16 = 0→ 4Fig. 1.1 � Conversion entre bases par le 
al
ul des restes de divisionL'é
riture de 32 
hi�res binaires 
�te à 
�te est di�
ile à lire et il est re
ommandé de grouperles bits en quartets (à partir de la droite), séparés par des espa
es. Elle fa
ilite le passage entreles formes hexadé
imales et binaires : 
haque quartet 
orrespond à la tradu
tion en binaire d'un
hi�re hexadé
imal de la représentation en base 16. La �gure 1.1 illustre la 
onversion pour 1099 :

109910 = 0 0 0 0 0 4 4 B16

109910 = 0000 0000 0000 0000 0000 0100 0100 10112Fig. 1.2 � Expression binaire et hexadé
imale de 10991.2 Additions d'entiers naturels1.2.1 Prin
ipe de l'addition en base BL'addition de deux nombres a et b é
rits en base B est e�e
tuée 
olonne par 
olonne des poidsfaibles au poids fort, don
 de droite à gau
he. Chaque 
olonne 
omprend un 
hi�re de retenueentrante, issue de la 
olonne pré
édente, qui vaut 0 ou 1, et un 
hi�re (≤ B − 1) de 
ha
un desdeux opérandes.La somme s des 
hi�res d'une 
olonne véri�e 0 ≤ s ≤ 2 ∗B − 1 et s est un nombre 
odable surdeux 
hi�res. Celui de poids fort 
orrespond à la retenue sortante de la 
olonne. Il vaut 0 si s < Bet 1 si B ≤ s < 2× B. Celui de poids faible est le 
hi�re du résultat dans 
ette 
olonne et vaut
s modulo1 B, que nous noterons s%B. La retenue sortante est prise en 
ompte dans la 
olonnesuivante, 
e qui revient à la multiplier par la base B.Les lignes de la �gure 1.3 représentent dans l'ordre les deux opérandes, les retenues entrantes(retenues sortantes dé
alées d'un 
ran à gau
he), le résultat et les retenues sortantes. La dernièreretenue sortante, habituellement désignée 
 (
arry) est en
adrée.Ainsi, dans la 
olonne de droite du 
al
ul en base 10, la retenue entrante est nulle (pas de
olonne pré
édente). La somme des 
hi�res de la 
olonne (8, 4 et 0) vaut 12, qui ex
ède 10. Don
le 
hi�re du résultat dans la 
olonne est 12 modulo 10, soit 2 et la retenue sortante 1. Cette retenuesortante est propagée à la 
olonne suivante, dans laquelle elle représente l'addition d'une fois labase 10. L'addition dans la 
olonne suivante (5, 2 et 1 de retenue propagée) donne 8, inférieur àla base, d'où 8 pour le 
hi�re de résultat et pas de retenue sortante (propagation de 0 dans la
olonne de gau
he).1Rappel : modulo désigne le reste de la division entière notée /
©Philippe Waille UJF/UFR IMA 6 juillet 2006



8 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2opérande 1 + 4 5 8 + 1 1 1 0 0 1 0 1 0opérande 2 + 1 2 4 + 0 0 1 1 1 1 1 0 0Ret dé
alé ← 0 1 (0) 1 1 1 1 1 0 0 0 (0)Résultat 0 5 8 2 1 0 0 1 0 0 0 1 1 0
↑ ↑Ret տ 0 0 1 տ 1 1 1 1 1 1 0 0 0Fig. 1.3 � Addition en bases 10 et 21.2.2 Addition en base 2La même te
hnique est appliquée en base 2. La somme de trois 
hi�res 1 donne 3, soit unrésultat de 1 (3 modulo 2) et une retenue sortante à 1. Deux 
hi�res à 1 et un à 0 donnent 2, soitune retenue sortante à 1 et un résultat nul.Une retenue sortante �nale, notée cn ou en
ore c (en
adrée), non nulle indique que la repré-sentation du résultat né
essite un 
hi�re de plus que 
elle de 
es opérandes. Elle 
orrespond au
hi�re à rajouter à gau
he de la ligne du résultat.Tous les entiers naturels traités par les ordinateurs sont sto
kés dans des 
ontenants (registresdu pro
esseur ou empla
ements de la mémoire) dont le nombre de bits n est �gé. Au besoin lareprésentation binaire des opérandes sera 
omplétée à gau
he par des 0 pour 
orrespondre auformat du 
ontenant. Les résultats sont obtenus à Bn (don
 2n en base 2) près.Une retenue �nale 
 à 1 indique un débordement de la 
apa
ité de représentation (pour desentiers naturels) et que le résultat apparent est faux (la véritable somme devrait valoir 2n de plus).Soit R le résultat �nal apparent et 
 la retenue �nale issus de l'additionneur :

R = (a + b) % 2n, c = (a + b)/2n (division entière) et a + b = R + c× 2n.1.2.3 Addition en hexadé
imalL'addition en base 16 fon
tionne exa
tement de la même manière que dans les autres bases,et il y a retenue lorsque la somme dans la 
olonne égale ou dépasse 1610 (somme de la 
olonnesupérieure à F). En base 16, on utilise la table d'addition (1.4) au lieu de la table d'additiondé
imale habituelle. Si on trouve dans une 
olonne les 
hi�es A, 9 et 1 de retenue entrante, lasomme vaut 0x13+1, soit 0x14 : résultat 4 et une retenue sortante.1.2.4 Addition multilongueurIl arrivent que les ordinateurs travaillent sur des entiers 
odés sur un nombre de bits ex
édantla largeur du 
ir
uit de 
al
ul. Les entiers sont alors dé
oupés en tran
hes de bits de la largeur del'additionneur. Les additions sont réalisées tran
he par tran
he, de la droite vers la gau
he.La retenue sortante de l'addition d'une tran
he est utilisée 
omme retenue entrante pour l'add-tion de la tran
he suivante. Seule la première addition utilise une retenue entrante initiale nulle.Si l'on réduit les tran
hes à un seul bit, on retrouve l'algorithme séquentiel 
lassique d'addition
olonne par 
olonne. 
©Philippe Waille UJF/UFR IMA 6 juillet 2006



1.3. SOUSTRACTION D'ENTIERS NATURELS 9
+ 1 2 3 4 5 6 7 8 9 A B C D E F1 2 3 4 5 6 7 8 9 A B C D E F 102 3 4 5 6 7 8 9 A B C D E F 10 113 4 5 6 7 8 9 A B C D E F 10 11 124 5 6 7 8 9 A B C D E F 10 11 12 135 6 7 8 9 A B C D E F 10 11 12 13 146 7 8 9 A B C D E F 10 11 12 13 14 157 8 9 A B C D E F 10 11 12 13 14 15 168 9 A B C D E F 10 11 12 13 14 15 16 179 A B C D E F 10 11 12 13 14 15 16 17 18A B C D E F 10 11 12 13 14 15 16 17 18 19B C D E F 10 11 12 13 14 15 16 17 18 19 1AC D E F 10 11 12 13 14 15 16 17 18 19 1A 1BD E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1CE F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1DF 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1EFig. 1.4 � Table d'addition des 
hi�res hexadé
imaux1.3 Soustra
tion d'entiers naturelsSoit un entier naturel Y à soustraire d'un entier X. Chaque 
olonne 
omprend dans l'ordre un
hi�re de X, un 
hi�re de Y, un emprunt entrant propagé par la 
olonne pré
édente, un 
hi�re durésultat apparent et un emprunt sortant.opérande 1 (X =

∑
xi) - 4 1 4 - 1 1 0 0 1 1 1 1 0opérande 2 (Y =

∑
yi) - 2 4 3 - 0 1 1 1 1 0 0 1 1Emprunt dé
alé ← 1 0 (0) 1 1 1 0 0 0 1 1 (0)Résultat (R =

∑
resi) 1 7 1 0 1 0 1 0 1 0 1 1Emprunt (ei) 0 1 0 0 1 1 1 0 0 0 1 1

La soustra
tion est e�e
tuée de droite à gau
he, tout 
omme l'addition. L'emprunt entrant estajouté au 
hi�re de Y. Leur somme est otée du 
hi�re de X et 
ette soustra
tion donne le 
hi�redu résultat apparent. Il n'y a pas d'emprunt sortant (ei = 0) lorsque la soustra
tion est possible(Yi + ei ≤ X). Dans le 
as 
ontraire, la base B est préalablement ajoutée au 
hi�re de X et unemprunt (ei+1 = 1) est propagé à la 
olonne suivante.Exemple de la 
olonne 2 numéro 5 dans la première soustra
tion : x5 = e5 = 0 et y5 = 1, d'où
1 à oter de 0 : res5 = 1 et e6 = 1. En 
olonne 6 x6 = 0 et y6 = e6 = 1, d'où (1 + 1) à oter de 0 :
res6 = 0 et e7 = 1.Remarque : un emprunt �nal (sortant de la dernière 
olonne de gau
he et noté en ou e) nulindique que la soustra
tion peut être réalisée (deuxième opérande inférieur ou égal au premier).2Rappel : les 
olonnes sont numérotées de droite à gau
he à partir de 0
©Philippe Waille UJF/UFR IMA 6 juillet 2006



10 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2Si nous réalisions la soustra
tion inversée (243 - 414), un emprunt �nal non nul indiqueraitque 
elle-
i n'est pas réalisable (deuxième opérande supérieur au premier). Le résultat apparent
orrespond à l'opération réalisée en ajoutant Bn au premier opérande, autrement dit en supposantl'existen
e d'un 1 supplémentaire à gau
he du premier opérande.opérande 1 (X =
∑

xi) - 2 4 3 - 0 1 1 1 1 0 0 1 1opérande 2 (Y =
∑

xi) - 4 1 4 - 1 1 0 0 1 1 1 1 0Emprunt dé
alé ← 0 1 (0) 0 0 0 1 1 1 0 0 (0)Résultat (R =
∑

resi) 8 2 9 1 0 1 0 1 0 1 0 1Emprunt (ei) 1 0 1 1 0 0 0 1 1 1 0 0
L'emprunt �nal indique que 101010101 = 1011110011− 110011110, soit 341=755 - 4143. Dansla version dé
imale, il signi�e que 829 = 1243− 4144.La soustra
tion multilongueur est réalisée de la même manière que pour l'addition, en propa-geant les emprunts au lieu des retenues.1.4 Notion de 
omplément à 1 et à 2Rappelons une formule utile pour la 
ompréhension des 
al
uls arithmétiques en base 2 :

∑n−1

i=0
ai = an

−1

a−1
. Cette équation est aisément démontrable en multipliant (a− 1) par (1+ a+ a2 +

. . . + an−1). Pour a = 2, nous en déduisons que ∑n−1

i=0
2i = 2n − 1.Soient n le nombre de 
hi�res sto
kables dans un 
ontenant (registre ou mot mémoire) et soit

X l'entier ∑n−1

i=0
xiB

i. Notons B l'opération de 
omplémentation qui à un 
hi�re xi asso
ie le
hi�re xiB = B − 1 − xi, B étant la base de numération : 310 = 6, 610 = 3, 03 = 2, 23 = 0 et
13 = 1, Par dé�nition, nous avons xi + xiB = B − 1.La base 2 exhibe une propriété très utile pour la réalisation e�
a
e de 
ir
uits de 
al
uls.La table de vérité de l'opérateur 2 dé�ni sur les 
hi�res binaires 0 et 1 se 
onfond ave
 
elle del'opérateur dé�ni sur les booléens 0 et 1 : 02 = 2− 1− 0 = 1 et 12 = 2− 1− 1 = 0. Dans la suitedu do
ument, lorsque la base de 
omplémentation ne sera pas pré
isée, il s'agira par 
onventionde la base 2 : X=X2.Le 
omplément à B− 1 de X est l'entier XB =

∑n−1

i=0
xiBBi. L'entier X

B
= XB + 1 est appelé
omplément à B de X. En base 2, X = X2 et X

2
= X2 + 1 sont don
 respe
tivement les 
omplé-ment à 1 et 
omplément à 2 de X.Les ordinateurs exploitent la propriété suivante de la somme X + XB + 1 pour la réalisationdes soustra
tions.3ave
 755=243 + 5124ave
 1243=243 + 1000 
©Philippe Waille UJF/UFR IMA 6 juillet 2006



1.5. SOUSTRACTION PAR ADDITION DU COMPLÉMENT À 2 11
X + XB =

n−1∑

i=0

(xi + xiB)Bi (1.1)
= (B − 1)

n−1∑

i=0

Bi (1.2)
= (B − 1)

Bn − 1

B − 1
= Bn − 1 (1.3)

X + X
2

B = X + XB + 1 = Bn (1.4)
X + X

2
= X + X2 + 1 = 2n (1.5)

Ce résultat indique que le 
omplément à 2 (respe
tivement 
omplément à 1) de X est le nombrequ'il faut ajouter à X pour obtenir 2n (respe
tivement 2n− 1). On pourrait aussi les appeler 
om-plément à 2n et 
omplément à 2n − 1 : X
2

= 2n −X et X = 2n − 1−X.Montrons à titre d'exemple 
omment 
al
uler X
2

= X + 1 pour X = 124 pour n = 8 bits(12410 = 0111 11002 et 124 = 10000011). Une première méthode exploite la propriété X+X
2

= 2n.D'où 124
2

= 28− 124 = 256− 124 = 132 = 13210 = 1000 01002. Il est également possible de poserl'addition X + 1 (�gure). + 1 0 0 0 0 0 1 1 124+ 0 0 0 0 0 0 0 1 10 0 0 0 0 1 1 (0) Retenues1 0 0 0 0 1 0 0 124
2Il existe une méthode plus rapide : par
ourir la représentation binaire de 124 de droite àgau
he, 
onserver les 
hi�res de droite jusqu'au premier 1 in
lus et inverser les autres. Pour 124,les 3 
hi�res de droite 100 sont 
onservés et les 
hi�res 0111 1 inversés en 1000 0.Notons au passage qu'un entier est le 
omplément à 2 de son 
omplément à 2 et que sur n bits,

2n−1 est son propre 
omplément à 2 : (X
2
)
2

= 2n − (2n −X) = X et 2n−1
2

= 2n − 2n−1 = 2n−1 .
1.5 Soustra
tion par addition du 
omplément à 2Rappelons que les ordinateurs travaillant sur n bits réalisent les additions à modulo 2n près.Les ordinateurs e�e
tuent en base 2 la soustra
tion X −Y via un additionneur 
al
ulant X + Y

2.Additionner le 
omplément à 2 de Y revient en fait à soustraire Y (rappel : en travaillant sur n
hi�res, toutes les additions sont réalisées à modulo 2n près ).
©Philippe Waille UJF/UFR IMA 6 juillet 2006



12 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2
X + Y + 1 =

n−1∑

i=0

(xi + 1− yi) 2i + 1 (1.6)
=

n−1∑

i=0

2i +
n−1∑

i=0

(xi − yi) 2i + 1 (1.7)
= 2n − 1 + X − Y + 1 = X − Y + 2n (1.8)

(X + Y + 1) % 2n = (2n + X − Y ) % 2n = X − Y (1.9)La �gure suivante illustre les deux méthodes (soustra
tion normale à gau
he et soustra
tionpar addition du 
omplément à 2 à droite) pour retan
her 134 de 243.243 - 1 1 1 1 0 0 1 1 + 1 1 1 1 0 0 1 1 243134 - 1 0 0 0 0 1 1 0 + 0 1 1 1 1 0 0 1 134Emp 0 0 0 0 1 1 0 0 (0) 1 1 1 1 0 0 1 1 (1) Ret (Emp)
↓ ↓109 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 109Fig. 1.5 � Soustra
tion normale à gau
he et par addition du 
omplément à 2 à droiteLes lignes du premier opérande et 
elle du résultat sont naturellement identiques dans les deuxversions. La deuxième ligne 
orrespond à gau
he au deuxième opérande (134) et à droite à son
omplément à 1 (134).La troisième ligne 
orrespond à droite aux retenues entrantes pour l'addition (le +1 est obtenuen utilisant une retenue entrante initiale non nulle dans la 
olonne de droite) et à gau
he auxemprunts entrants pour la soustra
tion 
lassique. Les retenues dans l'addition du 
omplément à2 de Y présentent la parti
ularité d'être exa
tement égales au 
omplément des emprunts dans lasoustra
tion normale.Cette propriété s'applique en parti
ulier à l'emprunt �nal e et à la retenue �nale c : e = c.Lors de la réalisation d'une soustra
tion par addition du 
omplément à 2, une retenue �nale nulle(c = e = 0 =⇒ e = 1) signi�e que la soustra
tion est impossible (X < Y ), alors qu'une retenue�nale à 1 (c = e = 1 =⇒ e = 0) indique que le résultat est 
orre
t et la soustra
tion possible.1.6 Interprétation des indi
ateurs C et ZLes instru
tions arithmétiques peuvent positionner les indi
ateurs booléens Z et C, sto
késdans un registre spé
ial dit d'état, du pro
esseur. L'ensemble des indi
ateurs est quelquefois dé-nommé 
ode 
ondition.L'indi
ateur de résultat nul est Z (Zéro). Il est égal au produit du 
omplément des 
hi�res(interprétés 
omme des booléens) du résultat fourni par l'additionneur : Z =

∏n−1

i=0
resi. On a

Z = 1 si et seulement si le résultat apparent est l'entier 0 (tous les resi sont à 0).Il existe deux interprétations possibles de C (Carry) selon les pro
esseurs. La famille ARM ledé�nit 
omme la valeur de la retenue sortante c de l'additionneur. L'autre 
onvention utilisée entre
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1.7. OPÉRATIONS SUR LES VECTEURS DE BITS 13autres par les SPARC et 680x0, le dé�nit 
omme un indi
ateur de débordement en arithmétiquesur les entiers naturels.Après une addition sur n bits, C=1 indique un débordement : le vrai résultat n'est pas repré-sentable sur n bits et qu'il faudrait ajouter 2n au résultat apparent.La di�éren
e porte sur la soustra
tion (toujours réalisée par addition du 
omplément à 2) : Creprésente le 
omplément de l'emprunt dans le premier 
as (ARM) et l'emprunt lui-même dansl'autre 
as (SPARC).Les 
omparaisons sont des soustra
tions sans sto
kage du résultat apparent, dont le seul e�etest de positionner les indi
ateurs pour déterminer si une expression 
onditionnelle est vraie oufausse.x,y : unsigned SPARC ARM
ondition expression symbolique bool expression symbolique bool
x = y E Z EQ ZZ
x 6= y NE Z NE ZNZ
x < y LU (Less Unsigned) C LO (Lower) CCS (Carry set) CC (Carry Clear)
x ≤ y LEU (Less or Equal) C + Z LS (Lower or same) C + Z

x > y GU (Greather) C.Z = HI (Higher) C.Z =

C + Z C + Z

x ≥ y GEU (Greather or Equal) C HS (Higher or same) CCC (Carry Cleared) CS (Carry Set)Tab. 1.2 � Table des 
onditions pour entiers naturels après 
al
ul de x-yLa 
onstru
tion si (rg<rd) sauter à ... est traduite en langage ma
hine par une instru
tionde bran
hement 
onditionnel pré
édée d'une instru
tion de 
omparaison qui essaie de retran
her rdde rg. Le saut aura lieu si et seulement si les valeurs de Z et C 
orrespondent à la 
ondition rg < rd.Cette 
ondition 
orrespond au seul 
as dans lequel la soustra
tion n'est pas réalisable par
eque rd > rg, soit CSPARC = e = 1 et CARM = (e) = 0. La ligne x < y du tableau des
onditions ARM montre qu'il faut utiliser l'instru
tion de bran
hement 
onditionnel blo (b

 estun synonyme) qui e�e
tue un saut si C (C vaut 0).Pour une 
ondition de type inférieur ou égal, il su�t d'ajouter le 
as d'égalité (Z = 1) àl'expression booléenne. Pour une 
ondition stri
tement supérieur, il faut que le soustra
tion soitpossible (C à 0) et que le résultat ne soit pas nul (Z = 0).1.7 Opérations sur les ve
teurs de bitsCertaines opérations 
onsidèrent les représentations des entiers 
omme des 
olle
tions de
hi�res binaires ou de booléens.
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14 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 21.7.1 Extension et rédu
tion de formatL'extension de format 
onsiste à passer d'une représentation d'un entier naturel en binaire sur
m bits à une représentation sur n > m bits. Il su�t pour 
elà d'ajouter n−m 
hi�res 0 à gau
he(poids forts), 
e qui ne modi�e pas la valeur de l'entier représenté. L'extension de format est parexemple utilisée lors d'un transfert d'un entier sto
ké en mémoire sur 8 ou 16 bits vers un registreà 32 bits.L'opération inverse de rédu
tion tronque la représentation en éliminant les n −m 
hi�res degau
he. Elle revient à 
al
uler la valeur entier modulo 2n. Elle est notamment utilisée lors durangement du 
ontenu d'un registre à 32 bits dans une variable mémoire sur 8 ou 16 bits. Lavaleur de l'entier est 
onservée si et seulement si ses n−m 
hi�res de gau
he sont nuls : l'entierest alors représentable sur m bits (valeur inférieure à 2m).1.7.2 Dé
alages logiques et rotationsLe dé
alage logique de d bits à droite supprime les d 
hi�res de droite et rajoute d 
hi�res 0 àgau
he, 
e qui revient à diviser l'entier par 2d.Le dé
alage à gau
he élimine au 
ontraire d 
hi�res de poids fort et rajoute d 
hi�res 0 à droite.Il 
orrespond à une multipli
ation par 2d (en l'absen
e de débordement, autrement dit si les d
hi�res de poids forts du nombre de départ sont des 0).La sommation de deux dé
alages logiques respe
tivement de d bits à droite et n−d bits à gau
he
orrespond à une rotation à droite qui dépla
e d 
hi�res de l'extrémité droite vers l'extrémitégau
he. Ré
iproquement, une opération de rotation à gau
he dépla
e les 
hi�res de poids fort(gau
he) en poids faible (droite). Une rotation ne 
orrespond à au
une opération arithmétiquesimple. Il existe en�n des rotations sur n + 1 bits au travers de l'indi
ateur C 
onsidéré 
ommeun bit supplémentaire de rang n de l'entier.1.7.3 Opérations booléennes bit à bitLes 
hi�res de même rang de deux entiers 
odés sur n bits peuvent être 
onsidérés 
omme npaires de booléens sur lesquelles il est possible d'appliquer les opérateurs booléeens : et , ou, ouex
lusif.Dans 
haque 
olonne, le 
hi�re du résultat est obtenu en appliquant l'opération booloéennesur les 
hi�res des deux opérandes.

&bb

1 0 1 0
+bb

1 0 1 0
⊕bb

1 0 1 01 1 0 0 1 1 0 0 1 1 0 01 0 0 0 1 1 1 0 0 1 1 0Fig. 1.6 � Et, ou et ou ex
lusif bit à bit sur 4 bitsDans la même 
atégorie, mais agissant sur un seul entier, 
itons l'opérateur de 
omplémenta-tion qui inverse tous les 
hi�res de l'entier : 
et opérateur 
al
ule le 
omplément à 1 de l'entier.
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1.8. NOMBRES ENTIERS NATURELS ET RELATIFS ET NOMBRES À VIRGULE 15Remarque : le 
omplément à 1 équivaut à un ou ex
lusif (x⊕ 1 = x) ave
 un nombre tel quetous ses 
hi�res binaires sont à 1. Ce nombre est l'entier naturel 2n − 1 ou (en anti
ipant sur leparagraphe 
onsa
ré à l'arithmétique signée) l'entier relatif −1.1.7.4 Manipulation de 
hamps de bitsLes dé
alages et les opérations bit à bit permettent de manipuler des 
hamps de bits à l'intérieurdes entiers. Ce type d'opération sera dé
rite dans le 
hapitre 2 en utilisant la syntaxe du langageC.1.7.5 Extra
tion de la paritéPar dé�nition de la représentation en binaire, un entier exprimé en binaire est pair si etseulement si son 
hi�re de poids faible (rang 0) est nul. Le ET bit à bit entre l'entier x et la
onstante entière 1 est don
 nul si et seulement si x est pair.1.7.6 Comparaison ave
 2rUn entier x est supérieur ou égal à 2r si et seulement si au moins un de ses bits de rangsupérieur ou égal à r est non nul. Autrement dit, le dé
alage de r bits à droite de x donne unrésultat non nul si et seulement si x ≥ 2r.1.7.7 Modulo 2rPar dé�nition le reste de la division de x par 2r (x modulo 2r) est l'entier dont les n + 1− rpremiers 
hi�res sont à 0 et les r − 1 
hi�res de poids faibles identiques à 
eux de x.L'expression x modulo 2r est 
al
ulable par un ET bit à bit entre x et 2r − 1 (dont la repré-sentation 
ontient r − 1 bits à 1 en poids faible et des bits à 0 en poids forts.1.7.8 Nombre de 0 à gau
he et logarithme binaireCertains pro
esseurs (sont la famille ARM) sont dotés d'une instru
tion 
lz (
ount leadingzeros) qui détermine le nombre de 0 à gau
he (en poids forts) d'un entier (é
rit en binaire). Soit
r la valeur retournée par 
lz(x) pour un entier x non nul.L'expression n− 1− r (n étant le nombre de bits, soit 32 pour le ARM) est la position du
hi�re à 1 de rang le plus élevé. Elle varie 
omme la partie entière de log2()x.1.8 Nombres entiers naturels et relatifs et nombres à virguleUn 
ontenant à n bits ne peut prendre que 2n valeurs di�érentes. A 
e paquet de n bits seraasso
iée une valeur numérique selon une 
onvention d'interprétation de 
ontenu. Le tableau 1.8donne les intervalles de valeurs entières 
odables pour di�érentes tailles de 
ontenant.n Entiers naturels Entiers signés8 0 à 255 -128 à +12716 0 à 65535 (64K-1) -32768 (-32K) à +32767 (32K-1)32 0 à 4294967295 (4G-1) -2147483648 (-2G) à +2147483647 (2G-1)64 0 à 1̃, 8× 1019 ˜− 9× 1018 à ˜+ 9× 1018Fig. 1.7 � Intervalles des entiers représentables selon le nombre de bits
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16 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2La 
onvention la plus simple 
onsiste à interpréter le 
ontenu sur n bits 
omme un entiernaturel en utilisant la 
onvention de représentation des entiers en base 2. L'intervalle des entiersnaturels représentables va de 0 à 2n − 1 (le premier entier né
essitant n + 1 
hi�res est 2n).Le 
ontenu aussi peut être interprété 
omme la valeur d'un entier relatif (signé) représenté enbinaire selon une 
onvention à dé�nir. Si l'on 
hoisit d'avoir un 
odage unique de la valeur nulle,on obtient un intervalle de valeurs représentables allant de −2n−1 à 2n−1 − 1.Il est en�n possible d'interpréter le 
ontenu 
omme un triplet {signe, mantisse ou partie fra
-tionnaire, exposant} représentant un nombre à virgule selon une norme telle que ANSI/IEEE 754de 1985.A titre d'illustration, sur 32 bits, 
ette norme interprète le bit 31 
omme un bit de signe s, etles paquets de bits 23 à 30 d'une part et 0 à 22 d'autre part, 
omme des entiers naturels 
odantrespe
tivement l'exposant e et la partie fra
tionnaire f . Elle asso
ie au triplet {s,e,f} ainsi dé�nila valeur (−1)s × 2e−127 × 1.f .31 s 30 exposant e 23 22 mantisse f 0Fig. 1.8 � Format de nombres à virgule �ottante1.9 Convention de représentation des entiers relatifs1.9.1 Signe et valeur absolueUne 
onvention imaginable pour la représentation des entiers signés dans un 
ontenant seraitde 
onsidérer le bit de rang n − 1 
omme un bit de signe (par exemple 0 pour + et 1 pour -) etles bits 0 à n− 2 
omme un entier naturel représentant la valeur absolue du nombre.Cette te
hnique de représentation a deux in
onvénients : elle oblige à prévoir un 
as spé
ialpour le traitement des entiers signés dans les 
ir
uits de 
al
ul, et surtout elle exhibe deux repré-sentations de la valeur nulle : +0 et−0, 
e qui 
omplique nettement la réalisation des 
omparaisons.La représentation en signe et valeur absolue ne subsiste dans les ordinateurs a
tuels que dansla représentation de la mantisse des nombres à virgule.1.9.2 Représentation en 
omplément à deuxLa quasi-totalité des ordinateurs modernes utilise la méthode du 
omplément à deux pourreprésenter les entiers signés. Dans 
ette 
onvention, le 
hi�re de poids fort représente le signe del'entier (1 indique x < 0 et 0 indique x ≥ 0).La suite de 
hi�res xn−1xn−2 . . . x1x0, qui représentait jusqu'à présent l'entier naturel
Xnon_signé =

∑n−1

i=0
xiB

i est interprétée dans 
ette 
onvention de représentation 
omme l'entiersigné Xsigné = − xn−1 × 2n−1 +
∑n−2

i=0
xiB

i.Cette 
onvention permet de représenter sur n bits l'intervalle d'entiers signés [−2n−1, +2n−1−1℄.Soit y =
∑n−2

i=0
yi2

i et −z = y2 = 2n − y. 
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1.9. CONVENTION DE REPRÉSENTATION DES ENTIERS RELATIFS 17Un 
ontenu d'une variable entière de la forme 0yn−2yn−3 . . . y1y0 sera toujours interprété 
ommel'entier y, que la variable soit de type naturel ou signé.Un 
ontenu de la forme 1yn−2yn−3 . . . y1y0 sera interprété 
omme l'entier Y = 2n−1 + y si va-riable est de type entier naturel et 
omme l'entier relatif négatif z = −2n−1 + y, si la variable estde type entier relatif.
14

−2

15

0 +0

1
+1

2

+2

+3

3 4

6

7+7

−8 8

9
−7

12

−4

−1

13

−3 −6

5

+5

+6

+4

−

0001

0101

10011110

−5

11

10

0010

0110

1000

01110000

1111

1101

10111100

1010

01000011

+

−0100
−0011

−0010

−0001

−0101
−0110

−0111

−1000

Fig. 1.9 � Représentation d'entiers naturels et signés sur 4 bitsSur la �gure 1.9, 
haque entier (
odé i
i sur 4 bits) peut être représenté par une rotation dansle sens horaire pour les entiers signés négatifs et dans le sens trigonométrique pour les autres(entiers naturels ou entiers signés non négatifs).Exemple sur 4 bits (�gure 1.9) : 1100 peut représenter soit l'entier signé -4 (rotation horaired'un quart de tour sur 
er
le intérieur des entiers signés), soit l'entier naturel 12 (rotation trigono-métrique sur le 
er
le extérieur des entiers naturels). De même, 0011 peut représenter soit l'entiernaturel 3, soit l'entier signé +3.Cette méthode de représentation des entiers signés par le 
omplément à 2 présente un grosavantage : les opérations d'addition et de soustra
tions sont posées de la même manière quelquesoit la nature, signée ou non, des entiers manipulés. Seule l'interprétation des valeurs entièresasso
iées 
hange.
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18 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 21.10 Opérations sur les entiers relatifs et débordementsLa �gure 1.10 illustre une addition entre deux variables sur 4 bits 
ontenant respe
tivement
1110 et 1100. Au milieu, les opérations e�e
tuées par l'additionneur sur les 
hi�res binaires.La gau
he de la �gure montre l'interprétation 
lassique en arithmétique non signée : la sommede 14 et 12 donne un résultat apparent de 10 ave
 une retenue �nale à 1 indiquant un débordement(et qu'il faudrait ajouter 16 au résultat apparent pour obtenir un résultat exa
t).La droite de la �gure montre l'interprétation en arithmétique signée. Le bit de fort à 1 des opé-randes indique qu'il s'agit d'entiers négatifs (dont la valeur absolue peut être trouvée en prenant le
omplément à deux) : −2 et −4. De même pour le résultat apparent, 
orre
t, interprété 
omme−6.Il n'y a pas débordement pour 
ette opération en arithmétique signée. En e�et, le résultat −6appartient e�e
tivement à l'intervalle des entiers représentables sur 4 bits : [−23, +23−1℄. Notonsque les deux dernières retenues sont égales.Rappelons que dans les deux 
as, l'additionneur a e�e
tué le même travail sur les mêmes boo-léens et produit le même résultat apparent. Seule la grille d'interprétation de la représentation enbinaire 
hange.Interprétation naturels binaires signésopérande 1 1 4 + 1 1 1 0 - 2opérande 2 1 2 1 1 0 0 - 4Résultat 1 0 1 1 0 1 0 - 6

↑retenues տ 1 1 0 0Fig. 1.10 � Addition entière naturelle et signéeLa te
hnique de soustra
tion en arithmétique signée est la même que pour les entiers natu-rels : par addition du 
omplément à 2, 
e qui revient en arithmétique signée à ajouter l'opposé dudeuxième opérande. Seule l'interprétation des indi
ateurs de débordement 
hange.Pour évaluer les 
onditions portant sur la valeur relative de deux entiers signés S1 et S2, onpro
ède 
omme pour les entiers naturels en 
al
ulant S1− S2.1.10.1 Indi
ateur ZL'indi
ateur Z présenté dans le 
hapitre sur le 
al
ul sur les entiers naturels reste utilisablepour des variables de type signé : la valeur nulle est 
odée de la même manière dans les deux
onventions. Z == 1 indique un résultat nul, don
 l'égalité des deux entiers dans le 
as d'unesoustra
tion.1.10.2 Indi
ateur de signe NNous avons vu que le signe d'un entier est 
odé dans son bit de poids fort. Le bit de poids fortdu résultat apparent (en
adré sur la �gure 1.10) fourni par l'unité arithmétique est sto
ké dans
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1.10. OPÉRATIONS SUR LES ENTIERS RELATIFS ET DÉBORDEMENTS 19l'indi
ateur N (Négatif).
N == 0 
orrespond à un résultat apparent positif ou nul. Après une soustra
tion S1 − s2,

N == 0 indique que d'après le résultat apparent (≥ 0), nous avons S1 ≥ S2. De N == 1 ontirerait au 
ontraire la 
on
lusion que S1 < S2 du résultat apparent (<0) de la soustra
tion.1.10.3 Indi
ateur de débordement signé VLa �gure 1.9 permet de visualiser le phénomène de débordement.Pour la représentation d'entiers naturels, l'intervalle des entiers représentables 
orrespond àtout le 
er
le. Il y aura débordement (signalé par une retenue �nale 
 à 1) si la somme des deuxrotations égale ou ex
ède un tour 
omplet.Dans la représentation d'entiers relatifs, l'intervalle des valeurs absolues disponibles est réduitde moitié. La limite de rotation avant débordement est d'un demi-tour seulement : au delà la va-leur absolue du vrai résultat ex
ède la 
apa
ité de représentation et le signe du résultat apparentest faux. Ce type d'erreur est signalé par l'indi
ateur de débordement signé V (oVer�ow : l'initialeO n'a pas été retenue pour éviter des 
onfusions ave
 zéro). V == 1 indique un débordement et
V == 0 un résultat 
orre
t.La somme de 0100 (1/4 de tour) et 0100 (1/4 tour) donne 1000 (1/2 de tour) : le résultatapparent de la somme des entiers naturels 4 et 4 est 8 (
orre
t : la rotation est inférieure à untour 
omplet) et le résultat apparent de la somme des entiers signés +4 et +4 est -8 (faux à 24près : rotation atteignant un demi-tour). Dans 
et exemple, il y a débordement uniquement enarithmétique signée (V == 1) et pas en arithmétique naturelle (C=0).

+
4 0 1 0 0

+
+4

4 0 1 0 0 +4
C = 0 1 0 0 0 V = 1

8 1 0 0 0 −8La valeur absolue de la somme de deux entiers relatifs de signes opposés (exemples sur 8 bits :16 + -37, 72 + -37) est toujours inférieure ou égale à 
elle des deux opérandes. Le résultat esttoujours représentable et il ne peut y avoir de débordement (V == 0). L'interprétation des mêmesopérations en entiers naturels peut aboutir à un débordement non signé (C == 1 pour 72+219)ou pas (C == 0 pour 16+219).
+

16 0 0 0 1 0 0 0 0
+

+16

219 1 1 0 1 1 0 1 1 −37
C = 0 0 0 1 0 0 0 0 0 V = 0

235 1 1 1 0 1 0 1 1 −21

+
72 0 1 0 0 1 0 0 0

+
72

219 1 1 0 1 1 0 1 1 −37
C = 1 1 0 1 1 0 0 0 0 V = 0

35 0 0 1 0 0 0 1 1 +35Si l'on additionne la 
onstante −2n−1 à elle-même, on fait exa
tement un tour 
omplet. Lerésultat obtenu est 0 et il y a débordement signé.La valeur absolue de la somme de deux entiers relatifs de même signe est supérieure ou égaleà 
elle des opérandes. Ex
luons l'addition de l'entier −2n−1 à lui-même : la valeur absolue de lasomme est stri
tement inférieure à 2n . Le résultat vrai appartient à l'intervalle [−(2n−1), +2n−1].Il ne sera représentable sur n bits que s'il appartient à l'intervalle [−2n−1, +2n−1− 1℄. Dans le 
as
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20 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2
ontraire, il y a aura débordement et le signe N du résultat apparent sera faux.Une étude de 
as d'opérandes de même signe (-72 + -37, -37 + -37, +72 + +37) llustre le faitqu'il n'y a pas de débordement en arithmétique signée lorsque les deux dernières retenues cn−1 et
cn sont égales. Il en va de même pour l'addition d'un entier et de son opposé (+72 + -72).

+
184 1 0 1 1 1 0 0 0

+
−72

219 1 1 0 1 1 0 1 1 −37
C = 1 1 1 1 1 0 0 0 0 V = 0

147 1 0 0 1 0 0 1 1 −109

+
72 0 1 0 0 1 0 0 0

+
+72

37 0 0 1 0 0 1 0 1 +37
C = 0 0 0 0 0 0 0 0 0 V = 0

109 0 1 1 0 1 1 0 1 +109

+
219 1 1 0 1 1 0 1 1

+
−37

219 1 1 0 1 1 0 1 1 −37
C = 1 1 0 1 1 0 1 1 0 V = 0

182 1 0 1 1 0 1 1 0 −74

+
72 0 1 0 0 1 0 0 0

+
+72

184 1 0 1 1 1 0 0 0 −72
C = 1 1 1 1 1 0 0 0 0 V = 0

0 0 0 0 0 0 0 0 0 +0L'indi
ateur V peut être dé�ni à partir des bits de poids fort (signe) des opérandes x et yet du résultat r selon l'expression booléenene V = xn−1.yn−1.rn−1 + xn−1.yn−1.rn−1 (+ indique leou booléen) Cette expression signi�e que V == 1 uniquement quand les deux opérandes sont demême signe et le résultat apparent de signe opposé.
+

72 0 1 0 0 1 0 0 0
+

+72

72 0 1 0 0 1 0 0 0 +72
C = 0 1 1 0 1 0 0 0 0 V = 1

144 1 0 0 1 0 0 0 0 −112

+
184 1 0 1 1 1 0 0 0

+
−72

184 1 0 1 1 1 0 0 0 −72
C = 1 0 1 1 1 0 0 0 0 V = 1

112 0 1 1 1 0 0 0 0 +112Le premier 
as de débordement 
orrespond à des opérandes positifs ou nuls et un résultatapparent négatif (72 + 72). Dans la dernière 
olonne, les opérandes sont 0 et le résultat 1. Ce
iimplique que la retenue entrante cn−1 est 1 et que la retenue �nale cn est 0.Examinons l'autre 
as de débordement : deux entiers négatifs donnent un résultat apparentpositif (-72 + -72). Dans la dernière 
olonne, nous avons deux opérandes à 1 et un résultat à 0,d'où obligatoirement cn−1 = 0 et cn = 1.On peut dé�nir une autre expression de V en fon
tion des deux dernières retenues : V est vraiuniquement si 
elles-
i sont di�érentes : V = cn−1 ⊕ cn = cn−1.cn + cn−1.cn1.11 Résumé sur les indi
ateurs et les débordementsRappelons que le 
ir
uit de 
al
ul e�e
tue sur paquets de n bits des additions ou des sous-tra
tions (par addition du 
omplément à 2) et fournit pour 
haque opération réalisée quatreindi
ateurs : Z, C, N et V.Seule l'interprétation du sens de l'addition ou la soustra
tion réalisée sur les paquets de n bits
hange selon que l'on 
onsidère que 
es paquets de n bits représentent des entiers naturels ou des
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1.12. COMPARAISONS D'ENTIERS RELATIFS AVEC Z, N ET V 21entiers relatifs.Le programmeur utilise don
 la même instru
tion d'addition et la même instru
tion de sous-tra
tion pour les deux types d'entiers. Après une 
omparaison, on utilise en revan
he deux sortesde bran
hements 
onditionnels di�érents : l'un testant Z et C pour les entiers naturels et l'autretestant Z, N et V pour les entiers relatifs.1. Une retenue �nale 
 égale à 1 signale un débordement en arithmétique sur une additiond'entiers naturels : elle indique que la valeur absolue du vrai résultat dépasse 2n− 1 et n'estpas représentable sur n bits.2. Une retenue �nale 
 égale à 0 signale une erreur sur une soustra
tion d'entiers naturels(réalisée par addition du 
omplément à 2) : elle indique que le dernier emprunt est à 1 etque la soustra
tion n'est réalisable qu'en ajoutant 2n au premier opérande.3. Un indi
ateur V à 1 indique un débordement lors d'une addition ou d'une soustra
tion surdes entiers relatifs. Celà se produit si et seulement si les deux opérandes sont de même signeet le résultat apparent de signe opposé. La limite de valeur absolue d'entiers représentablessur n bits est 2n−1.4. L'indi
ateur N est le signe du résultat en arithmétique sur les entiers relatifs. Il est faux (etle résultat apparent est faux à 2n près) si V=1.5. Z == 1 si et seulement si le résultat apparent est nul1.12 Comparaisons d'entiers relatifs ave
 Z, N et VAprès une soustra
tion x − y, il est possible d'évaluer des 
onditions portant sur les valeursrelatives de deux entiers signés.Les 
onditions d'égalité et de non égalité sont les mêmes pour les entiers naturels et signés.La 
ondition x < y est vraie si le résultat vrai est négatif. En l'absen
e de débordement(V = 0), 
'est le 
as si le signe du résultat apparent est négatif (N = 1). En 
as de débordement(V = 1), on sait que le résultat apparent est faux, y 
ompris son signe, la 
ondition est alors vraielorsque N = 0. D'où l'expression de la 
ondition N ⊕ V = N.V + N.V .La 
ondition inverse x ≥ y, in
luant le 
as d'égalité est naturellement asso
iée à l'expression
omplémentaire N ⊕ V = N.V + N.V . Pour la 
ondition stri
tement supérieur, il faut naturelle-ment éliminer le 
as d'un résultat nul, d'où le produit ave
 la 
ondition 
omplémentaire Z.Pour la 
ondition x ≤ y, le 
as nul est au 
ontraire rajouté, d'où Z + N ⊕ V .
1.13 Propriétés diverses des entiers relatifs1.13.1 OpposéD'après la 
onvention de représentation des entiers signés l'opposé (-X) d'un entier relatif sereprésente 
omme le 
omplément à 2 de l'entier (X).
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22 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2Condition SPARC ARM eq. booléenne
x = y EQ ou Z EQ Z

x 6= y NE ou NZ NE Z

x < y L (Less) LT (Lower Than) N ⊕ V

x ≤ y LE (Less or Equal) LE (Less or Equal) Z + N ⊕ V

x > y G (Greather) GT (Greather Than) Z.(N ⊕ V )

x ≥ y GE (Greather or Equal) GE (Greather or Equal) N ⊕ VTab. 1.3 � Table des 
onditions pour entiers signés1.13.2 Valeur absolueSi le bit de signe est 0, le nombre est positif ou nul et égal à sa valeur absolue. Un bit de signeà 1 indique un nombre négatif : il su�t d'en prendre le 
omplément à 2 pour obtenir sa valeurabsolue (sauf 
as parti
ulier de −2n−1).1.13.3 Valeurs parti
ulières : 0,−1,−2n−10 est son propre 
omplément à 2, 
e qui est logique puisque 0 est son propre opposé en arith-métique (0 = +0 = −0). Il s'é
rit 0 . . . 0 (n 
hi�res à 0).
−2n−1 est également son propre 
omplément à 2, alors que son opposé est 2n−1. Cette propriétéinattendue résulte de l'asymétrie des intervalles positifs et négatifs d'entiers représentables : 2n−1n'est pas représentable sur n bits.L'entier signé 2n−1 s'é
rit en binaire 10 . . . 0 (1 suivi de n− 1 
hi�res à 0) et l'entier signé −1s'é
rit 1 . . . 1 (n 
hi�res à 1).1.13.4 Extension de format et dé
alage arithmétiqueRappel : les extensions et rédu
tions de format de représentation sont surtout utilisées lors destransferts entre registres et variables en mémoire de taille inférieure à 
elle des registres.Pour passer à un 
odage sur m > n bits, la représentation de l'entier signé doit être 
omplétéepar m − n 
opies du bit de poids fort (bit de signe). A titre d'exemple, −5 s'érit 1011 sur 4 bitset 11111011 sur 8 bits.L'opération inverse de rédu
tion de format supprime les m − n 
hi�res de gau
he. La valeurest 
onservée si les 
hi�res supprimés sont tous identiques.Le dé
alage arithmétique à droite est un dé
alage qui re
opie à gau
he le bit de signe, don
le bit de poids fort (au lieu de 0 pour un dé
alage logique). Si les d 
hi�res de poids faibles del'entier sont nuls, un dé
alage arithmétique à droite de d bits divise la valeur de l'entier signé par 2n.La 
onstante −2n−1 peut être générée par une rotation d'un bit à droite de la 
onstante 1 ; les
onstantes −2n−x par dé
alage arithmétique de x bits à droite de la 
onstante −2n−1.
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1.13. PROPRIÉTÉS DIVERSES DES ENTIERS RELATIFS 231.13.5 Ré
upération du signeDé�nissons une fon
tion signe(x) qui retourne 0 pour x ≥ 0 et −1 pour x < 0.Signe(x) 
orrespond à un dé
alage arithmétique de x d'au moins n−1 bits. Le bit de poids fort(bit de signe) est dupliqué sur les n bits. D'où 00 . . . 00 (0) pour x ≥ 0 et 11 . . . 11 (−1) pour x < 0.Notons qu'un dé
alage logique (normalement destiné aux entiers naturels) de n−1 bits à droitede x retournerait 0 pour x ≥ 0 et 1 pour x < 0.


©Philippe Waille UJF/UFR IMA 6 juillet 2006



24 CHAPITRE 1. CODAGE DES NOMBRES ET CALCUL EN BASE 2
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Chapitre 2Variables et expressions en langage C
2.1 Types, variables et 
onstantes2.1.1 Les types numériques en CEn C, les variables et les 
onstantes sont typées. Le type indique la taille (nombre de bits) et la
onvention de 
odage qui permet d'asso
ier une valeur au paquet de bits qu'elle 
ontient. Toutesles variables représentent des nombres.Les types entiers pré
isent la taille (nombre de bits) et la 
onvention d'interprétation (naturelou signé) du nombre entier. Le type nombre à virgule �ottante existe également en deux variantesde taille. La taille d'entier la plus e�
a
e à manipuler dépend des ma
hines et 
orrespond au typeint. Le tableau 2.1 résume la 
orrespondan
e pour des ma
hines à pro
esseur RISC 32 bits telsque 
eux de la famille ARM.Appliqué à un type, l'opérateur C sizeof donne le nombre d'unités adressables né
essaire àsa représentation. Autrement dit, sizeof retourne la taille du type exprimée en o
tets. Sizeof estbeau
oup employé dans les programmes utilisant l'allo
ation dynamique de mémoire (par exemplepour des tableaux de stru
tures).Type Synonymes Taille(bits) Sizeof() Interprétation
har 8 1 entier signéshort int short 16 2long int long 32 4int 32 4unsigned 
har 8 1 entier naturelunsigned short int unsigned short 16 2unsigned long int unsigned long 32 4unsigned int 32 4�oat 32 4 nombre à virguledouble 64 8 �ottanteTab. 2.1 � Les types de variables et de 
onstantes en C2.1.2 Cara
tères et 
haînesContrairement à d'autres langages, C ne dé�nit pas de type 
ara
tère spé
i�que, ni de type
haîne de 
ara
tères. Le type 
har appartient à la famille des types entiers. Bien que 
elà présenterarement le moindre intérêt, il parfaitement possible d'a

éder à un petit tableau ave
 un indi
e25



26 CHAPITRE 2. VARIABLES ET EXPRESSIONS EN LANGAGE Cde type 
har plut�t que int.Le type 
har 
orrespond à un type entier de petite taille su�sant pour sto
ker le 
ode ASCIId'un 
ara
tère non a

entué. Il 
orrespond à la notion de byte en anglais. Le terme anglais o
tetdésigne un paquet de 8 bits. Dans le passé, la taille d'un byte a pu aller de 6 à 12 bits. Aujourd'huila taille de byte universellement adoptée est de 8 bits, 
e qui explique que les termes anglais byteet o
tet sont tous les deux traduits en français par le même mot : o
tet.La notation utilisée pour une 
onstante ASCII est une paire de 
ara
tères apostrophe (') en-
adrant le 
ara
tère. Le 
ode ASCII de A se note 'A' et 
orrespond à la valeur entière 0x41. La
ommande unix man as
ii a�
he le 
ode du même nom.
ara
tère hexa o
tal notation 
ommentaire' 0x27 047 \'
\ 0x5
 0134 \\"line feed" 0x0a 012 \n (passage à la ligne)"
arriage return" 0x0d 015 \r (retour en début de ligne)tabulation 0x09 011 \t"ba
kspa
e" 0x08 010 \b (retour en arrière d'un 
ara
tère),"form feed" 0x0
 014 \f (saut de page)Tab. 2.2 � Notation de 
ara
tères non imprimables et spé
iauxLe tableau 2.2 indique la notation C utilisée pour les 
ara
tères spé
iaux les plus 
ourants. Ilest aussi possible de noter tout 
ara
tère par son 
ode o
tal. Ainsi le 
ara
tère '\n'("Line-Feed")peut aussi être noté '\012'.Le 
ara
tère "line feed" 
orrespond à un dépla
ement verti
al d'une ligne vers le bas et "
ar-riage return" un retour en début de ligne 
ourante. Les lignes sont séparées par la séquen
e "\n\r"(qui réalise à l'a�
hage un 
lassique passage au début de ligne suivante) dans un �
hier de texteau format Windows, ou par le 
ara
tère "line feed" seul dans un texte à la norme posix (�
hiersunix/linux).En C, une 
onstante 
haîne de n 
ara
tères (en
adrée par des guiillemets) est en réalité une
onstante tableau de n+1 éléments de type 
har 
ontenant le 
ode des n 
ara
tères de la 
haîne,suivie d'un marqueur de �n de 
haîne. Ce dernier est le 
ara
tère nul, dont le 
ode ASCII est zéro.Ainsi, la notation "ab
" n'est qu'un ra

our
i d'é
riture pour {'a','b','
',0}.A noter : la gestion des 
ara
tères en C est été 
onçue pour des 
ara
tères ASCII. Le type 
haret des routines de manipulation de 
haînes de la bibliothèque C standard permettent de gérer les
ar
a
tères a

entués 
odés sur 8 bits ave
 une extension ISO du 
ode ASCII, mais pas le 
odageuni
ode qui né
essite 16 bits par 
ara
tère.2.1.3 ConstantesPar défaut, en C, les 
onstantes entières s'é
rivent en base dé
imale. Les pré�xes 0 et 0xperment de spé
i�er une 
onstante respe
tivement en o
tal et en hexadé
imal et les su�xes L etU de spé
i�er les attributs long et unsigned. 
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2.1. TYPES, VARIABLES ET CONSTANTES 27Exemples : La 
onstante entière 171 s'é
rit aussi 0253 ou en
ore 0xAB. La 
onstante 171.0note la même valeur dans le format à virgule �ottante.Il y a deux manières de dé�nir des 
onstantes symboliques :#define PI 3.14
onst int DEUX_PUISSANCE_DIX = 1024;
onst float TROIS_FLOTTANT = 3.0;Le mé
anisme de dé�nition de 
onstante #de�ne réalise grosso modo l'équivalent d'une sub-stitution de toutes les o

uren
es de la 
haîne PI par la 
haîne 3.14 dans toute la suite du �
hier,telle qu'on pourrait la réaliser ave
 la 
ommande 
her
her/rempla
er d'un éditeur de �
hiers.L'attribut 
onst appliqué à une variable indique que son 
ontenu ne doit pas être modi�é dansle programme.2.1.4 ConversionsPour 
onvertir expli
itement une valeur d'un type vers un autre, il su�t de la faire pré
éderd'un for
eur de type (nouveau type entre parenthèses).
onst TROIS_VIRG_FLOT 3.0;
onst TROIS_ENTIER (int) TROIS_VIRG_FLOT;La 
onversion se fait sans perte d'information lorsque toutes les valeurs du type initial sontreprésentables dans le nouveau type. Il y a par exemple perte de la partie dé
imale lors d'une
onversion de type �ottant vers entier. En revan
he, tous les entiers 
ourts (short et unsignedshort) sont 
odables dans un �ottant (la mantisse est de 23 bits).Les 
onversions sont utilisées pour 
orriger les divergen
es de type entre opérandes d'uneexpression. Pour l'a�e
tation à e de la somme de a et d, il est possible de 
onvertir d en unsignedshort et le résultat de la somme en �oat, ou au 
ontraire de 
onvertir a en entier �oat.float d,e;short int a;/* 
onversion a vers float sans perte */e = (float) a + d; /* version 
hoisie par le 
ompilateur */e = (float) (a + (unsigned short) d); /* d vers short : ave
 perte */Dans les 
as simples, les 
onversions de types omises par le programmeur seront impli
itementinsérées par le 
ompilateur en privilégiant les 
onversions de types sans perte d'information.L'absen
e de type est notée void. C dé�nit le type fon
tion, mais pas le type pro
édure. Ladé
laration d'une fon
tion spé
i�e le type de résultat retourné par la fon
tion. En C, une pro
é-dure est dé
larée 
omme une fon
tion retournant void.En C, les 
onstantes adresses et les pointeurs sont de type t *, t étant le type de l'objet pointé.Tous les pointeurs ont la même taille : 
elle d'une adresse (32 bits pour un pro
esseur ARM).Un pointeur de type void * peut pointer sur n'importe quel type de variable. Mais pour faire una

ès à la variable pointée, le 
ontenu du pointeur doit au préalable être 
onverti en adresse du
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28 CHAPITRE 2. VARIABLES ET EXPRESSIONS EN LANGAGE Cbon type d'entité pointée.Le for
eur (type *) 
onvertit un pointeur générique en pointeur d'objet de type t. Le for
eurne 
hange pas l'adresse à laquelle il est appliqué : il permet simplement au 
ompilateur de déduiredu type t le nombre d'o
tets à lire ou é
rire et 
omment en interprétrer le 
ontenu. Considéronsà titre d'exemple l'allo
ation dynamique de mémoire pour des stru
tures : un for
eur de type(stru
t st *) permet de 
onvertir le pointeur de 
har retourné par la routine mallo
 en pointeurde stru
ture st.2.1.5 Dé
laration des variables et attributs de sto
kageUne dé
laration de variable(s) sans initialisation 
omprend un attribut de sto
kage optionnel,suivi du type et du nom de la variable dé
larée (ou d'une liste de noms pour dé
larer plusieursvariables de même type) et se termine par un 
ara
tère point-virgule.Par défaut, une variable est supposée sto
kée en mémoire 
entrale. L'attribut register permet-tait au programmeur de suggérer au 
ompilateur de sto
ker la variable dans un registre plut�tqu'en mémoire 
entrale, pour en a

élérer l'a

ès.Cet attribut est aujourd'hui tombé en désuétude ave
 les 
ompilateurs modernes 
apables deréaliser une optimisation poussée du 
ode et de l'allo
ation des registres aux variables. Dans 
edo
ument, nous utiliserons l'attribut register pour guider la tradu
tion de programmes C ordi-naires en langage d'assemblage.A noter : l'attribut register interdit l'appli
ation de l'opérateur "adresse de" (&) à la variable(un registre du pro
esseur n'a pas d'adresse mémoire).register vreg1, vreg2; /* vreg1 et vreg2 a sto
ker dans des registres */int varint1, varint2; /* varint1 et varint2 sto
kees en mémoire 
entrale */int ave
init = 12345; /* ave
init en mémoire ave
 
ontenu initial */La dé
laration permet de spé
i�er le 
ontenu initial (pré
édé du signe =) de la variable audébut de l'exé
ution du programme.2.1.6 Dé�nition de types par typedefTypedef permet de dé�nir de nouveaux types à partir de types C de base.typedef unsigned short int age; /* age est une variante du type short */typedef unsigned short int taille; /* taille est une variante du type short */age age1, age2; /* deux variables de type age */taille taille1,taille2; /* deux variables de type taille */taille2 = (taille) 165;age1 = taille2; /* types différents : peut-être une erreur */On peut dé�nir des synonymes de types de base, par exemple des synonymes de int, mais pourun intervalle de valeurs plus restreint (par exemple de 0 à 150 pour un âge et de 0 à 250 pour unetaille). 
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2.1. TYPES, VARIABLES ET CONSTANTES 29Le 
ompilateur ne fera pas for
ément plus de véri�
ations ave
 la dé�nition du type synyno-nyme (age ou taille) qu'ave
 le type short, mais le programme est plus lisible. Le programmeurvoyant un paramètre de fon
tion de type âge saura impli
itement qu'il est 
ensé être inférieur à 150.Typedef permet aussi de donner un nom à des types 
omplexes 
onstruits à partir des typesde bases et des opérateurs d'indire
tion, d'appels de fon
tion et d'indiçage de tableau (*, ( ), [ ℄).Il est en e�et di�
ile d'é
rire des dé
larations de variables lisibles ou des 
onversions de type depointeur sans nommer 
e genre de type 
omplexe.typedef int ve
t3 [3℄; /* le type ve
t3 est un tableau de 3 entiers */ve
t3 v1,v2,v3; /* dé
laration de 3 tableaux de 3 entiers */typedef (int *) fon
_pti_de_i_pti (int, int*);/* le type fon
tion ayant un argument entier et *//* un argument pointeur d'entier *//* et retournant un résultat de type pointeur d'entier */(int *) 
al
ul (int x, int *y) /* une fon
tion de 
e genre */{...}fon
_pti_de_i_pti *ptfon
[4℄; /* un tableau de 4 pointeurs *//* de telles fon
tions */pt_fon
[1℄ = &
al
ul; /* pt_fon
[1℄ repere 
al
ul */E
rire (ou même relire et 
omprendre) la dé
laration du tableau pt_fon
 de pointeurs defon
tions sans utiliser le type fon
_pti_de_i_pti n'est pas for
ément évident1.2.1.7 Enumération de 
onstantes nomméesSupposons que nous voulions dé
larer une variable représentant une 
ouleur appartenant àl'ensemble rouge, bleu , vert, noir, blan
.#define ROUGE 0#define BLEU 1#define VERT 2#define NOIR 3#define BLANC 4#define BRUN 5unsigned short int ma_
ouleur;...ma_
ouleur = VERT; /* ma_
ouleur = 2 */...if (ma_
ouleur == NOIR) traiter_noir(); /* if (ma_
ouleur == 3) */1Elle devrait ressembler à 
e
i : ((int *) (*pt_fon
) (int, int *)) [4℄ . . .
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30 CHAPITRE 2. VARIABLES ET EXPRESSIONS EN LANGAGE CLa te
hnique habituelle 
onsiste à dé
larer une variable d'un type entier et à dé�nir des
onstantes entières symboliques 
orrespondant aux 
ouleur, 
omme l'illustre le fragment de 
odepré
édent.Enum permet de dé�nir un type synonyme de type entier et une liste de n 
onstantes symbo-liques qui seront impli
itement asso
iées aux 
onstantes 0 à n-1 d'après leur rang d'apparition :enum 
ouleur {ROUGE, BLEU, VERT, NOIR, BLANC, BRUN};/* rouge 0 bleu 1 vert 2 noir 3 blan
 4 brun 5 */
ouleur ma_
ouleur;...ma_
ouleur = VERT; /* ma_
ouleur = 2 */...if (ma_
ouleur == NOIR) traiter_noir(); /* if (ma_
ouleur == 3)Il est également possible d'asso
ier expli
itement à une 
onstante symboliques une valeur dif-férente de son rang :enum 
ouleur {ROUGE, BLEU, VERT=4, NOIR, BLANC=2, BRUN};/* rouge 0 bleu 1 vert 4 noir 5 blan
 2 brun 3 */Malgré l'utilisation de enum, le 
ode généré par le 
ompilateur ne véri�era pas for
ément quetoute expression a�e
tée à la variable de type enum (i
i ma_
ouleur) appartient à l'intervalle desvaleurs dé�nies pour le type 
ouleur. Mais le programme é
rit ave
 enum est plus lisible.2.2 Opérateurs de 
al
ul et expressions C2.2.1 Opérateurs arithmétiquesPour le 
al
ul arithmétique, le langage C o�re les opérateurs habituels +, -,*,/. L'opérateur/ est interprété 
omme une division entière ou en virgule �ottante selon le type de ses opérandes.L'opérateur % (ou modulo) est le reste de la division entière.Le signe - représente à la fois un opérateur unaire (un seul opérande : 
hangement de signe)et un opérateur binaire (deux opérandes : soustra
tion).float x,y,div_ent div_float;unsigned int f,g,h;h = f / g; /* division entiere de f par g */div_float = x / y; /* division flottante de x par y */div_ent = (float) ((int x) /(int) y); /* division entiere de x par y */2.2.2 Opérateurs bit à bit et dé
alagesLes opérateurs logiques binaires travaillant bit à bit sont : & (et), | (ou), � (ouex). L'expressiona & b retourne un entier dont le bit 0 
orrespond au produit booléen des bits 0 de a et b, le bit 1au produit booléen des bits 1 de a et b, et
.Il existe aussi l'opérateur unaire � de 
omplément à un2. L'entier signé -1 étant 
odé en binaireave
 tous les 
hi�res à 1 (voir 
hapitre 1.8), on peut aussi obtenir � x par x � -1 (en exploitant la2Rappel : le 
omplément à 1 inverse tous les bits de l'entier
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2.2. OPÉRATEURS DE CALCUL ET EXPRESSIONS C 31propriété x⊕ 1 = x).On trouve aussi deux opérateurs de dé
alage de l'opérande gau
he d'un nombre de bits spé
i�épar l'opérande droit, respe
tivement à gau
he (opérateur ≪) et à droite (opérateur ≫).L'opérateur ≫ réalise un dé
alage arithmétique (re
opie du bit de signe en poids fort) sil'opérande est de type entier relatif (int) et un dé
alage logique (ajout de 
hi�res à 0 en poidsfort) si l'opérande est de type entier naturel (unsigned int).2.2.3 Gestion de 
hamps de bitsLes dé
alages et les opérations bit à bit permettent de manipuler des 
hamps de bits à l'inté-rieur d'un 
ontenant de type entier.Soit un bit xr de rang r à manipuler dans un 
ontenant entier x. La représentation de la
onstante 2r 
ontient un seul 
hi�re à 1 de rang r et des 0 à tous les autres rangs. Elle est fa
ile-ment générée en dé
alant la 
onstante 1 de r bits à gau
he (1≪ r en C).Pour for
er xr à 1, il su�t d'e�e
tuer un OU bit à bit entre x et 2r (xi OU 1 = 1). Pour inver-ser la valeur de xr, on utilisera un OU ex
lusif (xi ⊕ 1 = x). Un ET bit à bit entre le 
omplémentà 1 de 2r, qui ne 
ontient que des 
hi�res à 1 ex
epté au rang r, for
e xr à 0 (xi ET 0 = 0). Pourtester la valeur de xr, il à noter que le ET bit à bit de x et 2r retourne une valeur non nulle si etseulement si xr = 1.L'entier x peut aussi être 
onsidéré 
omme une juxtaposition de 
hamps de bits représentant
ha
un une 
onstante entière sur quelques bits.Soit B un tel 
hamp de b bits o

upant les rangs r à r + b− 1. Les ma
ros suivantes peuventêtre dé�nies pour sa manipulation :#define MASQUE_b_BITS = ((1<<b) -1);#define MASQUE_B_DANS_X = (MASQUE_b_BITS << r);#define get_B(x) ((x>>r) & MASQUE_b_BITS)#define set_b(x,vb) ((x & ~MASQUE_B_DANS_X) | ((vb & MASQUE_b_BIS) << r))Les seuls bits à 1 de la représentation en binaire de la 
onstante 1 << B − 1 sont 
eux de B.La valeur de B peut être ré
upérée en 
al
ulant le ET bit à bit entre MASQUE_b_BITS et xdé
alé de r bits à droite (il est aussi possible réaliser le ET bit à bit de x et MASQUE_B_DANS_Xet dé
aler le résultat de r bits à droite ensuite).L'a�e
tation d'une valeur vb sera réalisée en deux opérations : mise à zéro de B par ET bità bit entre x et le 
omplément à 1 de MASQUE_B_DANS_X, suivie d'un OU bit à bit ave
 vbdé
alée de r bits à gau
he.2.2.4 Expressions booléennesLes opérateurs relationnels binaires in
luent les 
omparaisons habituelles <, <=, >, >=. La
omparaison d'égalité se note ==. La négation logique se note ! et la 
omparaison d'inégalité !=.Ainsi a != b équivaut à ! (a == b).
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32 CHAPITRE 2. VARIABLES ET EXPRESSIONS EN LANGAGE CLes opérateurs && (ET) et || (OU) permettent de 
onstruire des 
onditions 
omposées. Ils
onsidèrent 
haque entier sur n bits 
omme un seul booléen3, faux ou vrai selon que l'entier estnul ou di�érent de 0.La norme C spé
i�e que l'opérande gau
he de l'opérateur && ou || est évalué d'abord et quesi 
ette évaluation retourne faux, l'opérande droit de && n'est pas évalué (il s'agit don
 d'un ETpuis et d'un OU puis).C n'o�re pas de type booléen 
omme 
'est le 
as dans d'autres langages. Il existe 
epen-dant une interprétation booléenne de valeurs entières. L'entier 0 est assimilé à faux et toute autrevaleur à vrai. Les opérateurs relationnels retournent une valeur entière : 1 pour vrai et 0 pour faux.Il existe aussi en C des expressions 
onditionnelles. Le terme pré
édant ' ?' est la 
ondition àtester. L'expression 
onditionnelle retourne la valeur de l'expression entre ' ?' et ' :' si la 
onditionest vraie et 
elle après le ' :' dans le 
as 
ontraire.A titre d'exemple, voi
i deux manières de 
al
uler dans d le double du maximum de deux entiersa et b. La première (originale mais pas du tout re
ommandable) exploite le fait que les opérateursrelationnels retournent un entier 0 ou 1. La deuxième utilise une expression 
onditionnelle.d = 2*((a>=b) * a + (a<b) *b);d = (a >= b) ? 2*a : 2*b;2.2.5 Opérateur d'a�e
tationEn langage C, l'opérateur d'a�e
tation s'é
rit = , (le test d'égalité étant noté == ). At-tention : dans de nombreux autres langages, tels que ADA ou PASCAL, = 
orrespond à une
omparaison et l'a�e
tation se note :=.Le membre de gau
he de l'a�e
tation désigne un 
ontenant qui sera un registre ou un empla-
ement mémoire. Il peut par exemple s'agir d'une simple variable ou d'un tableau indi
é par uneexpression. Le membre de droite est une expression donnant la valeur à a�e
ter au 
ontenant.Parti
ularité : en C, l'a�e
tation est une expression (au même titre qu'une opération arithmé-tique) qui a pour e�et de bord de modi�er un 
ontenant et qui retourne la valeur de l'expressiona�e
tée a la variable. Ainsi, l'instru
tion C suivante est parfaitement légale. L'opérateur = évaluel'expression x+3, l'a�e
te à la variable y et retourne 
ette valeur 
omme opérande de la multipli-
ation.z = 2 * (y = x + 3) - 4; /* équivaut à la séquen
e 
i-dessous */y = x + 3;z = 2 * y - 4;Cette parti
ularité peut quelquefois améliorer la 
larté du programme en 
as d'a�e
tationsmultiples de la même valeur à un ensemble de variables et ou de mémorisation d'expression utiliséedans les tests de bou
les, 
omme le montrent les deux variantes de l'exemple 
i-dessous./* z = lire_valeur(); */y = z = lire_valeur (); /* y = z; */3Contrairement aux opérateurs bit à bit & et | qui traitent 
ha
un des n bits d'un entier 
omme un booléen.
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2.2. OPÉRATEURS DE CALCUL ET EXPRESSIONS C 33while ((x = (z<<3 - y/2)) != VALEUR_FINALE) /* x = z << 3 - y/2; *//* while (x != VALEUR_FINALE) */{ /* { */
orps_du_while; /* 
orps_du_while; */} /* x = z << 3 - y/2; *//* } */Chaque argument d'appel d'une fon
tion C est une expression qui est évaluée et dont le résultatest passé à la fon
tion appelée. Passer une a�e
tation 
omme paramètre d'appel d'une fon
tionest parfaitement légal en C (mais à pros
rire pour la lisibilité du programme).z = f (1, x + 2, y = g(x) + 1); /* signifie */ y = g(x) + 1;z=f (1, x+2, y);2.2.6 Formes abrégées de l'a�e
tationLa notation x += 1 est une abréviation de l'expression x = x + 1. Le prin
ipe est appli
ableà d'autres opérations (-=, *=, &=, |=,...). Si le membre de gau
he est dé�ni par une expression,
ette expression n'est évaluée qu'une seule fois.Les opérateurs ++ et � à gau
he (notation pré�xée) ou à droite (notation post�xée) d'unevariable sont des ra

our
is d'é
riture pour += 1 et -= 1, souvent utilisés pour mettre à jour lesvariables de bou
le à 
haque itération. La variable in
rémentée peut faire partie d'une expression.La position gau
he ou droite de l'opérateur ++ dé�nit l'ordre dans lequel l'in
rémentation etl'évaluation de l'expression utilisant la variable seront e�e
tuées.y = tab [x++℄; /* 
orrespond a */ y = tab[x℄; x = x + 1;z = tab [++y℄; y = y + 1; z = tab[y℄;tampon = f(x);tab[f(x)℄ += 3; tab[tampon℄ = tab[tampon℄ + 3;Le programeur veillera à ne pas abuser de 
es ra

our
is d'é
riture qui n'améliorent pas tou-jours la lisibilité du programme. Pire, la sémantique d'instru
tions utilisant ++ et � peut êtreambigüe, notamment en version post�xée.L'e�et des instru
tions 
i-dessous dépend de l'ordre dans lequel le 
ompilateur dé
ide de réaliserl'in
rémentation de x et le 
al
ul de l'adresse de t[x℄ dans l'autre membre de l'a�e
tation. Dans ladernière instru
tion, le 
ompilateur peut 
hoisir de 
al
uler y + 1 dans un temporaire, appliquerl'opérateur ++ sur y, puis a�e
ter le temporaire à y (
e qui annule l'e�et du ++). Il peut au
ontraire a�e
ter y + 1 à y d'abord et appliquer ensuite ++ sur y déjà modi�é.tab[x℄ = tab[x++℄ + 1; /* ambigu : t[x℄=t[x℄+1 ou t[x+1℄=t[x℄+1 ? */tab[++x℄ = tab[x℄ + 1; /* ambigu : t[x+1℄=t[x℄+1 ou t[x+1℄=t[x+1℄+1 ? */tab[x++℄ +=1; /* non ambigu : t[x℄ = t[x℄+1 puis x= x+1 */tab[++x℄ +=1; /* non ambigu : x = x +1 puis t[x℄ = t[x℄ + 1 */y = ++y + 1; /* non ambigu : y += 2 */y = y++ + 1; /* ambigu : y += 1 ou y += 2 ? */
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34 CHAPITRE 2. VARIABLES ET EXPRESSIONS EN LANGAGE C2.2.7 Instru
tions simples et 
omposées, opérateur virguleEn C, une instru
tion simple est soit une expression (
ette expression pouvant être une a�e
-tation), soit un saut de la forme goto étiquette. Dans les deux 
as elle se termine par ' ;'. Il estpossible de grouper une séquen
e d'instru
tions simples par des a

olades, l'ensemble est alors
onsidéré 
omme une seule instru
tion.Une instru
tion C peut aussi être formée d'un assemblage d'instru
tions et d'expressions ave
les 
onstru
teurs algorithmiques (if, while, for, swit
h et
).On peut aussi former une expression 
omposée d'expressions simples séparées par des virgules.L'opérateur virgule évalue les expressions de gau
he à droite, et retourne la valeur de l'expressionde droite. L'ensemble est alors 
onsidéré 
omme une expression unique.while (
=get
har (), 
 != EOF) /* equivalent a */ 
 = get
har ();{ while (
 != EOF)... traiter {} ... traiter
 = get
har ();}/* on pourrait aussi e
rire */while ((
=get
har ()) != EOF) { ... traiter }2.3 Expressions ave
 parenthèses et priorité des opérateursLes expressions que l'on peut ren
ontrer dans un programme C pourraient être ambigües par
eque non parenthésées.unsigned register reg_x, reg_y, reg_z, reg_a, reg_b,reg_
,reg_result;...reg_result = reg_a * reg_b + reg_
 / reg_x % reg_y - reg_z;/***********************************************************************//* Deux manières parmi d'autres de parenthéser l'expression *//* reg_result = (reg_a * reg_b) + (reg_
 /reg_x) % (reg_y - reg_z) ou *//* reg_result = (reg_a * (reg_b + reg_
)) / (reg_x % reg_y)) - reg_z *//***********************************************************************/Obliger à parenthéser totalement 
haque expression alourdirait nettement la programmationdes expressions mathématiques. En mathématiques, l'usage est d'interpréter l'expression x−3y/z+
a 
omme (x− ((3 ∗ y)/z)) + a plut�t que par exemple x− (3 ∗ (y/(z + a))), en 
onsidérant qu'onprivilégie l'appli
ation des opérateurs * et / à 
elle des opérateurs + et -. On dit aussi que * et /ont priorité sur + et -.2.3.1 Priorité des opérateurs CLes opérateurs appliqués en priorité sont les opérateurs unaires d'appel de fon
tion ( ), d'indi-çage de tableau/pointeurs [ ℄ et d'a

ès aux 
hamp d'une stru
ture via un pointeur -> (
f table 2.3).Ils sont suivis des formes unaires des opérateurs - (opposé), * (déréféren
ement de pointeur),l'opérateur inverse & de prise d'adresse, l'opérateur de détermination de taille (sizeof), les formespré�xées et su�xées des opérateurs ++ et � et le for
eur (
onversion) de type.
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2.3. EXPRESSIONS AVEC PARENTHÈSES ET PRIORITÉ DES OPÉRATEURS 35Priorité Opérateurs Asso
iativité16 ( ) [ ℄ ->15 ++ et � post�xés14 ++ et � pré�xés ! - unaire * unaire & unaire(for
eur de type) sizeof()13 * / % Gau
he12 + - Gau
he11 � � Gau
he10 < <= > >= Gau
he9 == != Gau
he8 & bit à bit Gau
he7 �bit à bit Gau
he6 | bit à bit Gau
he5 && booléen Gau
he4 || booléen Gau
he3 ? : Droite2 = += -= *= /= %= �= �= &= �= |= Droite1 , Gau
heTab. 2.3 � Table des prioritésViennent ensuite les opérateurs arithmétiques ave
 la pré
éden
e habituelle de la multipli
a-tion et de la division sur l'addition et la soustra
tion et les opérateurs relationnels de 
omparaison.Les versions bit à bit des opérateurs booléens pré
èdent les opérateurs booléen logiques utiliséspour 
ombiner les 
onditions.Les opérateurs appliqués ave
 la plus faible priorité sont les a�e
tations et les expressions
ondtionnelles.A priorité égale, les règles d'asso
iativité spé
i�e que les opérateurs à gau
he sont appliquésavant les opérateurs à droite : l'expression a + b + c sera interprétée 
omme (a + b) + c.Les opérateurs d'a�e
tation et d'expression 
onditonnelle font logiquement ex
eption : x = y = zest interprété 
omme x = (y = z).2.3.2 Exemples d'appli
ation des prioritésL'appli
ation de la priorité de () (appel de fon
tion) sur * unaire (a

ès à un objet à partirde son adresse) indique que l'expression *f(x) 
orrespond à *(f(x)) (obtention d'un objet dont lafon
tion f appliquée à x 
al
ule l'adresse) plut�t que (*f) (x) (valeur retournée par une fon
tion,dont f 
ontient l'adresse, appliquée à x).La priorité relative des opérateurs arithmétiques (+ - * / %) re�ète l'usage adopté en mathé-matiques et permet d'é
onomiser quelques parenthèses dans l'é
riture d'expressions arithmétiquessans risque d'erreur. Pour 
omparer la parité de deux entiers en utilisant l'opérateur modulo(% : reste de la division entière), on pourra ainsi é
rire x%2 == y%2 que le 
ompilateur interpré-tera (x%2) == (y%2).Malheureusement, les règles de priorité pour les autres opérateurs ne 
orrespondent pas tou-
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36 CHAPITRE 2. VARIABLES ET EXPRESSIONS EN LANGAGE Cjours à l'intuition du programmeur et il est vivement re
ommandé de parenthéser expli
itementles expressions.A titre d'exemple, la parité peut aussi être obtenue en prenant le 
hi�re de poids faible parmasquage ave
 1. Il semblerait naturel d'é
rire la 
omparaison de parité sur le même modèlequ'ave
 l'opérateur % : x&1 == y&1. L'opérateur == étant prioritaire sur &, 
ette expressionsera interprétée 
omme (x&(1 == y))&1 et non (x&1) == (y&1).Les règles de priorité appliquées aux opérations de dé
alage ne sont pas plus intuitives. Un pro-grammeur souhaitant for
er à 1 le bit n de x sera probablement tenté d'é
rire x = x + 1≪ (n− 1) :il semble naturel de supposer que l'opérateur≪ se 
omporte 
omme l'opérateur de multipli
ationet prime sur l'addition. Malheureusement, il n'en est rien et 
ette expression est interprétée 
omme
x = ((x + 1)≪ (n− 1)) plut�t que x = (x + (1≪ (n− 1))).2.4 Dé
omposition d'une a�e
tation en opérations élémen-tairesTraduire une expression C en langage ma
hine implique de détailler la dé
omposition de sonévaluation en une séquen
e d'opérations de 
al
ul élémentaires.Nous supposerons que toutes les variables sont sto
kées dans des registres. Ce paragraphe dé-taille uniquement le sto
kage des résultats intermédiaires issus de l'évaluation des sous-expressions.Les points spé
i�quement liés à gestion des a

ès aux variables sto
kées en mémoire 
entrale fontl'objet des 
hapitres 5 et 6.2.4.1 Des
ription arbores
ente et notation polonaise inverséeLes expressions peuvent être représentées sous une forme arbores
ente, la ra
ine indiquantl'opérateur à appliquer en dernier et les feuilles les opérandes des opérateurs les plus prioritaires.L'expression (a + b)/((c + d) ∗ e + f − 3) s'é
rit

(a + b)/((((c + d) ∗ e) + f)− 3) ave
 ses paren-thèses. L'opérateur de division o

upe la ra
inede l'arbre asso
ié. Son opérande gau
he est lerésultat de l'expression (a + b) dé
rite par sonsous-arbre �ls gau
he et de (((c + d) ∗ e) + f)− 3dé
rite par son sous-arbre �ls droit.La notation polonaise inversée est une nota-tion plus 
ompa
te des arbres d'évaluation.Elle 
onsiste à dérire l'arbre dans l'ordre�ls_gau
he �ls_droit n÷ud_père.La notation polonaise inversée de la formule 
i-dessus s'é
rit a b + 
 d + e * f + 3 - /.
a b +

+ −

/

+

c d

e

f*

3

(a + b)/((c + d) ∗ e + f − 3)2.4.2 Gestion des temporairesL'évaluation et le sto
kage de la valeur de l'expression de droite dans une a�e
tation de laforme regr3 = regr1 − regr2 ne pose pas de problème parti
ulier et se traduit en une unique ins-
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2.4. DÉCOMPOSITION D'UNE AFFECTATION EN OPÉRATIONS ÉLÉMENTAIRES 37tru
tion ma
hine prenant ses opérandes et déposant son résultat dans trois registres généraux dupro
esseur.Mais dans le 
as général, l'évaluation de l'expression né
essite des (empla
ements de sto
kage)temporaires pour mémoriser les résultats intermédiaires (de l'évaluation des sous-expressions).Pour guider la tradu
tion en langage d'assemblage, il est souvent utile d'é
rire en C une va-riante du programme d'origine ne 
ontenant qu'une opération de 
al
ul simple par a�e
tation etdétaillant l'utilisation de registres temporaires. Chaque a�e
tation se traduit alors en une instru
-tion de 
al
ul du pro
esseur.La stratégie la plus simple 
onsiste à a�e
ter un temporaire distin
t à 
haque noeud de l'arbre.Ainsi, pour la première a�e
tation, temp1 est utilisée pour évaluer a + b, temp2 pour c + d ettemp3 pour mémoriser le résultat de la division.Notons 
ependant qu'allouer un registre temporaire distin
t à 
haque n÷ud de l'arbre est ungaspillage de ressour
es : lorsque toutes les sous-expressions utilisant la valeur qu'il 
ontient ontété 
al
ulées, un registre temporaire peut être réutilisé pour sto
ker un autre résultat intermédiaire.Lorsque le membre de gau
he de l'a�e
tation est une variable logée dans un registre, ilpeut rempla
er le temporaire asso
ié à la ra
ine de l'arbre. Ainsi, on peut dire
tement 
al
u-ler r1 = temp1 * temp2 au lieu de passer par un temporaire temp3 dans l'exemple qui suit.Lorsque sa valeur a
tuelle n'est pas utilisée, la variable à gau
he de l'a�e
tation peut servirde temporaire. Dans la première a�e
tation, r1 peut ainsi rempla
er le temporaire temp1. En re-van
he, r2 ne peut jouer le r�le de temporaire (pour la première a�e
tation) tant que l'expressionr2 % 2 n'a pas été évaluée.2.4.3 Exemple de tradu
tion en langage d'assemblageConsidérons à titre d'exemple la tradu
tion de quatre a�e
tations.register int a,b,
,d,e,f,r1,r2,r3;r1 = (a+b) * (
+d); /* a b + 
 d + * */r2 = (
+d) * (r2 % 2); /* 
 d + r2 2 % * */r3 = (a+b) / ((
+d) * e + f -3); /* a b + 
 d + e * f + 3 - / */r4 = (a-b) * (
-d) + (f-3) / (a-b); /* a b - 
 d + f 3 - a b - / */Chaque a�e
tation d'origine de 
et exemple se dé
ompose en quatre à six instru
tions C élé-mentaires./* expansion ave
 les temporaires */register int temp1, temp2, temp3, temp4, temp5, temp6, temp7;temp1 = a+b; /* ou r1 = a + b; */temp2 = 
+d; /* temp1 = 
 + d; */temp3 = temp1 * temp2; /* r1 = r1 * temp1 */r1 = temp3;
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38 CHAPITRE 2. VARIABLES ET EXPRESSIONS EN LANGAGE Ctemp1 = 
 + d; /* la valeur de r2 est */temp2 = r2 % 2; /* <--- utilisée i
i */r2 = temp1 * temp2; /* variante possible */temp1 = a+b; /* temp1 = 
 + d ; */temp2 = 
+d; /* temp1 = temp1 * e ; */temp3 = temp1 * e; /* temp1 = temp1 + f; */temp4 = temp2 + f; /* temp1 = temp1 - 3; */temp5 = temp4 -3; /* r3 = a+b; */r3 = temp1 / temp5; /* r3 /= temp1 */temp1 = a-b; /* reutilisation de la */temp2 = 
-d;temp3 = f-3;temp2 = temp1 * temp2; /* sous expression 
ommune */temp3 = temp3 / temp1; /* a-b 
al
ulee dans temp1 */r4 = temp2*temp3;L'ordre d'évaluation des sous-expressions a une in
iden
e sur le nombre de temporaires à pré-voir. L'arbre sera par
ouru en privilégiant les n÷uds et les bran
hes les plus profonds, la notationpolonaise inversée suggérant l'ordre dans lequel e�e
tuer les 
al
uls. Ainsi, l'évaluation optimiséede (a + b)/((c + d) ∗ e + f − 3) n'utilise qu'un seul registre temporaire en plus de r3 pour réaliserles six opérations.A titre d'illustration, voi
i à quoi peut ressembler la tradu
tion en langage d'assemblage del'a�e
tation de r1 (non optimisée) de l'exemple.� r1 : r1� r2 : temp1� r3 : temp2� r4 : temp3� r5 : a� r6 : b� r7 : 
� r8 : dadd r2, r5, r6 � temp1 = a+badd r3, r7, r8 � temp2 = 
+dmul r4, r2, r3 � temp3 = temp1 * temp2mov r1, r4 � r1 = temp3
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Chapitre 3Ordinateur, langages ma
hine etd'assemblage
3.1 Organisation générale d'un ordinateur3.1.1 Composants d'un ordinateurLes ordinateurs sont des 
al
ulateurs numériques qui manipulent deux sortes d'informations :1. Les données regroupent les opérandes et résultats des opérations de 
al
ul, de tri et
. Elles
orrespondent aux variables et tableaux des programmes (sto
kées en mémoire 
entrale) etaux �
hiers (sto
kés en mémoire se
ondaire).2. Les programmes exé
utables sont des suites d'instru
tions de la ma
hine (dites "instru
tionsma
hine") dé
rivant les suites d'opérations à e�e
tuer sur les données. Les instru
tions ma-
hine sont 
odées en binaire. Une instru
tion d'un langage de programmation est traduiteen une suite d'instru
tions ma
hine, 
ha
une e�e
tuant un travail souvent beau
oup plusélémentaire qu'une instru
tion des langages de programmation tels que C ou ADA.Il existe des automates qui exé
utent une suite d'a
tions prédé�nies selon un algorithme �gé(par exemple sous la forme de 
ames d'un programmateur). Un tel automate peut être quali�é dema
hine à programme 
âblé : il faut en re
âbler les 
ir
uits éle
troniques ou 
hanger les rouagesmé
aniques pour en modi�er le 
omportement. L'orgue de barbarie est au 
ontraire un exemplede ma
hine à programme enregistré : il su�t de 
hanger les perforations du ruban 
artonné pour
hanger le mor
eau de musique joué par l'orgue.L'ordinateur appartient à la famille des ma
hines à programmes enregistrés et se 
ara
térisepar une grande souplesse de programmation ave
 la possibilité de réaliser des traitements 
ondi-tionnels en fon
tion de résultats de 
al
ul ou de données extérieures, ainsi que des répétitions deséquen
es (bou
les de programmation).Un ordinateur 
omprend une mémoire qui sto
ke les données et les instru
tions. En pratique,
ette mémoire est organisée en une mémoire éle
tronique rapide et volatile (le 
ontenu est perdulors de la 
oupure de l'alimentation) et une mémoire se
ondaire permanente.La mémoire rapide dite 
entrale ou prin
ipale est utilisée durant l'exé
ution des programmeset des 
al
uls sur les données. Pour le programmeur, elle est assimilable à un tableau dont leséléments (mots et o
tets) sont a

essibles individuellement.La mémoire se
ondaire plus lente, plus é
onomique et non volatile, sto
ke les programmesexé
utables et les données persistentes (�
hiers et bases de données) entre deux exé
utions et en39
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Fig. 3.1 � S
héma synoptique d'un ordinateurparti
ulier pendant l'arrêt de la ma
hine.L'ordinateur est aussi doté de périphériques, dispositifs de dialogue ave
 l'environnement, àsavoir le ou les utilisateurs, d'autres ordinateurs ou des pro
essus industriels. Les é
rans, 
laviers,souris, s
anners et imprimantes sont les prin
ipaux périphériques de dialogue ave
 l'utilisateurdont sont dotés les ordinateurs personnels. Les périphériques sont 
onne
tés à l'ensemble pro
es-seur et mémoire via des 
oupleurs d'entrées/sorties.Le 
÷ur de l'ordinateur est le pro
esseur, qui 
omprend les organes de 
al
ul et la 
ir
uiteriede pilotage du reste de la ma
hine. Outre les organes de 
al
ul et de séquen
ement du travail,le pro
esseur est doté de quelques mémoire rapides d'une 
apa
ité d'un mot 
ha
une : les registres.3.1.2 Mi
roa
tions et instru
tionsLe pro
esseur est un 
ir
uit séquentiel 
aden
é par un signal périodique dit d'horloge. A 
haque
y
le (période) d'horloge, le pro
esseur e�e
tue une a
tion très élémentaire (ou mi
roa
tion). Ilpeut s'agir d'un 
al
ul interne au pro
esseur sur le 
ontenu de ses registres ou d'un a

ès à lamémoire.Lors d'un a

ès en le
ture, la mémoire fournit une 
opie du 
ontenu d'un mot au pro
esseur.Lors d'un 
y
le d'a

ès en é
riture, le pro
esseur envoie à la mémoire la nouvelle valeur d'unempla
ement à modi�er.Un pro
esseur travaillant à une fréquen
e de 2 GigaHertz a une période d'horloge de la moitiéd'une nanose
onde (0.5× 10−9 se
onde).Un ordinateur simple exé
ute les instru
tions séquentiellement, dans l'ordre où elles sont ran-gées en mémoire. Un registre (noté PC : Program Counter), appelé 
ompteur ordinal, 
ompteurprogramme ou en
ore pointeur d'instru
tion 
ontient l'adresse (position dans la mémoire) de l'ins-tru
tion 
ourante (instru
tion en 
ours d'exé
ution).Chaque exé
ution d'une instru
tion représente une séquen
e de plusieurs mi
roa
tions. L'exé-
ution d'une instru
tion simple de 
al
ul, travaillant sur les registres, représente au moins deux outrois mi
roa
tions (le
ture de l'instru
tion en mémoire et mise à jour du 
ompteur ordinal pour
©Philippe Waille UJF/UFR IMA 6 juillet 2006



3.2. ORGANISATION ET STRUCTURATION DU CONTENU DE LA MÉMOIRE 41passer à l'instru
tion suivante, réalisation du 
al
ul).A la mise sous tension, PC est initialisé ave
 l'adresse de la première instru
tion du programmede démarrage de l'ordinateur et in
rémenté après 
haque instru
tion pour pointer sur l'instru
tionsuivante.3.1.3 Fon
tionnement en pipelineOn peut imaginer de dé
omposer très �nement le déroulement d'une instru
tion de 
al
ul enmi
roa
tions : par exemple le
ture de l'instru
tion en mémoire, transfert du 
ontenu des registresvers l'unité de 
al
ul, 
al
ul du résultat, é
riture du résultat dans le registre destination.En pratique, le pro
esseur est souvent 
apable de travailler "à la 
haîne" sur les séquen
es d'ins-tru
tions, à savoir dans le même 
y
le d'horloge e�e
tuer le 
al
ul sur les opérandes de l'instru
tion
ourante, ranger le résultat du 
al
ul asso
ié à l'instru
tion pré
édente, 
onsulter le 
ontenu deregistres spé
i�és par l'instru
tion suivante et lire à l'avan
e l'instru
tion d'après.On parle de traitement en "pipeline1". Les instru
tions progressent le long des 
ir
uits dupro
esseur 
omme un �ux : l'instru
tion qui o

upait l'étage de re
her
he d'instru
tion au 
y
le
C o

upera le 
ir
uit de 
al
ul au 
y
le C+1 et l'é
riture dans les registres aura lieu au 
y
le C+2.La durée e�e
tive d'une instru
tion qui 
orrespond au délai de mise à jour du registre résultatn'a pas 
hangé (quatre 
y
les dans notre exemple). En revan
he, le pro
esseur "pipeliné" peutéventuellement 
ommen
er l'exé
ution d'une nouvelle instru
tion à 
haque 
y
le d'horloge. Le dé-bit théorique du pro
esseur est quadruplé et la durée apparente d'une instru
tion (utilisée pourestimer le temps de 
al
ul) se réduit à un seul 
y
le.Dans une famille de pro
esseurs partageant le même langage ma
hine binaire, on pourrait trou-ver des pro
esseurs peu optimisés qui exé
utent les instru
tions en mode séquentiel et d'autresqui sont "pipelinés" pour a

roître les performan
es. Certains détails dans la dé�nition du jeud'instru
tions des ma
hines résultent d'une 
on
eption de pro
esseurs "pipelinés".Dans le 
as de la famille ARM, on notera que lorsqu'une instru
tion utilise la valeur du 
omp-teur ordinal (par exemple pour 
al
uler une adresse de bran
hement relatif) PC pointe deuxinstru
tions plus loin que l'instru
tion qui en utilise la valeur. La valeur de PC lue est don
 
ellede l'instru
tion 
ourante plus huit (deux instru
tions d'avan
e o

upant 4 o
tets 
ha
une).3.2 Organisation et stru
turation du 
ontenu de la mémoire3.2.1 Von neumann : un modèle séquentiel à mémoire uniqueConformément au modèle dé�ni par Von Neumann, la mémoire 
entrale sto
ke à la fois les ins-tru
tions et les données. Les empla
ements de la mémoire prin
ipale ne sont pas typés et peuvent
ontenir une information de n'importe quelle nature.En parti
ulier, rien ne distingue les données proprement dites des instru
tions : le 
ontenud'un mot mémoire prend simplement le statut d'instru
tion et est interprété 
omme tel par le1Ce mot se traduit en français par le su�xe du
, ou éventuellement par le mot 
onduite. Le terme o�
ellementpré
onisé pour traduire pipeline n'a pas été retenu dans 
e do
ument. Il sonne assez bizarrement à l'oreille : bitodu
. . .
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esseur lorsqu'il est pointé par le registre PC.D'une manière générale, le 
ontenu d'un mot mémoire est dépourvu de tout sens en l'absen
ede 
onvention d'interprétation. En l'absen
e d'information de type, il est impossible de déterminersi le 
ontenu du mot représente une variable numérique entière signée ou non, un nombre à virgule�ottante, une 
haîne de 4 
ara
tères, une instru
tion ma
hine, ou autre 
hose.Les 
ontenus des mots transitent entre la mémoire et le pro
esseur par un ensemble de �lsporteurs de signaux bidire
tionnels : le bus de données. Le numéro d'empla
ement de la mémoirea

édé par le pro
esseur est appelé adresse et transite via le bus unidire
tionnel du même nom(du pro
esseur vers la mémoire).L'usage a 
onsa
ré le terme de bus de données (par opposition à adresse), mais le terme debus de 
ontenu aurait été plus 
orre
t. Une information 
ontenue dans une variable pointeur peutêtre lue puis utilisée ensuite par le pro
esseur 
omme numéro d'empla
ement mémoire à é
rirelors d'un 
y
le d'é
riture. Elle sera alors 
onsidérée 
omme une donnée (et voyagera sur le bus dumême nom) lors du 
y
le de le
ture, puis 
omme une adresse (émise par le pro
eseur sur le busd'adresse) lors du 
y
le d'é
riture.3.2.2 Unité de transfert et unité adressableRappelons que la mémoire est organisée à la manière d'un tableau, dont les numéros de 
asessont les adresses.L'unité de transfert normale (information transférée en un seul 
y
le d'a

ès mémoire) entre lepro
esseur et la mémoire est le mot (32 bits pour ARM), de même taille que les registres, l'unitéde 
al
ul et les adresses. Mais la majorité des pro
esseurs est 
onçue de telle manière qu'un 
y
lemémoire puisse lire ou modi�er un sous-multiple d'un mot dans tou
her au reste du mot.L'unité adressable dé�nit la taille des 
ases numérotées. Elle 
orrespond à la plus petite tailled'empla
ement mémoire qu'il est possible de 
onsulter ou modi�er individuellement en un seul
y
le d'a

ès.Son 
hoix résulte d'un 
ompromis entre plusieurs 
ritères :� maximiser la quantité de mémoire adressable à taille de mot 
onstante, qui 
onduit à adopterune unité adressable la plus grande possible (le mot),� simpli�er l'interfa
e mémoire, 
e qui s'oppose à une subdivision trop �ne du mot, et� fa
iliter la manipulation des variables de taille sous-multiples du mot, qui in
ite à numéroter
haque bit de mémoire d'une adresse de telle sorte que les variables booléennes aient 
ha
uneson adresse.L'unité adressable universellement adoptée aujourd'hui est l'o
tet. Utiliser des adresses de motalourdirait notablement la gestion des variables de type 
ara
tère, largement utilisées dans denombreuses appli
ations, dont les éditeurs de �
hiers et les tradu
teurs (
ompilateurs)2.A l'inverse, la rédu
tion de la quantité de mémoire adressable (division par 8 ou 32 par rapportà l'o
tet et au mot) induite par un adressage individuel de 
haque bit de mémoire :� limiterait la mémoire des ma
hines 32 bits a
tuels à 512 Mo
tets,� serait tolérable sur des pro
esseurs ré
ents à 64 bits,2A moins de ne sto
ker qu'un 
ara
tère par mot, 
e qui gaspillerait inutilement de la mémoire.
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3.2. ORGANISATION ET STRUCTURATION DU CONTENU DE LA MÉMOIRE 43� était totalement rédhibitoire sur les an
iennes ma
hines travaillant sur 16 bits.Les quelques variables booléennes habituellement présentes dans les programmes peuvent êtredotées fa
ilement d'adresses individuelles pour en 
onserver une gestion simple et e�
a
e. Il su�tsimplement d'allouer à 
haque variable booléenne un o
tet ou un mot entier. Le sur
oût en mé-moire 
onsommée reste très raisonnable 
ompte tenu de la relative rareté de 
e type de variabledans la majorité des appli
ations. Cette te
hnique se retrouve dans la dé�nition du langage C (sereporter à l'interprétation booléenne de valeurs entières).Rappelons que l'opérateur C sizeof(type) prend en paramètre un type ou une variable et enretourne la taille, exprimée en nombre d'unités adressables, don
 en o
tets (
olonne Sizeof de latable 2.1).3.2.3 Ordre de sto
kage (big/little endian)Tout objet3 O, de taille X et d'adresse A, o

upe une suite d'o
tets d'adresses {A, A + 1,. . . ,
A + X − 1}. Un épisode du voyage de Gulliver relate un 
on�it portant sur la manière de mangerles ÷ufs : en les gobant par le grand bout ou par le petit bout. Les noms des deux méthodes desto
kage d'un entier s'en inspirent.La méthode dite "gros boutiste4" ("big endian" en anglais) range les bits de poids forts del'entier en tête alors que la 
onvention "petit boutiste" (little endian) sto
ke les bits de l'entierdans l'ordre de poids 
roissant. Certains parlent aussi de "sexe des ma
hines" à propos de l'ordrede rangement des entiers. Certaines familles de pro
esseurs, dont ARM, autorise le 
hoix de la
onvention. Dans la suite de 
e do
ument, la 
on�guration ARM sera supposée "petit boutiste".Chi�res de l'entier Adresse de l'o
tetGB/BE PB/LE

x31x30 . . . x25x24 A A + 3
x23x22 . . . x17x16 A + 1 A + 2

x15x14 . . . x9x8 A + 2 A + 1
x7x6 . . . x1x0 A + 3 ATab. 3.1 � Conventions gros et petit "boutiste"Lorsque le 
ontenu de la mémoire est a�
hé o
tet par o
tet, par adresses 
roissant de gau
heà droite (et de haut en bas), le 
odage "gros boutiste" fa
ilite la le
ture des entiers : l'ordre des
hi�res hexadé
imaux de l'entier est respe
té alors qu'ave
 le 
odage "petit boutiste", les pairesde 
hi�res hexadé
imaux apparaissent dans l'ordre inverse.O
tet d'adresse 0x1000 0x1001 0x1002 0x1003Gros Boutiste 12 34 56 78Petit Boutiste 78 56 34 12Tab. 3.2 � Sto
kage de l'entier 0x12345678 à l'adresse 0x1000Les propriétés respe
tives des deux 
onventions ne donnent au
un avantage dé
isif à l'une oul'autre des deux méthodes. La majorité des familles de pro
esseurs et d'ordinateurs, depuis l'IBM360 est de type "gros boutiste", ex
epté entre autres la famille d'INTEL (ex
eption devenue très3Objet pris dans le sens le plus large (entité), hors du 
ontexte de la programmation orientée objet.4La tradu
tion "boutiste" laisse à désirer, mais é
rire "grands indiens" ou garder "big endian" ne semble pasplus satisfaisant.
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44 CHAPITRE 3. ORDINATEUR, LANGAGES MACHINE ET D'ASSEMBLAGErépandue !) 80x86 et Pentium utilisée dans les ordinateurs personnels 
ompatibles IBM PC.La présen
e de ma
hines utilisant des 
onventions di�érentes 
omplique les é
hanges de donnéeset doit notamment être prise en 
ompte par les proto
oles de transfert d'informations via le réseau.3.2.4 Contraintes d'alignementCompte tenu de la manière dont la mémoire est 
onne
tée aux bus d'adresses et de données,seuls les o
tets peuvent être lus ou é
rits en un seul 
y
le à n'importe quelle adresse.Dans la majorité des ma
hines, les mots et sous-multiples du mot autres autres que l'unitéadressable ne sont a

essibles en un seul 
y
le que s'ils sont sto
kés à une adresse multiple de leurtaille.Le programmeur devra faire en sorte que tout entier sur 16 bits soit sto
ké à une adresse paire,et tout mot de 32 bits à une adresse multiple de 4.3.2.5 Se
tions d'instru
tions et de donnéesUn programme en langage d'assemblage dé
rit (dans l'ordre 
roissant des adresses) le 
ontenude la mémoire tel qu'il sera initialisé à partir du �
hier binaire exé
utable au début de 
haquelan
ement du programme. L'exé
ution proprement dite 
ommen
e lorsque le registre PC est ini-tialisé à l'adresse de la première instru
tion du programme.Les informations sont habituellement regroupées par nature dans des régions de la mémoireappelées zones ou se
tions. En fon
tionnement normal, les instru
tions et les 
onstantes ne sonta

édées qu'en le
ture et regoupées dans une se
tion 
ommune.Sur les ma
hines dotées d'un système d'exploitation (tel que unix) et des fon
tions matériellesasso
iées à la prote
tion, toute tentative d'é
riture dans 
ette zone dé
len
hera l'arrêt de l'exé-
ution du programme (pour éviter son auto-destru
tion) et l'a�
hage d'un message d'erreur àl'intention de l'utilisateur.Selon la terminologie en vigueur pour les outils GNU dans le monde unix, la se
tion 
ontenantle 
ode des instru
tions est appelée text5 et possède automatiquement les attributs de droit d'a

èsle
ture seule et exé
ution (le
ture d'instru
tions).Une autre se
tion 
orrespond aux variables globales du programme, et dont la dé
larationspé
i�e une valeur initiale. Cette valeur est sto
kée dans le �
hier exé
utable de telle sorte que lesvariables sont initialisées avant l'exé
ution de la première instru
tion du programme. Le nom de
ette se
tion est data (a

essible en le
ture et é
riture) dans le monde unix/posix (et par exempleune se
tion ave
 les attributs DATA et READWRITE dans un autre 
ontexte).Les variables peuvent être dé
larées sans valeur initiale (note : l'utilisation dans une expres-sion de la valeur d'une variable dé
larée sans valeur initiale avant qu'elle ne soit initialisée parune a�e
tation 
onstitue en prin
ipe une erreur de programmation). La se
tion 
orrespondantes'appelle bss (variante hors gnu/unix : DATA, READWRITE et NOINIT). Le �
hier exé
utableindique la taille de la se
tion bss, pour que le 
hargeur/lan
eur lui alloue de la mémoire, mais pas5Nom historique. Hors de l'environnement gnu et unix, on dé
rira par exemple 
ette se
tion par les attributsCODE et READONLY. 
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ontenu initial de bss.Pour des raisons de 
on�dentialité, les systèmes d'exploitation multiutilisateurs initialisenttoute la zone bss à 0, mais dans le 
as général, (notamment pour des appli
ations embarquées)lors de l'exé
ution de la première instru
tion du programme les mots mémoire de la zone bss sontpotentiellement sus
eptibles de 
ontenir des valeurs quel
onques.La gestion des appels de pro
édure utilise une troisième zone appelée pile. Cette zone estsouvent gérée automatiquement par le système d'exploitation ou le 
hargeur/lan
eur, et absentedu �
hier exé
utable. Cete zone est référen
ée via un registre pointeur de pile (sp sur la �gure 3.1).Remarques :1. Les zones text, data et pile n'o

upent pas for
ément des empla
ements adja
ents en mé-moire.2. Rien n'interdit de mettre des instru
tions dans une se
tion prévue pour les données. Maisune erreur de manipulation de pointeurs peut venir é
raser le 
ode d'une séquen
e d'instru
-tions sto
kées en zone dédiée aux données modi�ables, 
e qui peut 
ompliquer sérieusementla mise au point, et interdit de partager le 
ode entre plusieurs utilisateurs exé
utant lemême programme sur des données di�érentes. Cette possibilité est en parti
ulier utilisée par
ertains interprètes de langages tels que JAVA (
ompilation "just in time"), qui 
ompilenten 
ours d'exé
ution les pro
édures les plus souvent utilisées.3. Il possible d'alterner les dé
larations de se
tions dans le texte du programme. L'assembleurregroupera ensemble toutes les séquen
es étiquetées ave
 le même nom de se
tion.3.3 Langages et 
y
le de vie d'un programme3.3.1 Fi
hier binaire exé
utableUn programme exé
utable se présente sous la forme d'un �
hier binaire sto
ké en mémoirese
ondaire. Il représente une image de 
e que devra 
ontenir la mémoire prin
ipale au début del'exé
ution du programme.A 
haque lan
ement d'une exé
ution du programme, le 
ontenu du �
hier binaire exé
utableest re
opié en mémoire 
entrale, puis l'adresse de la première instru
tion à exé
uter dans 
eprogramme est 
hargée dans le registre PC. Ensuite, le pro
esseur exé
ute séquentiellement lesinstru
tions du programme dans l'ordre où elles sont sto
kées en mémoire.3.3.2 Langages ma
hine et d'assemblageLe jeu d'instru
tions est l'ensemble des instru
tions dé�ni par les 
on
epteurs du pro
esseur
onsidéré et que 
e dernier sait interpréter en e�e
tuant la suite de mi
roa
tions 
orrespondante.En mémoire et dans les �
hiers exé
utables, 
es instru
tions sont 
odées en binaire. Ellesforment le langage ma
hine du pro
esseur. Le 
ode binaire d'une instru
tion rassemble un 
ertainnombre de 
hamps de bits : nature de l'opération et opérandes (numéros de registres, 
onstantenumérique).La programmation dire
te en langage ma
hine binaire ou hexadé
imal est extrèmement fas-tidieuse puisque le programme doit détailler 
haque a
tion élémentaire en instru
tion ma
hine :
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46 CHAPITRE 3. ORDINATEUR, LANGAGES MACHINE ET D'ASSEMBLAGEun simple appel de pro
édure peut demander plusieurs dizaines d'instru
tions en langage ma
hine.Le langage ma
hine (en binaire ou en hexadé
imal) est de plus quasiment illisible pour unhumain : il faut une grande habitude du langage ma
hine ARM pour re
onnaître par exemple le
ode d'une addition dans le 
ode hexadé
imal 0xE282102A.C'est pourquoi on utilise un langage dit d'assemblage qui est une représentation textuelle li-sible du langage ma
hine. Le langage d'assemblage a le même pouvoir d'expression que le langagema
hine binaire : 
haque instru
tion du langage ma
hine existe également sous forme symboliqueen langage d'assemblage. Le langage d'assemblage permet aussi de donner un nom symboliqueaux adresses (les étiquettes) et d'automatiser le 
al
ul des dépla
ements dans les bran
hements.3.3.3 Cy
le de vie d'un programmeChaque famille de pro
esseurs possède son propre langage ma
hine et les programmes en lan-gage ma
hine binaire ou d'assemblage ne sont pas portables entre ma
hines dotées de pro
esseursde familles di�érentes.Les langages de programmation dits "de haut niveau" tels que C permettent l'é
riture de lo-gi
iels portables d'une ma
hine à l'autre et de programmer à partir de primitives (
onstru
teursalgorithmiques, appels de pro
édures,. . .) plus puissantes que les a
tions élémentaires réalisées parles instru
tions du langage ma
hine.Le 
y
le de vie (simplié) des programmes est le suivant :1. Le 
ahier des 
harges est analysé, puis la stru
turation du logi
iel et les prin
ipaux algo-rithmes sont dé�nis.2. Les �
hiers 
ontenant le texte du programme sont saisis ave
 un éditeur de texte (tel quevi, ema
s ou nedit). Ce type de �
hier est appelé �
hier sour
e. L'extension .s (langaged'assemblage) ou .
 indique le langage dans lequel le programme est é
rit.3. Les �
hiers .
 sont traduits en langage d'assemblage (�
hiers .s) par un programme tradu
-teur appelé 
ompilateur.4. Les �
hiers .s en langage d'assemblage sont traduits en �
hiers binaires. Ce type de �
hierest appelé �
hiers objet (extension .o). Le tradu
teur est appelé assembleur6.5. Les �
hiers .o sont réunis en un �
hier binaire exé
utable par l'éditeur de liens. Généralement,le �
hier exé
utable porte le nom du �
hier sour
e prin
ipal, sans extension.6. L'exé
ution est dé
len
hée par le 
hargeur/lan
eur du système d'exploitation. Invoqué parl'interprète de 
ommande, le 
hargeur 
opie le 
ontenu du �
hier exé
utable en mémoire
entrale et initialise PC à l'adresse du point d'entrée du programme (première instru
tion àexé
uter) pour en lan
er l'exé
ution.Lors de la phase de développement, les premiers tests d'exé
ution révèlent généralement deserreurs de 
on
eption ou de programmation. Les 
orre
tions sont alors apportées à l'étape 
or-respondante et les étapes de génération de l'exé
utable et de test sont reprises. Dans la phased'exploitation normale du logi
iel, seule subsiste l'étape de 
hargement-exé
ution du �
hier bi-naire exé
utable.6La programmation en langage d'assemblage est souvent appelée programmation en assembleur ou même pro-grammation assembleur. Ces ra

our
is de langage, très usités, sont 
ependant des abus de langage : l'assembleurn'est que le programme tradu
teur du langage d'assemblage.
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3.3. LANGAGES ET CYCLE DE VIE D'UN PROGRAMME 47Notons que la 
ommande de 
ompilation est généralement 
apable d'en
haîner toutes les étapesde génération du �
hier exé
utable, de la 
ompilation en langage d'assemblage proprement ditejusqu'à l'édition de liens. Il s'agit généralement du 
omportement par défaut, diverses optionspermettant de limiter le pro
essus à une étape parti
ulière (typiquement -o et -S stoppent letravail du 
ompilateur après la génération des �
hiers respe
tivement .o et .s.).3.3.4 Syntaxe d'assemblage multiplesChaque pro
esseur ou famille de pro
esseurs n'admet qu'une syntaxe de langage ma
hine bi-naire et dont l'interprète est �gé dans le matériel du pro
esseur. En revan
he il est possible dedé�nir plusieurs variantes de langages d'assemblage pour dé
rire le même langage ma
hine.Ainsi, il existe des di�éren
es notables, en parti
ulier dans la syntaxe des dire
tives de réser-vation de mémoire, entre les langages d'assemblage pour ARM d'origine GNU et 
eux fournis parARM. La suite du do
ument utilise la syntaxe GNU.3.3.5 Justi�
ation de l'étude du langage ma
hineDepuis de nombreuses années déjà, les appli
ations ordinaires ne sont plus é
rites en langagema
hine (ni binaire, ni d'assemblage). On peut don
 s'interroger sur l'utilité d'étudier les langagesma
hine et d'assemblage.L'étude du langage ma
hine est une base indispensable pour 
omprendre l'ar
hite
ture et lefon
tionnement interne d'un pro
esseur ou de la hiérar
hie mémoire (dont la mémoire virtuelle),ainsi que pour é
rire les tradu
teurs générant du 
ode en binaire (assembleurs, 
ompilateurs, édi-teurs de liens, gestionnaires de bibliothèques).En outre, l'apprentissage de la programmation en langage d'assemblage reste 
ependant utilepour :1. toutes les opérations né
essitant la manipulation dire
te de ressour
es spé
iales de la ma
hine(telles que les registres ou instru
tions spé
iaux des pro
esseurs, relatifs par exemple à la
ommande du système de gestion des interruptions), notamment dans le noyau (
÷ur du)du système d'exploitation ou dans le 
as d'appli
ations embarquées.2. é
rire des bibliothèques optimisées (graphique, 
al
ul), utilisant des instru
tions spé
i�quesdu pro
esseur. Par exemple, l'absen
e d'opérateur C 
orrespondant oblige le programmeuren C à réaliser les rotations par des paires de dé
alages. Le 
ompilateur C n'est pas for
ément
apable de re
onnnaître que la paire de dé
alages est une opération de rotation réalisable enune seule instru
tion ma
hine.3. observer et éventuellement optimiser à la main le 
ode généré par un 
ompilateur pour unepro
édure dont les performan
es sont 
ritiques.4. 
omprendre la programmation en C, en parti
ulier la gestion des tableaux, pointeurs etparamètres de pro
édures.
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Chapitre 4RISC, CISC et modes d'adressage
4.1 Interprétation d'une a�e
tation4.1.1 Exemple d'a�e
tationsConsidérons l'extrait de programme C suivant. Il manipule trois variables entières nomméespour simpli�er r6 à r8, que nous supposerons sto
kées dans les registres de même nom du pro
es-seur.long int m1 = 55667788;long int m2 = 11223344;long int m3;register long int r6,r7,r8;...r6 = r7 - r8; /* reg_no_6 <- reg_no_7 - reg_no_8 */m3 = m1 - m2; /* Mem[120000℄ <- Mem[100000℄ - Mem[100004℄ */r7 = r8 - 11112222; /* reg_no_7 = reg_no_8 - 11112222 */m1 = m2 - 12345678; /* Mem[100000℄ = Mem[100004℄ - 12345678 */...Il dé
lare aussi deux variables m1 et m2 sto
kées en mémoire ave
 une valeur initiale spé
i�queet une variable m3 sto
kée elle aussi en mémoire, mais sans spé
i�
ation de valeur initiale. Les sixvariables, de type entier long, sont représentées sur 32 bits.Nous supposerons que, lors de l'exé
ution 
onsidérée, m1 et m2 sont sto
kées dans la se
tiondata, respe
tivement aux adresses 00100000 et 00100004. Le 
ontenu de la se
tion data est intialiséave
 le 
ontenu du �
hier exé
utable.Nous supposerons que m3 o

upe l'adresse 00120000 de la se
tion bss (pas de valeur initialede bss dans le �
hier exé
utable : initialisation à 0 par défaut).Ce fragment de 
ode 
ontient quatre a�e
tations, dont nous allons détailler la signi�
ation entermes d'a
tions élémentaires dans la ma
hine et l'expression en instru
tions du langage ma
hine.4.1.2 Signi�
ation d'une a�e
tationL'a�e
tation évalue la valeur de son membre droit et l'assigne 
omme nouveau 
ontenu au
ontenant désigné dans son membre gau
he. Un 
ontenant est désigné par un numéro. Il peut49



50 CHAPITRE 4. RISC, CISC ET MODES D'ADRESSAGEs'agir d'un registre identi�é par son numéro de registre ou d'un empla
ement mémoire identi�épar son adresse.Le membre droit de l'a�e
tation prend l'une de 
es trois formes :� une 
onstante (par exemple 11112222) à utiliser dire
tement� un 
ontenant dont on va utiliser le 
ontenu (par exemple r7)� une expression utilisant un opérateur de 
al
ul dont 
haque opérande est lui-même une
onstante, un 
ontenant ou une expression.L'a�e
tation r6 = r7 - r8 
orrespond à une opération interne au pro
esseur : soustraire le
ontenu du registre numéro 8 du 
ontenu du registre numéro 7 et sto
ker le résultat 
omme nou-veau 
ontenu du registre numéro 6.L'a�e
tation r7 = r8 - 11112222 soustrait la 
onstante 11223344 (
ontenue dans l'instru
tion)du 
ontenu du registre numéro 8 et range le résultat dans le registre numero 7.L'a�e
tation m3 = m1 - m2 lit les 
ontenus des empla
ements mémoire de m1 et m2 (respe
ti-vement Mem[100000℄ et Mem[100004℄) et les soustrait l'un de l'autre (à l'intérieur du pro
esseur).Elle e�e
tue une é
riture en mémoire qui 
opie le résultat 
omme nouveau 
ontenu de l'empla
e-ment de m3 (Mem[120000℄).L'a�e
tation m1 = m2 - 12345678 lit en mémoire le 
ontenu de de m2 (Mem[100004℄), lui sous-trait la 
onstante 12345678 
ontenue dans l'instru
tion, et é
rit le résultat en m1 (Mem[100000℄).4.1.3 Informations 
ontenues dans la se
tion textCha
une des a�e
tations C du programme d'origine est traduite dans la se
tion text par uneinstru
tion ou une séquen
e d'instru
tions de la ma
hine, 
odée(s) sur un ou plusieurs mots, etdé
rivant les informations suivantes :1. la nature du 
al
ul à e�e
tuer (addition, soutra
tion, et
),2. la séquen
e de mi
roa
tions à e�e
tuer pour ré
upérer les opérandes et sto
ker le résultatou3. le type d'empla
ement (registre, 
onstante in
luse dans l'instru
tion, empla
ement mémoiredans une se
tion de donnée) 
hoisi pour le résultat et les opérandes, 
e qui dé�nit impli
ite-ment la séquen
e de mi
roa
tions à e�e
tuer pour y a

éder,4. les numéros de registres utilisés,5. les 
onstantes adresses des variables sto
kées en mémoire (exemple 100004 pour m2),6. les 
onstantes valeurs utilisées dans l'a�e
tation (par exemple 12345678).Les variantes possibles pour dé�nir les informations autres que la nature du 
al
ul 
orres-pondent aux di�érents modes d'adressage.4.1.4 Exé
ution : une séquen
e de mi
roa
tionsLes a
tions élémentaires (ou mi
roa
tions) réalisables par le matériel de la ma
hine sont lessuivantes :� 
al
ul interne : a�e
ter à un registre du pro
esseur un nouveau 
ontenu 
al
ulé à partir du
ontenu des registres du pro
esseur.� lire dans la mémoire : 
opier dans un registre du pro
esseur le 
ontenu d'un empla
ementmémoire (dont l'adresse est spé
i�ée par le 
ontenu d'un registre)
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4.1. INTERPRÉTATION D'UNE AFFECTATION 51� é
rire dans la mémoire : 
opier le 
ontenu d'un registre du pro
esseur dans un empla
ementmémoire (dont l'adresse est spé
i�ée par le 
ontenu d'un registre du pro
esseur)Dans une ma
hine simple, 
haque mi
roa
tion 
orrespond à un 
y
le d'horloge.Dans la des
ription des a�e
tations, les rtempi désignent des registres du pro
esseur utiliséspour le sto
kage temporaire d'informations (autres que les variables dé
larées du programme C).L'a�e
tation r6 = r7 - r8 e�e
tue les a
tions élémentaires suivantes :� lire en mémoire (dans la se
tion text) 
ha
un des mots spé
i�ant la nature de l'instru
tion,� a�e
tuer la soustra
tion entre les registres internes au pro
esseur.L'a�e
tation C r7 = r8 - 11112222 implique une mi
roa
tion supplémentaire :� lire en mémoire (dans la se
tion text) 
ha
un des mots spé
i�ant la nature de l'instru
tion,� lire en mémoire (dans la se
tion text) la 
onstante 11112222 in
luse dans l'instru
tion et lasto
ker dans un registre rtemp1,� faire la soutra
tion entre les registres internes au pro
esseur.L'a�e
tation C m3 = m1 - m2 réalise davantage de mi
roa
tions :� lire en mémoire (dans la se
tion text) 
ha
un des mots spé
i�ant la nature de l'instru
tion� lire en mémoire (dans la se
tion text) la 
onstante 00100000, et la 
opier dans un registre
rtemp11 du pro
esseur ,� sto
ker Mem[rtemp1℄ dans un registres rtemp2 : il s'agit d'une le
ture en mémoire (dans lase
tion de donnée) du 
ontenu de m1 (en l'o

uren
e l'entier 55667788),� lire en mémoire (dans la se
tion text) la 
onstante 00100004, et la 
opier dans un registre
rtemp3 du pro
esseur,� sto
ker Mem[rtemp3℄ dans un registre rtemp4 : le
ture en mémoire (dans la se
tion de donnée)du 
ontenu de m2 (en l'o

uren
e l'entier 11223344),� faire la di�éren
e rtemp2 − rtemp4 (soit 44224444) entre 
es deux 
ontenus et la sto
ker dansun registre rtemp6,� lire en mémoire (dans la se
tion text) la 
onstante 00120000, et la 
opier dans un registre
rtemp5 du pro
esseur,� é
rire rtemp6 dans Mem[120000℄ : é
riture en mémoire (dans la se
tion de données) dunouveau 
ontenu de m3.L'instru
tion C m1 = m2 - 12345678 demande une étape de moins :� lire en mémoire (dans la se
tion text) 
ha
un des mots spé
i�ant la nature de l'instru
tion� lire en mémoire (dans la se
tion text) la 
onstante 00100004, et la 
opier dans un registre
rtemp11 du pro
esseur ,� sto
ker Mem[rtemp1℄ dans un registres rtemp2 : il s'agit d'une le
ture en mémoire (dans lase
tion de donnée) du 
ontenu de m2 (en l'o

uren
e l'entier 11223344),� lire en mémoire (dans la se
tion text) la 
onstante 12345678, et la sto
ker dans un registre
rtemp4 du pro
esseur,� 
al
uler rtemp2 − rtemp4 et ranger le résultat dans le registre rtemp6,� lire en mémoire (dans la se
tion text) la 
onstante 00120000, et la 
opier dans un registre
rtemp5 du pro
esseur,� é
rire rtemp6 dans Mem[120000℄ : é
riture en mémoire (dans la se
tion de données) dunouveau 
ontenu de m3.
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52 CHAPITRE 4. RISC, CISC ET MODES D'ADRESSAGE

text (instructions)

data (fichier executable)

bss (0 par defaut)

Memoire centrale

etat (NZCV)

pc

rtemp1

rtemp2

r6

r8

r7

sub (reg_dir,6, reg_dir,7, reg_dir,8)

sub (abs,abs,abs)

100000

100004

sub (reg_dir,7, reg_dir,8, imm)

11112222

sub (abs,abs,imm)

100000

12345678

processeur

contenu de m1: 55667788

contenu de m2: 11223344

contenu de m3 : 0

120000

100004

100000
100004

120000

-

-

-

-

Adresses Contenus

Fig. 4.1 � Registres et 
ontenu de la mémoire : text, data et bss4.2 Notion de mode d'adressageLe 
ompteur ordinal repère1 l'instru
tion ma
hine 
ourante, 
omposée d'un ou plusieurs mots,généralement sto
kée dans la se
tion text. Le premier mot de l'instru
tion 
ontient le 
ode opé-ration de l'instru
tion (ou un pré�xe spé
i�que à une famille d'instru
tions additionnelles2 ). Cedernier dé�nit la nature du 
al
ul e�e
tué et le mode d'a

ès aux opérandes et au résultat. Selonles modes d'a

ès utilisés, il est éventuellement suivi d'informations d'adressage 
omplémentaires.4.2.1 Méthodes d'adressageL'information d'adressage peut être omise lorsque la méthode d'a

ès est dé�nie par 
onven-tion. C'est par exemple le 
as d'une instru
tion "empiler" utilisant systématiquement le registresommet de pile. On parle alors d'adressage impli
ite.L'instru
tion peut spé
i�er un registre à usage général. L'information d'adressage se limite àun numéro de registre. Il s'agit le plus souvent d'un nombre entier 
odé sur 3 à 5 bits, les pro
es-1
ontient l'adresse de2Les 
on
epteurs de pro
esseurs ont parfois re
ours à la sur
harge de 
ode opération pour ajouter de nouvellesinstru
tion (
al
ul graphique, ve
toriel, extension d'instru
tions à des entiers sur 64 bits, et
), via un pré�xe (un
ode opération ina�e
té dans le jeu d'instru
tion initial) modi�ant la signi�
ation du 
ode opération qu'il pré
ède.
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4.2. NOTION DE MODE D'ADRESSAGE 53seurs étant majoritairement dotés de 8, 16 ou 32 registres généraux. Cette taille réduite permetgénéralement de l'en
oder dans le même mot que le 
ode opération.En mode registre indire
t, le registre repère le 
ontenant en mémoire : il 
ontient l'adresseà laquelle est sto
ké l'opérande ou le résultat. En mode registre dire
t, l'opérande est sto
kédans le registre : le registre est le 
ontenant.L'utilisant du 
ompteur ordinal (p
) en mode indire
t permet d'a

éder au 
ontenu (de la se
-tion text) d'un empla
ement mémoire voisin du 
ode opération de l'instru
tion. Il est 
ommodede sto
ker une 
onstante immédiatement derrière le 
ode opération de l'instru
tion.Dans le 
as d'un adressage dit immédiat (souvent noté ave
 un 
ara
tère #) 
ette 
onstanteest l'opérande de l'instru
tion de 
al
ul3. L'adressage immédiat permet de gérer des 
al
uls surdes 
onstantes. La taille de l'information d'adressage est 
elle de la 
onstante (typiquement unmot).Si l'adressage est de type absolu (ou dire
t mémoire) 
ette 
onstante est l'adresse mémoiredu 
ontenant et pointe l'opérande. La taille de l'information d'adressage est alors 
elle d'uneadresse, soit un mot (32 bits pour un pro
esseur ARM). L'adressage absolu permet d'a

éder àdes variables ordinaires sto
kées en mémoire.Les adressages de type indexé et base plus dépla
ement sont des variantes du type registreindire
t utiles pour l'a

ès aux élements d'un tableau ou aux membres d'une struture. Ils dé�-nissent l'adresse de l'opérande 
omme la somme d'une 
onstante et du 
ontenu d'un registre oula somme du 
ontenu de deux registres.L'adressage relatif est une variante d'adressage indexé utilisant le registre 
ompteur ordinal.Il est rarement utilisé pour a

éder à des 
ontenus de variables4. Il est prin
ipalement utilisé pourdé�nir la 
ible des bran
hements par rapport à l'empla
ement de l'instru
tion de saut.4.2.2 Notations et exempleIl n'existe pas de syntaxe universelle respe
tée par l'ensemble des langages d'assemblages, enparti
ulier pour les notations des modes d'adressage. Nous dé�nirons don
 notre propre notationpour la suite de 
e do
ument.Pour l'adressage registre dire
t, nous é
rirons simplement le nom du registre. Pour l'adressageimmédiat, nous utiliserons le 
ara
tère # suivi de la 
onstante immédiate.Nous utiliserons une paire de 
ro
hets pour dé
rire les autres modes d'adressage expli
ites. Les
ro
hets 
ontiennent une liste d'éléments séparés par des virgules. L'addition de 
es éléments dé�-nit l'adresse de l'empla
ement mémoire a

édé. Ainsi, l'adressage (absolu) d'une variable sto
kéeà l'adresse 12 se note [12℄. L'adressage (registre indire
t) d'une variable pointée par le registre r3s'é
rit [r3℄.Illustrons 
ette syntaxe par quelques exemples en supposant que les instru
tions de 
al
ul dupro
esseur o�rent un large 
hoix de modes d'adressage :� r6 = r7 - r83L'adressage immédiat n'est pas appli
able au résultat qui n'est pas une 
onstante.4Ex
epté pour é
rire des programmes qui ne dépendent pas de l'endroit où ils sont 
hargés en mémoire
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54 CHAPITRE 4. RISC, CISC ET MODES D'ADRESSAGEsub r6, r7, r8 � (reg dir, reg dir, reg dir)� m3 = m1 - m2sub [120000℄, [100000℄, [100004℄ � (abs, abs, abs)� r7 = r8 - 11112222sub r7, r8, #11112222 � (reg dir, reg dir, imm)� m1 = m2 - 12345678sub [100000℄, [100000℄, #12345678 � (abs, abs, imm)� un autre exemple de modes d'adressagesadd [r1℄, [r2,r3℄, [r2, 12℄ � (reg ind, index, base+depl)La dernière instru
tion spé
i�e de retran
her le 
ontenu de la mémoire dont l'adresse est donnéepar le 
ontenu du registre r2 auquel on ajoute 12 (adressage base plus dépla
ement), du 
ontenude la mémoire dont l'adresse donnée est la somme des 
ontenus des registres r2 et r3 (adressageindexé), et de sto
ker le résultat dans l'empla
ement mémoire pointé par r1.Le 
ontenu de la se
tion text 
orrespondant aux quatre premières instru
tions 
e programmeest dé
rit sur la �gure 4.1. Le 
ode opération de 
haque instru
tion o

upe un mot. Celui de ladeuxième instru
tion est suivie dans la se
tion text des trois adresses (de m3, m1 et m2) et 
eluide la quatrième des deux adresses (de m1 et m2) et de la 
onstante immédiate. L'instru
tiond'addition �nale pourrait o

uper deux mots : un 
ode opération et la 
onstante 12.4.3 Jeux d'instru
tions CISC et RISC4.3.1 Appro
he CISCDans l'appro
he quali�ée de CISC (Complex Instru
tion Set Code), 
haque instru
tion de 
al-
ul o�re une un large 
hoix de modes d'adressages, 
e qui permet de manipuler dire
tement desvariables rangées en mémoire.Chaque instru
tion de 
al
ul existe en autant de variantes que de 
ombinaisons de 
hoix demodes d'adressage pour et les opérandes gau
he et droit. La 
omplexité réside dans la 
ombina-toire de 
hoix : ave
 8 modes d'adressages on peut déjà dé�nir de l'ordre de 500 variantes5 de lamême instru
tion d'addition, ave
 des tailles et des durées d'exé
ution di�érentes.L'a�e
tation r6 = r7 - r8 est réalisable en une seule instru
tion ma
hine de soustra
tion. Cettedernière n'utilise que l'adressage registre dire
t et n'o

upe qu'un mot (le 
ode opération). Ellee�e
tue un 
y
le d'a

ès mémoire (un en se
tion text et au
un a

ès en se
tion de données).L'a�e
tation m3 = m1 - m2 est réalisable en une seule instru
tion ma
hine n'utilisant que lemode d'adressage absolu. Cette dernière o

upe quatre mots (le 
ode opération et les 3 adresses1000000, 10004 et 120000) et 
orrespond à sept 
y
les d'a

ès à la mémoire (4 dans la zone textet 3 dans la se
tion de données).57x8x8, l'adressage immédiat étant disponible pour les opérandes et ex
lu pour le résultat
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4.3. JEUX D'INSTRUCTIONS CISC ET RISC 554.3.2 Appro
he RISC : load/store et 
al
ul sur les registresLa stratégie RISC (Redu
ed Instru
tion Set Code) 
onsiste au 
ontraire à 
ontraindre fortementle 
hoix de modes d'adressage. Le prin
ipe est de disposer d'un ensemble minimal d'instru
tionsde taille �xe réalisant 
ha
une des a
tions très élémentaires. Le programmeur dé
rit l'a

ès àses données par une séquen
e d'instru
tions simples plut�t qu'une instru
tions dotée de modesd'adressages sophistiqués.Dans une ma
hine RISC typique, les instru
tions de 
al
ul sont 
odées sur un seul mot et netravaillent que sur les 
ontenus des registres (adressage registre dire
t imposé). Leur durée appa-rente6 est d'un 
y
le d'horloge.Une instru
tion load (que nous noterons ldr : LoaD Register) lit le 
ontenu d'un empla
ementmémoire et le 
opie dans un registre du pro
esseur. Une instru
tion store (que nous noteronsstr : STore Register) é
rit une 
opie du 
ontenu d'un registre dans un empla
ement mémoire. Lesmodes d'adressages disponibles sont registre indire
t et immédiat7.Les appro
hes CISC ou RISC 
orrespondent à deux "granularités" di�érentes de des
riptiondes a
tions à réaliser : séquen
e 
ourte d'instru
tions ma
hines 
omplexes et puissantes dé
rivant
ha
une une (potentiellement) longue suite de mi
roa
tions ou séquen
e plus longue d'instru
tionssimples dé
rivant 
ha
une une a
tion relativement élémentaire.Un jeu d'instru
tions RISC n'est pas plus restri
tif qu'un jeu d'instru
tions CISC : touteinstru
tion de 
al
ul CISC, quelle que soit la variante de modes d'adressage utilisée, admet uneséquen
e d'instru
tions RISC équivalente.4.3.3 Exemple de programme pour une ma
hine RISCReprenons l'exemple pour notre jeu d'instru
tions dans la philosopie RISC.� r6 = r7 - r8sub r6, r7, r8 � idem CISC ave
 adressage registre dire
t� m3 = m1 - m2ldr r1, #100000 � r1 = 1000000ldr r2, [r1℄ � r2 = 
ontenu de m1 (Mem[1000000℄)ldr r3, #100004 � r3 = 1000000ldr r4, [r3℄ � r4 = 
ontenu de m2 (Mem[1000000℄)sub r0, r2, r4 � r0 = m1 - m2ldr r5, #120000 � r5 = 1200000str r0, [r6℄ � m3 (Mem[1200000℄ = m1 - m2� r7 = r8 - 11112222ldr r0, #11112222sub r7, r8, r0� m1 = m2 - 11223344ldr r1, #100004 � r1 = 1000004ldr r2, [r1℄ � r2 = 
ontenu de m2 (Mem[1000004℄)6
f le fon
tionnement pipeline7immédiat : uniquement pour load
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56 CHAPITRE 4. RISC, CISC ET MODES D'ADRESSAGEldr r3, #11223344 � r3 = la 
onstantesub r4, r2, r3 � r4 = m1 - m2ldr r5, #120000 � r5 = 1200000str r4, [r5℄ � m3 (Mem[1200000℄ = m1 - 11223344Dans la se
tion text, le 
ode opération de 
haque instru
tion o

upe un mot. Pour une ins-tru
tion de type ldr immédiat, le mot suivant le 
ode opération 
ontient la 
onstante immédiate.Toutes les autres instru
tions sont 
odées sur un seul mot.4.3.4 Taille des opérandes et 
hoix du type de variables entièresLes 
al
uls peuvent porter sur des variables sto
kées en mémoire de tailles diverses, allant del'o
tet (
har) au mot 
omplet (long).La famille 680x0 illustre une philosophie CISC : 
haque instru
tion de 
al
ul existe en autantde variantes que de tailles d'entier supportées.La famille ARM illustre une appro
he opposée 
ommune à de nombreux pro
esseurs RISC.L'instru
tion load e�e
tue une 
onversion au format 32 bits lors de la le
ture en mémoire de va-riables entières de format inférieur au mot. Tous les 
al
uls sont réalisés entre registres, sur desmots 
omplets. L'instru
tion store réalise une rédu
tion de format et tronque les bits de poidsfort du résultat lors de l'é
riture en mémoire du 
ontenu d'un registre dans une variable de tailleinférieure.Un pro
esseur RISC 32 bits typique o�rira don
 huit instru
tions d'a

ès à la mémoire : ldr(entiers 32 bits), ldrh et ldrsh (entiers 16 bits naturels et signés), ldrb et ldrsb (entiers 8 bitsnaturels et signés), str, strh, strb. A noter : la distin
tion entre entiers naturels et signés nes'applique qu'à l'extension à 32 bits du format de l'entier, don
 uniquement à l'instru
tion ldr.L'appro
he RISC a 
ependant un petit in
onvénient si le pro
esseur n'est pas doté d'une paired'indi
ateurs C et V (et d'un jeu de bran
hements 
onditionnels pour les tester) spé
i�ques à
haque taille d'opérande. C'est le 
as du ARM, dont les indi
ateurs C et V ne sont signi�
atifsque dans le 
as d'un 
al
ul sur des entiers de la taille du mot.Pour que C et V du pro
esseur ARM signalent les débordements 
orrespondant e�e
tivementà un 
al
ul sur 8 (respe
tivement 16) bits, le programmeur peut dé
aler les opérandes à gau
hede 24 (respe
tivement 16) bits, réaliser l'opération, puis dé
aler de 24 (respe
tivement 16) bits àdroite le résultat.Notons que pour respe
ter la 
ompatilibité le jeu d'instru
tions 32 bits, les 
on
epteurs de laversion 64 bits du SPARC ont 
hoisi de la doter d'indi
ateurs et d'instru
tions de bran
hementdistin
ts pour les modes 32 et 64 bits.4.3.5 Choix du type des variables entièresLors de la tradu
tion de son algorithme en langage C, le programmeur doit 
hoisir le type(naturel ou signé) et la taille de ses variables entières .Le type unsigned est destiné aux grandeurs qui ne prennent pas de valeur négative : âge d'unepersonne, date, indi
e de bou
le de par
ours de tableau, adresse d'une variable (pointeurs), et
. Il
©Philippe Waille UJF/UFR IMA 6 juillet 2006



4.3. JEUX D'INSTRUCTIONS CISC ET RISC 57permet de représenter des valeurs entières maximales doubles de 
elles de type signé.La taille des variables logées en mémoire peut être ajustée au plus près des besoins pour ré-duire la 
onsommation de mémoire du programme. Pour les variables sto
kées dans des registres,l'argument ne tient plus et on pourra faire l'impasse sur les sous-multiples du mot.Il 
onvient de garder à l'esprit que les intervalles de valeurs entières 
odables sur 8 et 16 bitssont sévèrement limitées (
f tableau 1.8). L'éventail de valeurs représentables sur 32 bits peutsembler important et mettre le programmeur à l'abri des débordements. La le
ture d'un journal�nan
ier donnant la 
apitalisation boursière de so
iétés 
otées dissipera vite 
ette illusion : 
ellesdont le 
apital dépasse les 4 milliards ne sont pas rares.Les an
iennes ar
hite
tures travaillant sur 16 bits ont disparu des postes de travail8 par
equ'in
apable de gérer plus de 64 Ko
tets de mémoire. Pour les mêmes raisons que à l'époque desma
hines à 16 bits, la migration progressive de 32 bits à 64 bits est en 
ours : aujourd'hui, desserveurs dotés de plus de 4 Go
tets de mémoire 
entrale sont disponibles à un 
oût raisonnabledans le 
ommer
e.Le risque de débordement est nettement plus faible sur 64 bits : les grandeurs utilisées dans lavie 
ourante sus
eptibles de dépasser 1018 sont rares. Sur 64 bits, le 
hoix entre entiers naturels etsignés est moins 
ru
ial.
4.3.6 Mise à jour des indi
ateurs arithmétiquesPour 
ertaines opérations, il est important de tester l'absen
e de débordement ou la nullité durésultat. Il est alors indispensable que l'instru
tion de 
al
ul mette à jour les indi
ateurs (ZNCV)à partir desquels une dé
ision sera prise. Ce genre de dé
ision 
orrespond souvent à la tradu
tiond'une 
ondition d'une 
onstru
tion algorithmique, du genre if (a <= b) . . . .Ce genre de test est en revan
he rarement e�e
tué sur 
ertains types de 
al
ul, tels que les
al
uls d'adresse pour l'indiçage des tableaux.La majorité des ma
hines RISC laisse le 
hoix de mettre à jour les indi
ateurs ou non et o�redeux variantes de 
haque instru
tion de 
al
ul. Les instru
tion addS (ARM) et add

 (SPARC)mettent à jour le registre d'état. L'instru
tion add (ARM et SPARC), au 
ontraire, laisse les in-di
ateurs in
hangés.Seules instru
tions de 
al
ul sans mise à jour des indi
ateurs peuvent être librement inséréesentre un bran
hement 
onditionnel et la 
omparaison à partir de laquelle le bran
hement prendune dé
ision.Les ma
hines CISC n'o�rent généralement pas 
ette souplesse et la liste des indi
ateurs modi-�és est dé�nie instru
tion par instru
tion par le 
on
epteur du jeu d'instru
tions. Cette restri
tioné
onomise un bit dans le 
ode opération (souvent limité à 8 ou 16 bits).8Mais sont en
ore utilisées dans des systèmes embarqués
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58 CHAPITRE 4. RISC, CISC ET MODES D'ADRESSAGE4.4 Jeux d'instru
tions limités à un ou deux opérandesLes 
on
epteurs de jeux d'instru
tions ont été 
onfrontés à la taille du 
ode opération, quidépend du nombre de registres, de modes d'adressages utilisables et de type de 
al
uls réalisables.Considérons un pro
esseur doté de 32 registres, supportant 16 variantes de modes d'adressageet 
apable de réaliser 32 types d'opérations di�érentes. Supposons qu'il soit doté d'un jeu d'ins-tru
tions dit à trois opérandes (opérandes gau
he et droit, résultat). La taille minimale du 
odeopération d'un tel pro
esseur est de 5 bits (nature du 
al
ul) plus 4 bits de mode d'adressage et5 bits de numéro de registre9 par opérande, soit 32 (3x9+5) bits.Dans le passé, la taille et le débit de la mémoire étaient sévèrement limités. Les 
on
epteurs depro
esseurs ont alors 
her
hé à 
on
evoir un en
odage des instru
tions très 
ompa
t en restreignantle 
hoix des modes d'adressage et/ou en ne spé
i�ant pas tous les opérandes de manière impli
ite.4.4.1 Le 68000 : exemple d'instru
tions à deux opérandesExaminons à titre d'exemple les 
ontraintes appliquées au jeu d'instru
tion de la famille 680x0pour que la taille du 
ode opération soit de 16 bits.Les instru
tions de 
al
ul ne spé
i�ent que l'opérande gau
he et l'opérande droit. Une 
onven-tion impli
ite spé
i�e que le résultat est sto
ké à la pla
e de l'opérande gau
he. Toutes les opé-rations sont alors de la forme destination = destination opération sour
e (
e qui 
orrespond auxopérateurs +=, -=, *=, . . . du langage C). L'initialisation de la destination est réalisée par uneinstru
tion move qui réalise une simple 
opie de la sour
e vers destination.Il existe un deuxième restri
tion10 : l'adressage d'au moins un des deux opérandes (sour
e oudestination) est de type registre dire
t (parmi 8 registres de données).Le 
ode opération sur 16 bits des instru
tions de 
al
ul est stru
turé 
omme suit :� 4 bits spé
i�ent la nature de l'instru
tion (type de 
al
ul)� 2 bits si le 
al
ul porte sur des entiers de 8, 16 ou 32 bits,� 3 bits en
odent le numéro du registre,� 1 bit spé
i�e si le numéro de registre pré
édent 
orrespond à l'opérande sour
e ou à ladestination,� 6 bits (3 pour en
oder le mode d'adressage parmi 8 et 3 autres pour le numéro du registreéventuellement utilisé par le mode d'adressage) spé
i�ent le mode d'adressage de l'autreopérande.Ave
 la syntaxe de des
ription des modes d'adressage que nous avons dé�nie dans 
e 
hapitre11,les quatre a�e
tations de notre exemple seraient traduites en dix instru
tions 68000. Le su�xe lindique une taille de 
al
ul de 32 bits.move.l d6, d7 � destination a gau
he : reg_d6 <- reg_d7sub.l d6, d8 � reg_d6 <- reg_d6 - reg_d8 (reg dire
t x 2)move.l [120000℄, [100000℄ � m3 <- m1 (absolu, absolu)move.l d0, [100004℄ � reg_d0 <- m2 (red dire
t, absolu)9Pour les modes d'adressage spé
i�ant expli
itement un registre10Cette restri
tion ne s'applique pas à l'instru
tion move11Les assembleurs 68000 disponibles dans le 
ommer
e utilisent des notations di�érentes
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4.4. JEUX D'INSTRUCTIONS LIMITÉS À UN OU DEUX OPÉRANDES 59sub.l [120000℄, d0 � m3 <- m3 - reg_d0 (absolu, reg dire
t)move.l d7, d8 � d7 <- d8 (reg dire
t, reg dire
t)sub.l d7, #11223344 � d7 <- d7 - 
te (reg dire
t, immediat)move.l [120000℄, [100000℄ � m3 <- m1 (absolu, absolu)move.l d0, 100004 � reg_d0 <- m2 (red dire
t, absolu)sub.l [120000℄, d0 � m3 <- m3 - reg_d0 (absolu, reg dire
t)4.4.2 Ma
hines à a

umulateur : instru
tions à un opérandeLes mi
ropro
esseurs 8 bits des années 70 étaient doté d'un registre de travail unique appeléa

umulateur et éventuellement d'un ou deux registre(s) d'index utilisé ave
 les modes d'adressagede type registre indire
t.Par 
onvention impli
ite, les instru
tions de 
al
ul sont de la forme a

u = a

u opération opérandeet le 
ode opération spé
i�e un seul mode d'adressage (pour l'opérande droit).Le 
ode opération est un o
tet, dont on peut utiliser par exemple 3 bits pour 
hoisir un moded'adressage de l'opérande droit parmi 8 possibles, et 5 bits pour spé
i�er un type d'opérationparmi 32.L'instru
tion load e�e
tue une le
ture de la mémoire et la 
opie dans l'a

umulateur. L'ins-tru
tion store é
rit dans la mémoire et y 
opie le 
ontenu de l'a

umulateur. Le fragment de 
ode
i-dessous illustre la tradu
tion des a�e
tations de variables m1 et m3.La tradu
tion de notre d'exemple (toujours ave
 les même notations de mode d'adressage) n'ade sens que pour les variables sto
kées en mémoire (en l'absen
e de registres de travail utilisablespour sto
ker les variables).� m3 = m1 - m2load [100000℄ � a

u = 
ontenu de m1 (absolu)sub [100004℄ � a

u = a

u - 
ontenu de m2 (absolu)store [120000℄ � m3 <- a

u (absolu)� m1 = m1 - 12345678load [100004℄ � a

u = 
ontenu de m2 (absolu)sub #12345678 � a

u = a

u - 12345678 (immédiat)store [100000℄ � m1 = a

u (absolu)
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Chapitre 5Réservation et initialisation de la mémoire
5.1 Notion d'étiquette et de �
hier relogeable5.1.1 Notion d'etiquetteL'utilisation d'adresses numériques rend notre exemple de programme ma
hine présenté au
hapitre 4 di�
ile à lire. Considérons à titre d'exemple sub [120000℄, [100000℄, [100004℄ : lele
teur doit 
onsulter en permanen
e la table des adresses auxquelles sont rangées les variablespour remonter de 
ette instru
tion ma
hine à l'instru
tion C d'origine m1 = m2 - m3.Les erreurs de trans
ription des adresses numériques sont tout aussi di�
iles à repérer : sila première adresse est a

identellement rempla
ée par 1200000, la présen
e d'un 
hi�re à zéroex
édentaire dans la 
onstante adresse risque fort de passer inaperçue.Le langage d'assemblage permet de dé�nir des étiquettes. Une étiquette permet d'asso
ier unnom symbolique à une adresse. Lors de l'assemblage, l'assembleur sustituera 
haque utilisation del'étiquette (
omme opérande d'une instru
tion ou d'une dire
tive de réservation de mémoire) parl'adresse numérique asso
iée à l'étiquette.5.1.2 Notion de programme relogeableLe �
hier exé
utable dé
rit le 
ontenu initial que devra avoir la mémoire à l'instant auquell'exé
ution du programme sera lan
ée. Programmer en langage d'assemblage revient à dé
rire,dans l'ordre 
roissant des adresses, le 
ontenu initial des se
tions text et data.La des
ription de la se
tion text débute par la dire
tive text et 
elle de la se
tion data par ladire
tive data. Chaque ligne 
ontenant une dire
tive de réservation de mémoire dé
rit le 
ontenud'un ou plusieurs o
tets et dé�nit éventuellement une étiquette.Ce 
ontenu inital de text et data peut dépendre des adresses auxquelles sont pla
ées les se
tionstext, data et bss et le 
ontenu initial de tous les mots 
ontenant une adresse dans 
es se
tions està modi�er si l'implantation des se
tions dans la mémoire 
entrale 
hange.Dans la se
tion text, il peut s'agir d'une instru
tion CISC utilisant un mode d'adressage ab-solu1 pour a

éder au 
ontenu d'une variable sto
kée dans la se
tion data (ou bss) : un des motsde l'instru
tion ma
hine 
ontient l'adresse mémoire de la variable.1ou d'une séquen
e équivalente d'instru
tions RISC 61



62 CHAPITRE 5. RÉSERVATION ET INITIALISATION DE LA MÉMOIREDans la se
tion data, 
e 
as �gure 
orrespond généralement à une variable pointeur initialiséedans sa dé
laration ave
 l'adresse d'une autre variable.A titre d'exemple, le 
ontenu de la se
tion text de l'exemple détaillé �gure 4.1 n'est valableque pour une exé
ution telle que les se
tions data et bss débutent aux adresses 100000 et 120000.Si la se
tion bss débutait à l'adresse 140000, tous les adresses 120000 (
orrespondant à l'adressede m3) 
ontenues dans les instru
tions de la se
tion text devraient être rempla
ées par 140000.Il existe au moins trois 
as de �gures tels que les adresses des se
tions text, data et bss ne sontpas 
onnues du programmeur au moment de l'assemblage du �
hier.Le programme peut être 
onçu pour être exé
uté sur plusieurs ma
hines dans lequelles l'inter-valle d'adresses 
orrespondant à la mémoire vive utilisable varie d'une ma
hine à l'autre. Il s'agitalors d'un problème de portabilité entre ma
hines.D'autre part, le programme peut être é
rit sous la forme de modules 
ompilés séparémentet fusionnés en un �
hier binaire exé
utable unique lors d'une étape d'édition de liens. Même sil'adresse de début des se
tions est 
onnue à l'avan
e, l'adresse à laquelle une variable sera sto
kéeà l'intérieur de sa se
tion dépend de l'ordre dans lequel la fusion est e�e
tuée.Le programme peut aussi être destiné à un système multitâ
he dans lequel l'espa
e mémoire estpartagé entre plusieurs programmes en 
ours d'exé
ution. L'adresse de 
hargement d'une se
tiondu programme est sus
eptible de varier d'une exé
ution à l'autre, en fon
tion de 
e que le systèmed'exploitation aura alloué aux autres programmes.Les assembleurs et 
ompilateurs génèrent don
 un �
hier binaire dit relogeable, dans lequeltous les empla
ements dont le 
ontenu initial dépend de l'adresse de 
hargement d'une se
tionsont repérés.Le système d'exploitation et la 
haîne de 
ompilation 
ollaborent de telle sorte que le 
ontenudu �
hier relogeable est 
orrigé lorsque les adresses des se
tions text, data et bss sont 
onnues.Au plus tard, 
ette 
orre
tion, appelée réimplantation, est e�e
tuée juste avant l'exé
ution de lapremière instru
tion du programme.Outre une lisibilité a

rue du 
ode, le mé
anisme d'étiquette permet au programmeur de spé-
i�er une adresse dans une se
tion, même si l'adresse de début de se
tion n'est pas en
ore 
onnueà l'assemblage.5.2 Réservation et initialisation de mémoire dans data5.2.1 Dire
tive byte et dé�nition d'étiquetteLa dire
tive byte permet de réserver de la pla
e et de spé
i�er la valeur initiale d'un o
tet.Chaque dire
tive de réservation peut petre pré
édée d'une dé�nition d'étiquette, auquel 
as lenom de l'étiquette apparaît en début de ligne, suivi de deux points (
ara
tère :). La valeur initialedoit être une 
onstante entière 
odable sur 8 bits.L'exemple 
i-dessous dé
rit une table des 6 première puissan
es de 2, 
odées 
ha
une sur uno
tet, suivie de 254 et 255 et du 
ode ASCII de 'A' et de 'B'.ASCII_DE_B = 0x42 
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5.2. RÉSERVATION ET INITIALISATION DE MÉMOIRE DANS DATA 63.datadebut_tab: .byte 1.byte 2.byte 4huit: .byte (1 << 3) � 1 << 3 : la 
onstante 8fin_tab: .byte 0x10 � meme effet que .byte 16.byte 254 � 254 pris 
omme entier naturel.byte -1 � -1 pris relatif équivalent à 255.byte 'A' � 'A' signifie 0x41.byte ASCII_DE_B � meme effet que .byte 0x42La troisième ligne de l'exemple dé�nit une étiquette : elle asso
ie le nom d'étiquette debut_tabà l'adresse du premier o
tet de la se
tion data. La dire
tive .byte 1 réserve 
e premier o
tet etspé
i�e que son 
ontenu initial est 1.La quatrième ligne spé
i�que le 
ontenu initial (2) du deuxième o
tet de la se
tion data, etainsi de suite. La sixième ligne asso
ie le nom d'étiquette huit à l'adresse de la se
tion data plus3 (adresse de l'o
tet initialisé à 8). De même, la dernière ligne dé�nit l'étiquette �n_tab 
ommel'adresse de la se
tion data, plus quatre.La valeur initiale peut être une 
onstante numérique ou une expression ne 
ontenant que des
onstantes. La dire
tive = ne réserve pas de pla
e, mais permet de donner un nom symbolique àune 
onstante : l'assembleur rempla
era 
haque o

uren
e ultérieure du symbole ASCII_DE_Bpar 0x42. Son équivalent C s'é
rirait #de�ne ASCII_DE_B 0x42.5.2.2 Dire
tive word et utilisation d'étiquetteLa dire
tive word permet de réserver de la pla
e et spé
i�er une valeur initiale pour un mot.Elle équivaut à une séquen
e de quatre2 dire
tives .byte spé
i�ant 
ha
une un o
tet du mot3.L'opérande de .word est une 
onstante numérique ou une étiquette..datadebut: .word 1234adr_x: .word 0 � int x = 0adr_ptr_x: .word adr_x � int *ptr_x = &xLa ligne .word 1234 réserve quatre o
tets et les initialise à la valeur entière 1234 (
odée sur32 bits). La troisième ligne asso
ie à l'étiquette adr_x l'adresse de début de la se
tion data, plusquatre et réserve de la pla
e pour un mot, initialisé à 0.La dernière ligne dé�nit l'étiquette adr_ptr_x 
omme l'adresse de la se
tion data, plus huit.Elle réserve un mot dont le 
ontenu est l'adresse de la se
tion data, plus 4. Notons au passage quenous aurions pu rempla
er l'opérande adr_x de la dire
tive .word par debut + 4.Si la se
tion data débute à l'adresse 200010 (respe
tivement 4000), le troisième mot est sto
kéà l'adresse 200810 (respe
tivement 4008) et son 
ontenu initial est 2004 (respe
tivement 4004).L'étiquette adr_x est un nom symbolique de l'adresse du deuxième mot de la se
tion data (soit
2004 ou 4004 selon l'adresse à laquelle débute la se
tion data).2pour une ma
hine 32 bits3en tenant 
ompte de l'ordre de sto
kage des entiers en mémoire, 
f 3.2.3
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64 CHAPITRE 5. RÉSERVATION ET INITIALISATION DE LA MÉMOIRE5.2.3 Dire
tive .shortOutre byte et word, il existe une dire
tive pour 
haque autre sous-multiples du mot. Pourréserver des paquets de 16 bits, le langage d'assemblage GNU pour ARM supporte la dire
tive.short (synonyme .hword).5.3 Réservation et initialisation de mémoire dans textIl est possible de dé
rire tout un programme ave
 les dire
tives byte, short et word, utilisablesde la même manière dans les se
tions text et data.La se
tion text est habituellement réservée aux 
onstantes4 et aux instru
tions.Le programmeur peut é
rire 
haque instru
tion ma
hine sous forme symbolique. L'assembleurse 
harge alors de 
onvertir 
ette des
ription symbolique en une séquen
e équivalente d'une ouplusieurs dire
tives .word dé
rivant 
ha
une un mot de la représentation en binaire de l'intru
tion.L'exemple suivant 
al
ule dans r3 le quadruple de la valeur de r2, plus 2. La deuxième instru
-tion (add r3, r3, #1) in
rémente r3 de 1. Elle est i
i dé
rite par son 
ode en hexadé
imal, viaune dire
tive .word. Ré
iproquement, à la pla
e de la dernière instru
tion, nous aurions pu utiliserune dire
tive .word spé
i�ant son 
ode ma
hine (0xe2833003 pour add r3, r3, r3).� 
al
ul de 4r2 +2.textfois2: add r3, r2, r2 � r3 <- 2 x r2plus_un: .word 0xe2833001 � ou add r3, r3, #1 : r3 <- r3 + 1re_fois2: add r3, r3, r3 � ou .word 0xe2833003Notons qu'il est possible d'asso
ier plusieurs étiquettes à la même adresse, 
e qui est trèsutile dans la tradu
tion des 
ontru
tions algorithmiques. Dans l'exemple suivant, les étiquettes
orps_while et debut_if (respe
tivement �n_if et test_while) sont toutes les deux asso
iées àl'adresse de la se
tion text plus quatre (respe
tivement plus 24).b test_while � x : r0
orps_while: � y : r1debut_if: 
mp r0, r1 � while (x != y)ble sinon � if (x > y)alors: sub r0, r0, r1 � x = x - y;b fin_if � elsesinon: sub r1, r1, r0 � y = y - x;fin_if:test_while: 
mp r0, r1bne 
orps_while5.4 Réservation de mémoire sans valeur initialeLa dire
tive .skip permet de réserver n o
tets 
onsé
utifs. Elle ne spe
i�e pas de valeur ini-tiale : les o
tets seront impli
itement initialisés à 0.4Les 
onstantes peuvent 
ohabiter ave
 les instru
tions dans la se
tion text, ou être regroupées dans une se
tionde données initialisées protégée 
ontre les é
ritures (rodata).
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5.5. ALIGNEMENT 65La dire
tive skip est utilisable pour toutes les dé
larations de variables en mémoire sans initia-lisation. Voi
i un exemple de réservation de pla
e pour deux variables entières x et y sur 32 bitset 2 variables a et b sur 16 bits..dataadr_x: .skip 4 � long int xadr_y: .skip 4 � long int yadr_a: .skip 2 � short int aadr_b: .skip 2 � short int bLe même e�et aurait pu être réalisée ave
 une seul dire
tive skip spé
i�ant 12 o
tets, mais nepermettrait pas de dé�nir une étiquette pour 
haque empla
ement.5.5 AlignementConsidérons l'ensemble de dé
larations de variables C suivant.� .datashort int s1 = 0x1234; � s1: .short 0x1234
har 
1 = 'a'; � 
1: .byte 'a'� sauter i
i 3 o
tets pour X4long int l = 0x12345678; � l: .word 0x12345678
har 
2 = 'b'; � 
2: .byte 'b'� sauter i
i 1 o
tet pour X2short int s2 = 3; � s2: .short 3Prise individuellement, 
ha
une des dé
larations C est fa
ile à traduire en langage d'assem-blage, 
omme le montrent les 
ommentaires. En revan
he, la tradu
tion de l'ensemble pose unproblème d'alignement des demi-mots et des mots (qui doivent être sto
kés à des adresses respe
-tivement paires et multiples de 4).Supposons que la se
tion data débute à une adresse multiple de 4 (don
 une adresse A telleque A = 4X). La variable C1 sera sto
kée à une adresse paire (4X+2) et l sera à l'adresse suivante(4X+3), qui n'est pas multiple de 4. Il existe un problème potentiel d'alignement 
haque foisqu'une variable est suivie en mémoire par une autre variable d'une taille supérieure (short aprèsbyte, word après byte ou short).Une stratégie 
onsiste à réordonner les dé
larations par ordre dé
roissant de taille pour évitertout problème d'alignement. Cette stratégie présente l'in
onvénient de ne pas respe
ter l'ordre desdé
larations du programme C d'origine.L'autre te
hnique 
onsiste à sauter le nombre d'o
tets né
essaires pour rétablir l'alignement.Dans l'exemple, il 
onvient d'insérer une réservation de 3 o
tets (.skip 3) entre 
1 et l, pour quel'adresse l redevienne un multiple de 4 , et une réservation d'un o
tet (.skip 1) entre 
2 et s2 detelle sorte que l'adresse s2 soit paire.Supposons que nous insérions après 
oup une variable 
3 de type 
har après 
1 : il ne faudralaisser plus que deux o
tets d'alignement avant l. La véri�
ation manuelle des 
ontraintes d'ali-gnement, fastidieuse, est simpli�ée par l'existen
e d'une dire
tive d'alignement : .align.
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66 CHAPITRE 5. RÉSERVATION ET INITIALISATION DE LA MÉMOIRELa dire
tive .align T saute automatiquement le bon nombre d'o
tets pour aligner l'adressede l'objet qui suit align sur un multiple de T. Dans notre exemple initial, il su�t d'insérer unedire
tive .align 4 (respe
tivement .align 2) devant tout réservation .word (respe
tivement .short)pré
édée d'une réservation de taille inférieure.Dans l'exemple initial, la dé
laration de l sera pré
édée de .align 4 qui générera l'équivalentde .skip 3 et 
elle de s2 suivra .align 2 dont l'e�et sera identique à .skip 1.Attention : pour le pro
esseur ARM, il faut utiliser la variante balign 
ar la dire
tive GNUalign pour ARM aligne sur 2n au lieu de n.5.6 Réservation et initialisation de 
haînesLes dire
tives .as
iz et .as
ii permettent de réserver de la pla
e pour les 
haînes de 
ara
tères,respe
tivement ave
 et sans marque de �n de 
haîne..data � équivalent ave
 .byteaurevoir: .as
iz "bye" � aurevoir: .byte 'b'� .byte 'y'� .byte 'e'� .byte 0 (ou .byte '\0')salut: .as
ii "hop" � salut: .byte 'h'� .byte 'o'� .byte 'p'5.7 Contenu d'un �
hier exé
utable relogeable et se
tion bss5.7.1 Contenu d'un �
hier objetUn �
hier objet issu de l'assemblage 
omprend un en-tête, le 
ontenu initial de la se
tion text,
elui de la se
tion data, les tables de réimplantation et une table des symboles.L'en-tête du �
hier 
ontient les rensignements suivant :� des informations spé
i�ques permettant de re
onnaître le format de �
hier exé
utable utilisé(typiquement ELF pour un unix ou linux ré
ent),� des informations sur la nature de la ma
hine auquel il est destiné (par exemple un ARM 32bits 
on�guré en mode big endian),� la position respe
tive des tables et des 
ontenus de text et data dans le �
hier,� la taille des se
tions text, data et bss,� le point d'entrée, autrement la position (dans la se
tion text) de l'instru
tion par laquellel'exé
ution doit 
ommen
er.La table des symboles re
ense les dé�nitions des étiquettes. Elle est utilisée par l'éditeur deliens lors de la fusion de �
hiers 
ompilés séparément ou par les débogueurs (tels que gdb).Il existe une table de réimplantation pour le 
ontenu de la se
tion text et une pour 
elui dedata. Ces tables indiquent les 
orre
tions à appliquer au 
ontenu initial de text et data en fon
tiondes adresses de 
hargement des se
tions text, data et bss.Le lan
ement de l'exé
ution d'un programme met en jeu les étapes suivantes :
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5.7. CONTENU D'UN FICHIER EXÉCUTABLE RELOGEABLE ET SECTION BSS 671. ouverture du �
hier et le
ture de l'en-tête,2. allo
ation de portions de mémoire 
entrale aux se
tions text, data et bss,3. re
opie du 
ontenu initial des se
tions text et data du �
hier exé
utable en mémoire 
entrale4. forçage à 0 de tout le 
ontenu de bss5. appli
ation des 
orre
tions spé
i�ées dans les tables de réimplantation au 
ontenus de textet de data,6. initialisation du 
ompteur ordinal ave
 l'adresse du point d'entrée du programme : l'exé
utiondes instru
tions du programme 
ommen
e.5.7.2 Bss : une se
tion destinée aux variables non initialiséesLe �
hier exé
utable ne 
ontient pas de 
opie du 
ontenu initial de bss, qui est impli
itement0 pour tous les o
tets. L'utilisation des dire
tives byte, short et word dans la se
tion bss est don
prohibée.En théorie, on peut se passer de se
tion bss. Toutes les variables (y 
ompris les tableaux)peuvent être sto
kées dans la se
tion data, même si elles sont dé
larées sans initialisation, maisau détriment de l'espa
e disque.En e�et, le �
hier exé
utable 
ontient une 
opie de la valeur initiale de 
haque o
tet de lase
tion data, même si 
elle-
i est nulle. Supposons que l'on dé
lare un tableau d'un million d'élé-ments de type entier 32 bits, sans valeur initiale.Si le tableau est dé
laré dans la se
tion data, le �
hier exé
utable 
ontiendra une 
opie du
ontenu initial du tableau, don
 quatre millions d'o
tets à 0. Si le même tableau est dé
laré dansla se
tion bss, l'en-tête du �
hier exé
utable indiquera simplement que la taille de la se
tion bssest de quatre mégao
tet. Mais le �
hier exé
utable ne 
ontiendra pas les quatre millions d'o
tets à0 : lors du lan
ement de l'exé
ution, le système d'exploitation se 
ontentera d'exé
uter une bou
led'initialisation à 0 de la se
tion bss en mémoire 
entrale.En théorie, la se
tion bss pourrait ne 
ontenir qu'une unique dire
tive skip spé
i�ant en uneseule fois la taille totale bss. Il est 
ependant intéressant d'utiliser autant de dire
tives skip quede dé
larations de variables sans initialisation : 
elà permet d'asso
ier une étiquette à 
haqueempla
ement de variable. Ces étiquettes seront utilisées 
omme 
ontenus des pointeurs de variablesinitialisés, présents dans la se
tion data ou dans les instru
tions de la se
tion text.
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Chapitre 6Variables et pointeurs, opérateurs * et &Les variables des programmes C peuvent être sto
kées dans les registres du pro
esseur ou dansla mémoire 
entrale (dans les se
tions data ou bss).Dans le 
hapitre 2 , nous avons vu 
omment gérer les expressions et a�e
tations C n'utilisantque des variables sto
kées dans des registres du pro
esseur.La tradu
tion des dé
larations de 
es variables se limite à de simples 
ommentaires indiquantquels registres du pro
esseurs sont alloués à quelles variables. Après réé
riture dans un format Cintermédiaire faisant apparaître les temporaires, la tradu
tion en langage d'assemblage est triviale,
haque opération en C se traduisant par une instru
tion ma
hine de 
al
ul dont les opérandes etle résultat sont sto
kés dans des registres.Ce 
hapitre détaille au 
ontraire les aspe
ts spé
i�ques au sto
kage des variables en mémoire,la méthode de dé
omposition des expressions en opérations élémentaires étant supposée a
quise.6.1 Pro
esseur RISC �
tif de référen
eSauf pré
ision 
ontraire, nous utiliserons le langage ma
hine et d'assemblage d'un pro
esseurRISC 32 bits �
tif, légèrement simpli�é par rapport aux familles de pro
esseurs RISC réelles, etfortement inspiré de la famille ARM. Ce pro
esseur dispose de trente-deux registres généraux detravail, notés r0 à r31Toutes les instru
tions, à l'ex
eption de mov32, sont 
odées sous la forme d'un mot de 32 bitsen
odant la nature de l'instru
tion, les numéros de registres utilisés et éventuellement une petite
onstante entière. L'instru
tion mov32 (en fait une instru
tion load immédiat) 
harge une entière
onstante quel
onque dans un registre. Mov32 o

upe deux mots de 32 bits, le deuxième 
ontenantla 
onstante à transférer dans le registre1.Toutes les instru
tions de 
al
ul existent en deux versions : ave
 et sans mise à jour des in-di
ateurs NZCV (exemple : sub sans mise à jour, subS ave
). Elles prennent leurs opérandes etdéposent leur résultat dans l'un des seize registres généraux (notés r0 à r15) du pro
esseur. Ilexiste une version réduite d'adressage immédiat pour l'opérande droit qui peut être au 
hoix unregistre ou une petite 
onstante entière 
odée 8 bits.1Nous détaillerons ultérieurement 
omment 
harger une 
onstante 32 bits quel
onque dans un registre d'unpro
esseur SPARC ou ARM, dont toutes les instru
tions sans ex
eption sont 
odées sur un seul mot.69



70 CHAPITRE 6. VARIABLES ET POINTEURS, OPÉRATEURS * ET &Les instru
tions arithmétiques permettent de réaliser l'addition, la soustra
tion et la soustra
-tion inversée (opérande droit - opérande gau
he) ave
 (add
, sub
, rsub
) ou sans (add,sub,rsub)prise en 
ompte de C 
omme retenue initiale. Après une soustra
tion, C indique la retenue �nale,
omme pour un pro
esseur ARM.Le jeu d'instru
tions 
omprend aussi les dé
alages logique à gau
he (lsl), à droite (lsr) et arith-métique à droite (asr), ainsi que les opérations bit à bit et (and), ou (or) et ou ex
lusif (eor).L'instru
tion move not (mvn) n'a pas d'opérande gau
he. Elle 
opie le 
omplément à 1 de l'opé-rande droit dans le registre résultat. Sa variante move (mov) 
opie sans 
omplémenter. Commepour les instru
tions de 
al
ul, l'adressage immédiat est limité à des 
onstantes 
odables sur 8 bits.L'instru
tion 
mp est une forme de subS qui n'utilise pas de registre résultat : elle met à jourles indi
ateurs 
omme la soustra
tion, mais ne sto
ke pas le résultat apparent de l'opération dansun registre.Les instru
tions d'a

ès à la mémoire sont load (ldr) et store (str). L'adresse de load ou store,notée entre 
ro
hets, est la somme ou la diféren
e entre le 
ontenu d'un registre général d'une partet le 
ontenu d'un autre registre général ou une petite 
onstante immédiate entière 
odable sur8 bits d'autre part. Cette 
onstante est supposée nulle si les 
ro
hets ne 
ontiennent qu'un registre.La taille des variables sto
kées en mémoire est le mot ou le sous-multiple du mot, 
elle desregistres est de 32 bits. La le
ture en mémoire des sous-multiples du mot réalise une extension à32 bits du format de représentation2 et l'é
riture une rédu
tion par tron
ature (élimination desbits de poids forts ex
édentaires3). Les variantes de tailles pour load et store sont : les mots de 32bits (ldr, str), les entiers sur 16 bits (ldrh pour les entiers naturels, ldrsh pour les entiers signés,strh) et les o
tets (ldrb, ldrsb, strb).Il existe des variantes de ldr et str ave
 préin
rémentation et postin
rémentation, présentées àla �n de 
e 
hapitre.Il existe aussi des variantes de load et store sur 32 bits pour e�e
tuer des transferts de 
ontenuentre une liste ordonnée de registres et un ensemble d'empla
ements mémoire 
ontigüs. L'utilisa-tion de 
es instru
tions (ldm et stm) est présenté dans le 
hapitre 10.� Cette instru
tion range en mémoire les registres� r0, r2, r3, r4, r5, r6 et r8 dans une zone mémoire� pointée par r12. Les registres sont rangés par ordre� 
roissant de numéros.stm {r0, r2-r6, r10}, [r12℄� Elle rempla
e 
ette suite d'instru
tions :str r0 ,[r12,#0℄str r2 ,[r12,#4℄str r3 ,[r12,#8℄str r4 ,[r12,#12℄str r5 ,[r12,#16℄2ajout en poids fort de 0 pour un entier naturel ou re
opie du bit de signe pour un entier signé3quelque soit la nature de l'entier transféré 
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6.2. TRADUCTION DES DÉCLARATIONS DE VARIABLE EN MÉMOIRE 71str r6 ,[r12,#20℄str r10,[r12,#24℄� Le transfert en sens inverse s'é
rit :ldm {r0, r2-r6, r10}, [r12℄Les instru
tions de bran
hement seront détaillées au 
hapitre 8.6.2 Tradu
tion des dé
larations de variable en mémoire6.2.1 Exemple de dé
larations de variables en Cunsigned 
har 
3 = 'a'
har 
s1;unsigned short int s1;short int ss1, ss2;unsigned short int s3 = 0x1234;unsigned short int s4 = 3;short int ss3;unsigned long int l1, l2;long int ls1,ls2;unsigned long int l3 = 0x12345678;unsigned long int l4 = 1;long int ls3 = -2;6.2.2 Prin
ipe de tradu
tionChaque dé
laration de variable C (sans attribut register, don
 supposée sto
kée en mémoire)sans initialisation est traduite par une dire
tive skip de réservation dans la se
tion bss d'autantd'o
tets que la taille du type de la variable.Chaque dé
laration ave
 initialisation sera traduite par une dire
tive (byte, short, word, as
ii,as
iz) de réservation de pla
e dans data spé
i�ant la valeur initiale de la variable.Dans les deux 
as, la dire
tive de réservation sera a

ompagnée d'une dé�nition d'étiquettedonnant un nom symbolique à l'adresse de sto
kage de la variable.En présen
e de plusieurs variables, la prin
ipale pré
aution à prendre 
on
erne le respe
t des
ontraintes d'alignement, détaillées au 
hapitre 5.Notons que pour la réservation de pla
e, seule la taille (
f l'opérateur C sizeof) de la variable
ompte, (la nature de la variable est sans importan
e). A titre d'exemple la dire
tive .skip 4réserve un empla
ement pour n'importe quelle variable 
odée sur 32 bits, qu'elle soit de type �oat,long int ou unsigned long int, ou en
ore de type pointeur.6.2.3 Se
tions data et bss de l'exempleExaminons l'appli
ation de 
e prin
ipe sur l'exemple pré
édent. Chaque dire
tive de réserva-tion de pla
e peut être pré
édée d'une dire
tive d'alignement sur une adresse multiple de sa taille,
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72 CHAPITRE 6. VARIABLES ET POINTEURS, OPÉRATEURS * ET &mais 
ette pré
aution n'est né
essaire que si la réservation pré
édente est de taille inférieure.Notons au passage que l1 étant pré
édé de 8 o
tets (
har, o
tet d'alignement, 3 fois short), ilserait naturellement à une adresse multiple de 4.Rappelons également que si les variables C étaient dé
larées dans l'ordre dé
roissant de tailles,il n'y aurait au
un o
tet d'alignement perdu dans data et bss..dataadr_de_
3: .byte 'a'.align 2 � saute 1 o
tet devant short qui suitadr_de_s3: .short 0x1234adr_de_s4: .short 3.align 4 � saute 2 o
tets devant long qui suitadr_de_l3: .word 0x12345678adr_de_l4: .word 1adr_de_ls3: .word -2.bssadr_de_
s1: .skip 1.align 2 � saute 1 o
tet devant short qui suitadr_de_ss1: .skip 2adr_de_ss2: .skip 2adr_de_ss3: .skip 2.align 4 � saute 0 o
tet, pourrait être omisadr_de_l1: .skip 4adr_de_l2: .skip 4adr_de_ls1: .skip 4adr_de_ls2: .skip 4Pour bien faire apparaître dans 
et exemple que les étiquettes sont des noms symboliques desadresses des variables, leurs noms sont tous pré�xés par adr_de_.6.3 Opérateur &, * et type adresse6.3.1 Opérateur & : "adresse de"L'opérateur C & donne l'adresse de son opérande : si v est une variable sto
kée en mémoire,&v désigne l'adresse à laquelle est est sto
kée. En d'autres termes, appliqué à un opérande de typeMem[adr℄, il permet d'en désigner l'adresse adr.La dé
laration d'une variable C de type T sans attribut register a deux e�ets :� réserver (et éventuellement spé
i�er une valeur initiale di�érente de 0) sizeof(T) unités adres-sables (don
 T o
tets) et� asso
ier la 
onstante symbolique &v à l'adresse du premier o
tet réservé.Soit XX le nom d'une variable de notre exemple. Par dé�nition, il est 
lair que la 
onstante&XX en langage C et l'étiquette adr_de_XX en langage d'assemblage sont deux noms symbo-liques de l'adresse du premier o
tet réservé pour sto
ker XX.
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6.3. OPÉRATEUR &, * ET TYPE ADRESSE 73A titre d'exemple &ss1 en C et l'étiquette adr_de_ss1 en langage d'assemblage sont deuxnoms symboliques de l'adresse du troisième o
tet de la se
tion bss, (soit 1002 si la se
tion bssdébute à l'adresse 1000).6.3.2 A�e
tation et opérateur *Appliqué à une adresse adr, l'opérateur * permet de désigner le 
ontenant mémoire Mem[adr℄à 
ette adresse. L'opérande adr peut être une 
onstante ou une expression (qui sera évaluée pour
al
uler l'adresse). L'opérateur unaire4 * fon
tionne à l'inverse de 
elui de l'opérateur &.Une variable var sto
kée en mémoire peut être désignée en utilisant l'opérateur * sur sonadresse (&var) et par dé�nition, var est synonyme de*&var. Sa signi�
ation est la suivante :Mem[adresse_de_sto
kage_de_var℄.Une a�e
tation est de la formemembre_gau
he = membre_droit. Membre_gau
he spé-
i�e un 
ontenant qui prend pour nouveau 
ontenu le résultat de l'évaluation du membre droit. Un
ontenant est soit un registre (pour les variables de type register), soit un empla
ement mémoireidenti�é par son adresse.Membre_droit est une expression 
omposée d'opérateurs de 
al
ul, de 
onstantes et de 
onte-nants. L'a�e
tation évalue l'expression en appliquant les opérateurs de 
al
ul sur les 
ontantes etsur les 
ontenus des 
ontenants appartenant à membre_droit.A titre d'exemple, s1 et s3 étant sto
kées en mémoire, l'a�e
tation s1 = s3 - 2 peut ausis'é
rire sous la forme C détaillée *&s1 = *&s3 - 2. On pourrait l'é
rire plus expli
itement* (short int *) &s1 = *(short int *) &s3 - (short int) 2 pour faire apparaître les types spé-
i�és par les dé
larations de ss1 et ss3.Cette dernière notation C signi�e Mem[adresse_de_s1℄ prend pour nouvelle valeurMem[adresse_de_s3℄ - 2 : lire le 
ontenu (entier relatif sur 2 o
tets) de la mémoire à l'adresseà laquelle est sto
kée s3, retan
her la 
onstante (entière sur 16 bits) 2 et é
rire le résultat (entiersur 2 o
tets) en mémoire à l'adresse à laquelle est sto
kée s1.L'opérateur unaire * tout à gau
he du membre gau
he de l'a�e
tation 
orrespond à une é
ri-ture (du résultat de la soustra
tion) en mémoire (dans la variable a�e
tée).Le ou les autres opérateurs unaires * présents dans la forme détaillée de l'a�e
tation 
orres-pondent à des le
tures (du 
ontenu des variables utilisée dans l'expression).L'a�e
tation prise en exemple pourrait être traduite en langage d'assemblage par en une ins-tru
tion CISC de 
al
ul spé
i�ant un mode d'adressage absolu pour l'opérande gau
he ainsi quepour le résultat et un mode d'adressage immédiat pour l'opérande droit : sub [s1℄, [s3℄, #2.Pour notre pro
esseur RISC �
tif, nous devons dé
omposer le travail en plusieurs étapes :
harger les adresses s1 et s3 dans des registres, lire en mémoire le 
ontenu de s3, e�e
tuer lasoustra
tion, é
rire en mémoire le résultat dans s1.Cette tradu
tion suppose l'introdu
tion de variables intermédiaires de type pointeur, dont nousallons au préalable présenter la syntaxe de dé
laration.4unaire : à seul opérande
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74 CHAPITRE 6. VARIABLES ET POINTEURS, OPÉRATEURS * ET &6.3.3 Type "adresse de"Notons que l'opérande * utilise deux informations : l'adresse et le type d'objet à a

éder à
ette adresse. Le type d'élément pointé dé�nit le nombre d'o
tets à lire ou à é
rire et la manièred'en interpréter le 
ontenu.Les 
onstantes adresses sont du type "adresse de", mais il existe autant de variantes de types"adresse de" que de types d'élément adressable.Il semblerait logique de noter (& T) le type "adresse d'élément de type T". Cette notationa été retenue par les 
on
epteurs du langage C++ (extension orientée objet de C) pour le type"référen
e à un objet de la 
lasse T".Les 
on
epteurs du langage C ont préféré noter le type "adresse d'élément de type T" (T *).La justi�
ation de 
ette notation est la suivante : en appliquant l'opérateur * à une entité de 
etype, on obtient un élément de type T.Notons que tous les types "adresse de" ont la même taille : 
elle d'une adresse, à ne pas
onfondre ave
 la taille de l'objet pointé. Ainsi, pour une ma
hine 32 bits sizeof(
har) = 1 etsizeof(long) = 4, mais sizeof(long *) = sizeof(
har *) = 4.6.3.4 Conversion de type pointeurLe for
eur de type (T *) ne modi�e pas la 
onstante adresse ou le 
ontenu du pointeur auquelil s'applique, mais indique au 
ompilateur de 
onsidérer 
ette adresse 
omme l'adresse d'une entitéde type T.Le type (void *) représente le type "adresse d'un élément de type non spé
i�é". Mais on nepeut appliquer l'opérateur * sur une variable ou une 
onstante de type (void *) : le type (void *)doit d'abord être 
onverti en (T *), T étant un type autre que void.Soit une primitive d'allo
ation dynamique de mémoire retournant un pointeur de type void *ou 
har * : 
e pointeur sera 
onverti en T * lors de l'allo
ation d'un objet de type T.6.3.5 Constante NULLL'opérande de l'opérateur unaire * doit être l'adresse d'une entité du programme (variable oupro
édure). Elle doit appartenir à une des se
tions mémoire du programme exé
uté (text, data,bss ou tas5 , pile) : une variable sto
kée dans un registre n'a pas d'adresse.Le langage C dé�nit un nom de 
onstante adresse invalide : NULL. NULL est utilisée pourindiquer qu'un pointeur ne répère au
un élément. L'appli
ation de l'opérateur unaire * à NULLest illégale.NULL est le plus souvent dé�nie 
omme (void *) 0. Tout pointeur sto
ké dans bss (impli
ite-ment initialisée à 0) sera don
 automatiquement initialisé à NULL et le matériel est généralement
apable de générer une interruption au premier a

ès à l'adresse 0, qui a pour e�et d'arrêterimmédiatement l'exé
ution de programme.5Le tas est la zone utilisée pour l'allo
ation dynamique de mémoire (fon
tion mallo
). Le tas 
onstitue le plussouvent une extension de la se
tion bss qui 
roît ave
 les demandes d'allo
ation.
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6.4. VARIABLES POINTEUR STOCKÉES EN REGISTRE 756.4 Variables pointeur sto
kées en registreOn appelle variable pointeur de type T une variable de type (T *) : elle 
ontient une adresse(d'un élément supposé être) de type T.Comme toute variable, une variable de type pointeur peut être sto
kée dans un registre (nousla dé
larerons alors ave
 l'attribut de sto
kage register) ou en mémoire. Dans 
e 
hapitre, nousn'utiliserons que des pointeurs sto
kés dans des registres.Après a�e
tation de l'adresse &v d'une variable v à un pointeur p, p repère v : v peut êtrea

édée en appliquant l'opérateur * à p. V et *p (en remplaçant p par son 
ontenu) équivalenten C à *&v et désignent tous les deux l'empla
ement mémoire (Mem[&v℄) réservé au sto
kage de v.Voi
i un exemple de 
ode C dans lequel le pointeur ptrss repère su

essivement et permet demanipuler les variables ss1, puis ss3.unsigned short int ss1, ss2, ss3;register unsigned short int rss;register unsigned short int *ptrss; /* un pointeur d'entier 
ourt */ptrss = &ss1 /* ptrss repere ss1 */*ptrss = 2; /* ss1 = 2 : *(&ss1) =2 */ss2 = ss1; /* ss2 = ss1 : *&ss2 = *&ss1 */ss3 = *ptrss; /* ss3 = ss1 : *&ss3 = *(&ss1) */ptrss = &ss3; /* ptrss repere ss3 */*ptrss += 3; /* ss3 +=3 : *&ss3 = *&ss3 + 3 */Trois opérations élémentaires peuvent être réalisées sur une variable pointeur sto
kée dans unregistre :1. a�e
ter l'adresse d'une variable à un pointeur : ptrss = &ss1,2. lire : prendre une 
opie du 
ontenu de la variable pointée (par exemple pour l'a�e
ter à unevariable sto
kée dans un registre) : rss = *ptrss,3. é
rire : a�e
ter à la variable pointée un nouveau 
ontenu (par exemple 
elui d'une variablesto
kée dans un registre) : *ptrss = rss.� r5 : ptrss� r2 : rss� exemple d'affe
tation d'une adresse : ptrss = &ss1mov32 r5, #adr_de_ss1 � adresse : ldr 32 bits� exemple de le
ture : rss = *ptrssldrsh r2, [r5℄ � sh : signed halfword� exemple d'é
riture : *ptrss = rssstrh r2, [r5℄ � h : halwordCha
une de 
es opérations se traduit en une seule instru
tion ma
hine de notre pro
esseurRISC :1. Une instru
tion mov32 pour 
harger une 
onstante adresse sur 32 bits dans un registre.En langage C la 
onstante adresse &ss1 
orrespond à l'étiquette adr_de_ss1 en langaged'assemblage.
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76 CHAPITRE 6. VARIABLES ET POINTEURS, OPÉRATEURS * ET &2. L'instru
tion de le
ture est de type load ave
 adressage registre indire
t, 
orrespondant à lataille et au type d'objet pointé (entier naturel 
ourt signé dans le 
as de ptrss).3. L'instru
tion d'é
riture est de type store ave
 adressage registre indire
t, 
orrespondant à lataille d'objet pointé.Rappelons que le format des entiers sto
kés sur 8 ou 16 bits est étendu à la taille d'un mot lorsde leur le
ture de la mémoire dans un registre, en tenant 
ompte de la nature de l'entier (naturelou signé).6.5 Dé
omposition d'une a�e
tation en instru
tions RISCPour guider la tradu
tion des instru
tions C en langage d'assemblage, nous utiliserons uenforme de C intermédiaire équivalente (et a

eptée par le 
ompilateur) mettant en éviden
e ladé
omposition en étapes élémentaires et l'utilisation de registres de sto
kage d'informations tem-poraires. Chaque instru
tion C de 
ette forme intermédiaire 
orrespond à une instru
tion ma
hinede notre pro
esseur RISC virtuel.Dans une expression n'utilisant que des variables sto
kées dans des registres, les temporairesne servent qu'à sto
ker des résultats de 
al
ul intermédiaire (
d 2).Dans le 
as général, des registres sont utilisés pour sto
ker temporairement les adresses et les
ontenus de variables rangées en mémoire.Considérons à titre d'exemple les deux a�e
tations suivantes./* affe
tations a traduire */ss1 = 2; /* de
omposee en *&ss1 = 2 */ss3 = ss1 - ss2; /* de
omposée en *&ss3 = *&ss1 - *&ss2 */Voi
i la version dé
omposant 
es a�e
tations en instru
tions C plus élémentaires.short int r1, r2, r3; /* --> r1, r2, r3 de la ma
hine */short int *rp0; /* --> r0 de la ma
hine */r1 = 2;rp0 = &ss1;*rp0 = r1;rp0 = &ss1; /* peut etre omis : deja fait */r1 = *rp0; /* inutile : r1 
ontient deja Mem[rp0℄ */rp0 = &ss2;r2 = *rp0;r3 = r1 - r2;rp0 = &ss3;*rp0 = r3;Chaque instru
tion C de la forme intermédiaire a une tradu
tion dire
te en langage d'assem-blage. � r1, r2, r3 temporaires pour 
ontenus de ss1, ss2, ss3� r0 temporaire pour adresses de ss1, ss2, ss3
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6.6. VARIABLES POINTEUR STOCKÉES EN MÉMOIRE 77mov32 r1, #2 � r1 = 2mov32 r0, #adr_de_ss1 � rp0 = &ss1strh r1, [r0℄ � *rp0 = r1mov32 r0, #adr_de_ss1 � rp0 = &ss1ldrsh r1, [r0℄ � r1 = *rp0mov32 r0, #adr_de_ss2 � rp0 = &ss2ldrsh r2, [r0℄ � r2 = *rp0sub r3,r1,r2 � r3 = r1 - r2mov32 r0, #adr_de_ss3 � rp0 = &ss3strh r3, [r0℄ � *rp0 = r3La 
onsommation de registres peut être optimisée en examinant �nement les instants auxquelsils 
ontiennent simultanément une information utile. Voi
i à tire d'exmple une tradu
tion del'a�e
tation ss3 = ss1 - ss2 ; qui n'utilise que deux registres.mov32 r1, #adr_de_ss1ldrsh r1, [r1℄mov32 r2, #adr_de_ss2ldrsh r2, [r2℄sub r2,r1,r2mov32 r1, #adr_de_ss3strh r2, [r1℄Le registre r1 est utilisé pour sto
ker l'adresse de ss1 jusqu'à la �n du 
y
le de le
ture mémoirespé
i�é par la première instru
tion ldrsh. Lorsque le 
y
le de le
ture mémoire réalisé par ldrshse termine, l'adresse 
ontenue dans r1 n'est plus né
essaire et peut être rempla
ée dans r1 par le
ontenu de ss1 lu en mémoire. De même, à la �n du 
al
ul de la di�éren
e entre les 
ontenus desdeux registres, le résultat peut prendre la pla
e d'un des opérandes (dans r2).6.6 Variables pointeur sto
kées en mémoireLes pointeurs sont des variables C 
omme les autres. En l'absen
e de l'attribut de sto
kageregister, une variable pointeur est sto
kée en mémoire et possède une adresse.La variable pointeur est sto
kée dans la se
tion data si la dé
laration spé
i�e une valeur ini-tiale6 et dans la se
tion bss sinon.Une variable pointeur sto
kée en mémoire a une adresse, que l'on peut don
 éventuellementsto
ker dans une variable pointeur (de pointeur). La dé
laration d'une variable ppt pointeur depointeur de T est de forme T**ppt = &var_de_type_T*, la spé
i�
ation de valeur initiale(= &var_type_T*) étant fa
ultative.Le prin
ipe de tradu
tion des a

ès aux variables sto
kées en mémoire s'applique de la mêmemanière aux variables pointeurs sto
kées en mémoire.6.6.1 Exemple d'utilisation de pointeurs sto
kés en mémoireIllustrons la gestion de pointeurs sto
kés en mémoire sur un exemple simple.6Cette valeur initiale étant l'adresse d'une autre variable
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78 CHAPITRE 6. VARIABLES ET POINTEURS, OPÉRATEURS * ET &
har x = 2;
har y;
har *ptr_init = &x; /* pointeur initialise dans la de
laration */
har *ptr; /* pointeur non initialise */...y = *ptr_init + 1; /* equivaut a y = x + 1 */x = x + 4; /* la valeur pointée peut 
hanger */ptr = ptr_init; /* 
opie de pointeur : ptr repère egalement x */*ptr += 5; /* equivaut a x = x + 5 */ptr = &y; /* ptr repère y */*ptr = *ptr_init; /* equivaut a y = x; */La première étape préalable à la tradu
tion en langage d'assemblage de notre pro
esseur RISC�
tif 
onsiste à rempla
er dans les instru
tions 
haque o

uren
e d'une variable v sto
kée enmémoire par *&v. Dans notre exemple, 
ette étape 
on
erne quatre variables : x, y, ptr_init etptr./* dé
larations omises */*&y = **&ptr_init + 1; /* Mem[&y℄ = Mem[Mem[&ptr_init℄℄ */*&x = *&x + 4; /* Mem[&x℄ = Mem[&x℄ + 4 */*&ptr = *&ptr_init; /* Mem[&ptr℄ = Mem[&ptr_init℄ */**&ptr += 5; /* Mem[Mem[&ptr℄℄ = Mem[Mem[&ptr℄℄ +5 */*&ptr = &y; /* Mem[&ptr℄ = &y */**&ptr = **&ptr_init; /* Mem[Mem[&ptr℄ = Mem[Mem[&ptr_nit℄℄ */6.6.2 Introdu
tion des temporaires et tradu
tionL'étape suivante 
onsiste à introduire les temporaires sto
kés dans des registres pour sto
kerles 
ontenus de variables entières (
ontenus de x et y), les 
ontenus des pointeurs (ptr, ptr_init)et les adresses des pointeurs (&ptr, &ptr_init), puis à dé
omposer en instru
tions élémentaires.
har x = 2;
har y;
har *ptr_init = &x;
har *ptr;
register 
har t0;register 
har *t2 , *t3;register 
har **t4, **t5;

.dataadr_x: .byte 2.align 4adr_ptr_init: .word adr_x.bssadr_y: .skip 1.align 4adr_ptr: .skip 4� t0 : registre r0� t2 : registre r2� t3 : registre r3� t4 : registre r4� t5 : registre r5Dans 
et exemple, quatre temporaires pointeurs ont été introduits, tous sto
kés dans des re-gistres : deux pointeurs de short (t2 et t3) et deux pointeurs de pointeurs de short (t4 et t5).
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6.7. SYMBOLES ÉTIQUETTES SANS PRÉFIXE ADR_ 79/* *&y = **&ptr_init + 1 */t4 = &ptr_init;t2 = *t4;t0 = *t2;t0 = t0 + 1;t1 = &y;*t1 = t0;
.textmov32 r4, #padr_tr_initldr r2, [r4℄ldrsb r0, [r2℄add r0, r0, #1mov32 r1, #adr_ystrb r0, [r1℄/* *&x = *&x + 4 */t2 = &x;t0 = *t2;t0 = t0 + 4;*t2 = t0; mov32 r2, #adr_xldrsb r0, [r2℄add r0, r0, #4strb r0, [r2℄/* *&ptr = *&ptr_init */t4 = &ptr_init;t2 = *t4;t5 = &ptr;*t5 = t2; mov32 r4, #adr_ptr_initldr r2, [r4℄mov32 r5, #adr_ptrstr r2, [t5℄/* **&ptr += 5 */t4 = &ptr;t2 = *t4;t0 = *t2;t0 = t0 + 5;*t2 = t0 mov32 r4, #adr_ptrldr r2, [r4℄ldrsb r0, [r2℄add r0, r0, #5strb r0, [r2℄/* *&ptr = &y */t2 = &y;t4 = &ptr;*t4 = t2; mov32 r2, #adr_ymov32 r4, #adr_ptrstr r2, [r4℄/* **&ptr = **&ptr_init */t4 = &ptr_init;t2 = *t4;t0 = *t2;t5 = &ptr;t3 = *t5;*t3 = t0;
mov32 r4, #ptr_initldr r2, [r4℄ldrb r0, [r2℄mov32 r5, #adr_ptrldr r3, [r5℄strb r0, [r3℄6.7 Symboles étiquettes sans pré�xe adr_Jusqu'à présent nous avons pré�xé les symboles étiquettes qui 
orrespondent à des adresses devariables (&var en C) par adr_. Dans la suite du do
ument nous abandonnerons 
e pré�xe quis'appliquerait à toutes les étiquettes. Mais le le
teur devra se souvenir que l'étiquette x en langaged'assemblage est l'adresse de sto
kage de x (et non sa valeur) et 
orrespond à &x en C.6.8 Pointeurs de pointeurs en mémoireL'exemple pré
édent a illustré l'utilisation de pointeurs de pointeurs sto
kés dans des registres.Voi
i maintenant un exemple d'utilisation de pointeurs de pointeurs sto
kées en mémoire.
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80 CHAPITRE 6. VARIABLES ET POINTEURS, OPÉRATEURS * ET &6.8.1 Programme à traduire
har 
 = 'a';
har d;
har *ptr_
 = &
; /* ptr_
 repère 
 */
har *ptr_
ar; /* un autre pointeur de 
har */
har **ptr_ptr_
ar; /* un pointeur de pointeur de 
har */register 
har **reg_ptr_ptr; /* le meme dans un registre */...
 = 
 + 1; /* equivaut a 
 = 'b' */*ptr_
 ++; /* manipulation par pointeur : 
 = '
' */ptr_
ar = &d /* ptr_
ar repère d */*ptr_
ar = 
 + 2; /* manip de d par ptr : d = 'e' */reg_ptr_ptr_
ar = &ptr_
ar; /* reg_ptr_ptr_
ar repère ptr_
ar */ptr_ptr_
ar = &ptr_
ar; /* ptr_de_ptr_
ar repère ptr_
ar */ptr_
 = *ptr_ptr_
ar; /* ptr_
 affe
te par pointeur *//* ptr_
 repère maintenant d */ptr_
ar = &
; /* ptr_
arx repère 
 */**ptr_ptr_
ar = 'x'; /* 
 modifie via un ptr ptr 
har */d = **reg_ptr_ptr_
ar; /* d = 
 par reg ptr ptr 
har */
6.8.2 Mise en éviden
e des a

ès à la mémoire*&
 = *&
 + 1; /* 1 */**&ptr_
 = **&ptr_
 +1; /* 2 */*&ptr_
ar = &d; /* 3 */**&ptr_
ar = *&
 + 2; /* 4 */reg_ptr_ptr_
ar = &ptr_
ar; /* 5 */*&ptr_ptr_
ar = &ptr_
ar; /* 6 */*&ptr_
 = **&ptr_ptr_
ar; /* 7 */*&ptr_
ar = &
; /* 8 */***&ptr_ptr_
ar = 'x'; /* 9 */*&d = **reg_ptr_ptr_
ar; /* 10 */
6.8.3 Tradu
tion en langage d'assemblage RISC
har 
 = 'a';
har *ptr_
 = &
; .data
: .byte 'a'.align 4ptr_
: .word 
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6.8. POINTEURS DE POINTEURS EN MÉMOIRE 81
har d;
har *ptr_
ar;
har **ptr_ptr_
arregister 
har **reg_ptr_ptr_
ar;register 
har r0;register 
har *r1 , *r2;register 
har **r3 , **r4;register 
har ***r5, ***r6;

.bssd: .skip 1.align 4ptr_
ar: .skip 4ptr_ptr_
ar: .skip 4� r8 : reg_ptr_ptr_
ar;� r0 à r6 : registres de même noms
r1 = &
;r0 = *r1;r0 = r0 + 1;*r1 = r0; mov32 r1, #
ldrsb r0, [r1℄add r0, r0, #1strb r0, [r1℄r3= &ptr_
;r1 = *r3;r0 = *r1;r0 = r0 + 1;*r1 = r0; mov32 r3, #ptr_
ldr r1, [r3℄ldrsb r0, [r1℄add r0, r0, #1strb r0, [r1℄r1 = &d;r3 = &ptr_
ar;*r3 = r1; mov32 r1, #dmov32 r3, #ptr_
arstr r1, [r3℄r1 = &
;r0 = *r1;r0 = r0 + 2;r3 = &ptr_
ar;r2 = *r3;*r2 = r0;

mov32 r1, #
ldrsb r0, [r1℄add r0, r0, #2mov32 r3, #ptr_
arldr r2, [r3℄strb r0, [r2℄reg_ptr_ptr_
ar = &ptr_
ar; mov32 r8, #ptr_
arr3 = &ptr_
ar;r5 = &ptr_ptr_
ar;*r5 = r3; mov32 r3, #ptr_
armov32 r5, #ptr_ptr_
arstr r3, [r5℄r5 = &ptr_ptr_
ar;r3 = *r5;r1 = *r3;r6 = &ptr_
;*r6 = r1; mov32 r5, #ptr_ptr_
arldr r3, [r5℄ldr r1, [r3℄mov32 r6, #ptr_
str r1, [r6℄
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82 CHAPITRE 6. VARIABLES ET POINTEURS, OPÉRATEURS * ET &r1 = &
;r3 = &ptr_
ar;*r3 = r1; mov32 r1, #
mov32 r3, #ptr_
arstr r1, [r3℄r0 = 'x';r5 = &ptr_ptr_
ar;r3 = *r5;r1 = *r3;*r1 = r0; mov32 r0, #'x'mov32 r5, #ptr_ptr_
arldr r3, [r5℄ldr r1, [r3℄strb r0, [r1℄r1 = *reg_ptr_ptr_
ar;r0 = *r1;r2 = &d;*r2 = r0; ldr r1, [r8℄ldr r0, [r1℄mov32 r2, #dstrb r0, [r2℄6.9 Préin
rémentation et postin
rémentation des pointeursIl est possible de 
ombiner les opérateurs - - et ++ ave
 l'opérateur * sur les pointeurs.L'opérateur * est appliqué sur la valeur initiale du pointeur si l'opérateur - - ou ++ est à droitedu pointeur ou sur la valeur modi�ée s'il est à gau
he du pointeur.void 
opie2 (int *s, int *d, int t){int i;*d++ = *s++; /* *d = *s avant */} /* d++ et s++ */void 
opie3 (int *s, int *d, int t){int i;for {i=t; i>=1; i--}*--d = *--s++; /* d-- et s-- avant */} /* *d = *s */La tradu
tion en langage d'assemblage ne pose pas de problème parti
ulier :� r0 = *++r1ldr r0,[r1,#-4℄ � adresse = registre pointeur - 4sub r1, r1, #4 � mise à jour registre pointeur� r0 = *r1++ldr r0, [r1℄ � adresse = registresub r1, r1, #4 � mise à) jour registre pointeurNous supposerons que notre pro
esseur �
tif dispose de variantes de ldr et str ave
 a

èsmémoire et préin
rémentation ([reg,#ajout℄ !) ou postin
rémentation ([ ℄,#ajout) du registred'adresse utilisé, le tout en une seule instru
tion.� r0 = *++r1ldr r0, [r1,#-4℄! : préin
rémentation� r0 = *r1++ldr r0, [r1℄, #-4 : postin
rémentation 
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Chapitre 7Stru
tures et unionsLe type enregistrement, appelé stru
ture en C et re
ord dans d'autres langages, permet deregrouper en un seul objet sto
ké dans un espa
e mémoire 
ontigu un ensemble d'objets de typesdi�érents, appelés membres de la stru
ture.7.1 Stru
tures7.1.1 Syntaxe de dé
larationLa dé
laration d'objets de type stru
ture est normalement réalisé en deux étapes : dé�nitiond'un type de stru
ture et dé
laration de variables en utilisant le type dé�ni.La syntaxe de la dé�nition d'un type de stru
ture est la suivante : le mot 
lé stru
t, pré
édantle nom du type de stru
ture dé�ni et suivi, entre a

olades, d'une liste de dé
larations de membresde la stru
ture.#define TAILLE_NOM 50#define TAILLE_PRENOM 30/* Definition du type stru
t prsonne */stru
t personne {
har nom[TAILLE_NOM℄;
har prenom[TAILLE_PRENOM℄;unsigned short int age;unsigned int 
ode_postal;... /* d'autres membres éventuels */}/* De
laration de 3 variables de type stru
t personne */stru
t personne proprietaire, lo
ataire, 
lient;L'utilisation de typedef permet éventuellement d'éviter de répéter le mot stru
t dans 
haquedé
laration de variable.typedef stru
t s_point{int x;int y;} point; /* e
riture equivalente */point px,py; /* equivaut a stru
t s_point px, py; */83



84 CHAPITRE 7. STRUCTURES ET UNIONSpoint 
entre; /* equivaut a stru
t s_point 
entre; */point sommet; /* equivaut a stru
t s_point sommet */Il est possible de 
ombiner la dé�nition du type de stru
ture et la dé
laration des variablesen une seule dé
laration, le nom du type de stru
ture pouvant éventuellement être omis. Il su�td'ajouter après la dé�nition de type les noms des variables à dé
larer.La séparation de la dé
laration du type stru
ture de la dé
laration des variables proprementdite est 
ependant re
ommandée. Elle permet d'identi�er 
lairement la dé�nition de type et rendla dé
laration des variables plus lisible.typedef enum 
olori {BLEU, BLANC, ROUGE, JAUNE, NOIR};/* De
laration 
ombinee du type stru
t pixel *//* et des variables sommet1, sommet2 et 
entre *//* ainsi que du pointeur de stru
t pixel ptr_pixel */stru
t pixel {int x;int y;
olori 
ouleur;int intensité;} sommet1, sommet2, 
entre, *ptr_pixel;/* De
laration de deux variables stru
ture 
er
le1 et 
er
le2 */stru
t { /* pas de nom de type stru
t */int x;int y;float rayon; } 
er
le1, 
er
le2;L'omission d'un nom de type de stru
ture est vivement dé
onseillée : nommer le type destru
ture permet ensuite de dé
larer fa
ilement des 
hamps de type pointeur du type de stru
tureen 
ours de dé�nition.typedef stru
t s_doublet {long valeur; /* 
ontenu */stru
t s_doublet *suivant; /* pointeur de 
haînage */} doublet;doublet 
ellules [NB_CELLULES℄;doublet *tete, *queue;Notons que dans 
et exemple, le membre suivant ne pourrait être dé
laré par doublet *suivant,le type doublet n'étant pas en
ore dé�ni à 
e stade.L'omission d'un nom de type de stru
ture est également gênant pour la passage de paramètresaux pro
édures. En l'absen
e de nom de type, toute la spé
i�
ation des membres de stru
turedevra être dupliquée, ave
 tous les risques d'erreur que 
ela 
omporte./* De
laration d'une pro
édure d'effa
ement de pixel */void effa
er_pixel(stru
t pixel *p){p -> intensité = 0; 
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7.1. STRUCTURES 85}/* Dé
laration d'une fon
tion a

eptant 
er
le1 ou 
er
le2 *//* 
omme paramètre et retournant la surfa
e *//* L'absen
e de nommmage du type de stru
ture impose de *//* redé
larer les membres de la stru
ture */float aire_du_
er
le (stru
t{int x; int y; float rayon;} *
er
le){float surfa
e;surfa
e = PI * 
er
le-> rayon * 
er
le->rayon;return(surfa
e);}7.1.2 Stru
tures 
ontenant des stru
turesIl est possible de 
onstruire des stru
tures dont les membres sont eux-mêmes des stru
tures.Dans un logi
iel graphique, on peut dé�nir un ve
teur par ses extrémités et il peut être 
ommodede regrouper les 
oordonnées (x,y) de 
haque extrémité dans une stru
ture. On peut aussi imaginerqu'une stru
ture dé
rivant un employé 
ontienne une stru
ture représentant son adresse.stru
t fle
he {stru
t s_point origine;stru
t s_point destination;}7.1.3 InitialisationUne 
onstante stru
ture est une liste de valeurs initiales des membres de la stru
ture, entrea

olades et séparées par des virgules. Si un membre est lui-même une stru
ture, sa valeur initialeest elle-même une liste de valeurs initiales entre a

olades.#define XINITIAL 4#define YINITIAL 5point origine;point p = {XINITIAL, YINITIAL};stru
t s_point q = {6, 2};point p1 = {3,4};point p2, p3,point *ptpoint = &p3;int z;stru
t fle
he f1 = {{1,2},{3,4}};7.1.4 Réservation de mémoire, alignement et tailleLa réservation de mémoire pour une stru
ture n membres est traitée 
omme n dé
larationsde variables de même type que les membres, à 
e
i près qu'on ne dé�nit pas une étiquette pour
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86 CHAPITRE 7. STRUCTURES ET UNIONS
haque membre.En revan
he, il est 
ommode d'utiliser des 
onstantes symboliques pour repérer la position de
haque membre dans la stru
ture, ainsi que pour la taille totale de la stru
ture.S_POINT_X=0 /* le membre x est au début de la stru
ture */S_POINT_Y=4 /* le membre y est à 4 o
tets du début */TAILLE_S_POINT=8 /* la stru
ture o

upe 8 o
tets */S_FLECHE_ORIGINE=0S_FLECHE_DESTINATION=TAILLE_S_POINTTAILLE_S_FLECHE=2*TAILLE_S_POINT.dataXINITIAL=4YINITIAL=5 /* tout est de type mot : align 4 inutile *//* entre variables */p: .word XINITIAL.word YINITIALq: .word 6.word 2p1: .word 3.word 4f1: .word 1.word 2.word 3.word 4ptpoint: .word p3.bssorigine: .skip TAILLE_S_POINTp2: .skip TAILLE_S_POINTp3: .skip TAILLE_S_POINTz: .skip 4La position relative des membres par rapport à l'adresse de la stru
ture est fon
tion de la tailleet des 
ontraintes d'alignement qui s'appliquent aux membres.stru
t s16et32 {short int h;long int w;}short s = 10000;stru
t s16et32 st1 = {0x3344, 0x55667788};stru
t s16et32 st2 = {0xaabb, 0x

ddeeff};
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7.1. STRUCTURES 87/* Dé
laration en langage d'assemblage */S_S16ET32_H=0S_S16ET32_W=4.datas: .hword 10000/* aligner st1 sur une adresse multiple de 4 */.align 4 /* AL1 */st1: .hword 0x3344i
i: .align 4 /* AL2 */w1: .word 0x55667788/* l'adresse de st2 est déjà alignée sur un multiple de 4 */.align 4 /* ne saute au
un o
tet */st2: .hword 0x3344i
i2: .align 4 /* AL4 */w2: .word 0x55667788 /* membre w de st2 */Pour que le nombre d'o
tets séparant deux membres soit le même dans tous les exemplairesd'un même type de stru
ture, l'adresse d'une stru
ture doit respe
ter les mêmes 
ontraintes d'ali-gnement que son membre de plus grande taille.Dans l'exemple pré
édent, si la dire
tive d'alignementAL1 était omise, l'adresse i
i serait déjàun multiple de 4 et la dire
tive AL2 ne sauterait au
un o
tet. En revan
he l'adresse i
i2 n'estpas un multiple de 4 et la dire
tiveAL3 sauterait 2 o
tets :w1 - st1 ne serait pas égal àw2 - st2.La taille d'une stru
ture peut être supérieure à la somme des tailles de ses membres. Appliquéà un type stru
ture, l'opérateur sizeof tient 
ompte de tous les o
tets d'alignement à prévoir pourle sto
kage d'un ensemble de stru
tures de 
e type dans un tableau.7.1.5 A�e
tation, opérateurs . et ->Un membrem d'une stru
ture s est désigné en su�xant le nom de la stru
ture par l'opérateurpoint ('.') suivi du nom du membre : s.m.Soient deux stru
tures de même type à n membres. L'a�e
tation d'une stru
ture à une autreéquivaut à n a�e
tations portant 
ha
une sur un membre de la stru
ture.Pour manipuler un membre m d'une stru
ture repérée par un pointeur p, il faut appliquerd'abord l'opérateur *, puis l'opérateur . pour a

éder au membre : (*p).m. L'opérateur . étantprioritaire sur l'opérateur *, les parenthèses sont obligatoires : *s.ptr est interprété 
omme*(s.ptr) et retourne le 
ontenant repéré par le membre ptr (qui doit être de type pointeur)de la stru
ture s.Pour fa
iliter la manipulation de stru
tures ave
 des pointeurs (par exemple pour gérer des listes
haînées), on peut utiliser l'opérateur -> . La notation p -> m n'est qu'un ra

our
i syntaxiquede (*p).m.p2.x = 3;p2.y = p1.y;
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88 CHAPITRE 7. STRUCTURES ET UNIONSp3 = p1; /* p3.x = p1.x; p3.y = p1.y */z = (*ptpoint).x /* z = p1.x */ptpoint->y = 5; /* p1.y = 5 */ptpoint.x++; /* p1.x ++ */Les opérateurs de 
omparaison ne sont pas appli
ables aux stru
tures : seuls les membrespeuvent être 
omparés.7.1.6 Tradu
tion en langage d'assemblage des a

ès aux stru
turesComme pour les variables ordinaires, la tradu
tion en langage d'assemblage sera guidée pardeux réé
ritures du programme C d'origine, l'une mettant en éviden
e tous les a

ès à la mémoire,l'autre détaillant toutes les utilisations de variables temporaires.*&(p2.x) = 3;*&(p2.y) = *&(p1.y);*&(p3.x) = *&(p1.x);*&(p3.y) = *&(p1.y);*&z = (**&ptpoint).x; /* z = (*ptpoint).x */(**&ptpoint).y = 5; /* (*ptpoint).y = 5 */(**&ptpoint).x = (**&ptpoint).x + 1; /* (*ptpoint).x++ */Comme pour les variables ordinaires, 
haque opérateur * 
orrespond à une instru
tion loadou store, l'opérateur . ayant pour e�et d'ajouter à l'adresse la position relative du membre parrapport au début de la stru
ture.register int rint; /* r0 */register int *rpint; /* r1 */register stru
t point *rpoint; /* r2 */register stru
t point **rppoint; /* r3 */rint = 3; mov r0, #3rpoint = &p2; mov32 r2, p2*rpoint.x = rint; str r0, [r2, #S_POINT_X℄rpoint = &p1; mov32 r2, p1rint = *rpoint.y; ldr r0, [r2, #S_POINT_Y℄rpoint = &p2; mov32 r2, p2*rpoint.y = rint; str r0, [r2, #S_POINT_Y℄rpoint = &p1; mov32 r2, p1rint = *rpoint.x; ldr r0, [r2, #S_POINT_X℄rpoint = &p3; mov32 r2, p3*rpoint.x = rint; str r0, [r2, #S_POINT_X℄rpoint = &p1; mov32 r2, p1rint = *rpoint.y; ldr r0, [r2, #S_POINT_Y℄rpoint = &p3; mov32 r2, p3*rpoint.y = rint; str r0, [r2, #S_POINT_Y℄
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7.2. UNIONS 89rppoint = &ptpoint; mov32 r3, ptpointrpoint = *rppoint; ldr r2, [r3℄rint = (*rpoint).x; ldr r0, [r2, #S_POINT_X℄rpint = &z; mov32 r1, z*rpint = rint; str r0, [r1℄rint = 5; mov r0, #5rppoint = &ptpoint; mov32 r3, ptpointrpoint = *rppoint; ldr r2, [r3℄*rpoint.y = rint; str r0, [r2, #S_POINT_Y℄rppoint = &ptpoint; mov r3, ppointrpoint = *rppoint; ldr r2, [r3℄rint = *rpoint.x; ldr r0, [r2, #S_POINT_X℄rint = rint + 1; add r0, r0, #1*rpoint.x = rint; str r0, [r2, #S_POINT_X℄7.2 UnionsLes unions sont des variantes parti
ulières de stru
tures dont les membres sont tous logés àla même adresse en mémoire (à l'adresse de l'union). Elles rempla
ent les stru
tures dont 
ertain
hamps ne peuvent pas 
ontenir de valeur simultanément et permettant d'é
onomiser de la mé-moire.Considérons à titre d'exemple une pro
édure de dessin de �è
hes. Les extrémités de la �è
hepeuvent être dé
rites en 
oordonnées 
artésiennes (x,y) ou polaires (rayon, angle).stru
t xy { /* point en 
oordonnées 
artésienne (x,y) */int x;int y; }stru
t rt { /* point en 
oordonnées polaires (r, theta) */float r;float t;}stru
t fle
he {int polaire; /* type 
oordonnées : polaire si != 0 */stru
t xy orig_xy; /* 
oordonnées origine */stru
t rt orig_rt;stru
t xy dest_xy; /* 
oordonnées destination */stru
t rt dest_rt;}void fle
he (stru
t fle
he f){int xorig,yorig;int xdest,ydest;if (f.polaire){
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al
uler xorig, xorig a partir de f.orig_rt.r *//* 
al
uler xdest, xdest a partir de f.dest_rt */}else{xorig = f.orig_xy.x; yorig = f.orig_xy.y;xdest = f.dest_xy.x; ydest = f.dest_xy.y;}/* dessiner la flè
he */} L'allo
ation simultanée de pla
e pour les deux types de 
oordonnées n'est pas utile. Il 
onvientde dé�nir une union dont les membres sont les 
oordonnées à usage mutuellement ex
lusif.union point {stru
t_xy xy;stru
t_rt rt;}stru
t fle
he {int polaire;union point orig;union point dest;}fle
he f;/* Allo
ation de mémoire pour f : *//* f : polaire *//* f+4 : xorig ou rorig *//* f+8 : yorig ou torig *//* f+12 : xdest ou rdest *//* f+16 : ydest ou tdest */f.dest.rt.t = 3.0; /* a

ès au membre t du membre rt de l'union dest */f.dest.xy.y = 4; /* a

ès au membre y du membre xy de l'union dest */S_XY_X=0S_XY_Y=4TAILLE_S_XY=8S_RT_R=0S_RT_R=4TAILLE_S_RT=8/* Dans l'union point, xy et rt sont tous les deux au dépla
ement 0 */S_POINT_XY=0S_POINT_RT=0TAILLE_S_POINT=8 /* max (TAILLE_S_XY,TAILLE_S_RT) */
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7.2. UNIONS 91S_FLECHE_POLAIRE=0S_FLECHE_ORIG=4S_FLECHE_DEST=12TAILLE_S_FLECHE=20 /* sizeof(int) + 2*TAILLE_S_POINT */.bssf: .skip TAILLE_S_FLECHETROIS_FLOTTANT=0x..... /* é
rire représentation hexa de 3.0 */.textmov r0, #TROIS_FLOTTANTmov32 r1, fstr r0, [r2, #S_FLECHE_DEST+S_POINT_RT+S_RT_T℄mov r0, #4mov32 r1, fstr r0, [r2, #S_FLECHE_DEST+S_POINT_XY+S_XY_Y℄
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Chapitre 8Sauts et 
onstru
teurs algorithmiques
8.1 Notion de saut ou bran
hement8.1.1 Dé�nitionLe pro
esseure exé
ute les instru
tions séquentiellement (par adresses 
roissantes) dans l'ordreoù elles sont rangées en mémoire. L'instru
tion 
ourante est par le registre 
ompteur ordinal (PC).L'exé
ution de l'instru
tion 
ourante se termine par une in
rémentation du 
ompteur ordinal pourpointer sur l'instru
tion suivante.Une instru
tion de bran
hement (on dit aussi de saut) est une instru
tion qui a�e
te au 
omp-teur ordinal l'adresse d'une instru
tion 
ible (autre que la suivante en mémoire) qui sera exé
utéeaprès l'instru
tion 
ourante de ban
hement. Une instru
tion de bran
hement introduit une rupturede séquen
e dans le �ot d'instru
tions exé
utées.On parle de bran
hement en avant lorsque l'adresse de bran
hement est supérieure à 
elle del'instru
tion qui suit 
elle de bran
hement, et en arrière dans le 
as 
ontraire. Un bran
hementen avant saute une séquen
e d'instru
tions du programme. Un bran
hement en arrière réexé
uteune séquen
e d'instru
tions qui pré
édent l'instru
tion de saut et sert à réaliser les bou
les dansl'exé
ution du programme.On parle de bran
hement absolu lorsque l'instru
tion de bran
hement spé
i�e dire
tementl'adresse à 
harger dans le 
ompteur ordinal. La destination du bran
hement reste la même quelquesoit l'empla
ement de l'instru
tion de saut. Une instru
tion de bran
hement relatif (sous entenduau 
ompteur ordinal) spé
i�e un dépla
ement (négatif pour un saut en arrière, positif pour sauten avant) à ajouter au 
ompteur ordinal, don
 par rapport à l'empla
ement de l'instru
tion de saut.Illustrons 
e 
on
ept par une analogie. Supposons que vous soyez dans la rue de la poste et quequelqu'un vous demande l'empla
ement du bureau de poste. Vous pouvez lui donner le numérodu bâtiment ou sa distan
e en mètres depuis le début de la rue (adresse absolue) et votre réponsene dépend pas d'où vous vous trouvez. Vous pouvez aussi lui donner l'information par rapport(adressage relatif) à l'endroit auquel vous vous trouvez : la poste est à plus ou moins x mètres (ounuméros) dans telle dire
tion.La rupture de séquen
e peut avoir lieu seulement dans 
ertaines situations (bran
hement 
ondi-tionnel) ou au 
ontraire systématiquement (bran
hement in
onditionnel). Pour les sauts 
ondition-nels, la dé
ision est prise en fon
tion des indi
ateurs ZNCV du registre d'état du pro
esseur.Les pro
esseurs performants utilisent une te
hnique plus ou moins poussée de travail à la93
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haîne (pipeline) qui leur permet de débuter l'exé
ution d'une nouvelle instru
tion à 
haque 
y
led'horloge. Il en résulte que lorsque instru
tion 
ourante 
onsulte le 
ontenu du 
ompteur ordinal,
e dernier est en avan
e d'une ou plusieurs instru
tions par rapport à l'instru
tion 
ourante. Le
al
ul du dépla
ement dans les bran
hements relatifs doit en tenir 
ompte.8.1.2 Les instru
tions de saut du pro
esseur RISC de référen
eNotre pro
esseur RISC �
tif possède des instru
tions de bran
hement relatif 
onditionnels,notée bcond
1 destination. En langage d'assemblage, l'opérande de l'instru
tion est soit dépla
e-ment (entier signé), soit une étiquette que l'assembleur 
onvertit en un dépla
ement par rapportà l'instru
tion bcond.L'instru
tion bcond est 
odée sur un seul mot dont quatre bits indiquent qu'il s'agit d'un bran-
hement relatif 
onditionnel, quatre autres spé
i�ent la nature de 
ondition testée et les vingtquatre autres en
odent le dépla
ement signé exprimé en nombre d'instru
tions (à multiplier parquatre avant ajout au 
ompteur ordinal).Les bran
hements 
onditionnels sont généralement utilisés après une 
omparaison (
f �gure8.3). Les pin
ipales 
onditions sur les entier naturels testent Z et C (LOwer ou Carry Clear, Loweror Same, HIgher, Higher or Same ou Carry Set), 
elles sur les entiers relatifs testent Z, N et V(Less Than, Less or Equal, Greater Than, Greater or Equal). Le test de Z est valable pour lesdeux types d'entiers (EQual, Not Equal). La 
ondition ALways est toujours vraie : elle 
orrespondà un bran
hement relatif in
onditionnel.L'instru
tion de bran
hement (in
onditionnel) non relatif est jmp reg1 + reg2_ou_#
te8.Elle est identique à une instru
tion d'addition qui déposerait son résultat dans le 
ompteur or-dinal plut�t que dans un registre de travail ordinaire : l'adresse de la pro
haine instru
tion estla somme du 
ontenu du premier registre et au 
hoix du 
ontenu d'un autre registre ou d'unepetite 
onstante entière sur 8 bits. En langage d'assemblage, l'opérande de jmp peut se limiter àun registre : jmp reg sera interprétrée 
omme jmp reg + #0.Les variantes bcondl (bran
h and link) et jmpl (jump and link) sont destinées aux appelsde pro
édures. Avant le bran
hement, elles sauvegardent le 
ompteur ordinal (qui repère alorsl'instru
tion qui suit bcondl ou jmpl) dans un général nommé lr (link register).8.2 Etiquettes, goto et programmation stru
turéeNous avons vu que le langage d'assemblage permet d'asso
ier des noms symboliques auxadresses : les étiquettes. Via les pointeurs, le langage C o�re l'équivalent des étiquettes pourles adresses de variables et de fon
tions.Le langage C permet de plus de dé�nir des étiquettes dans le 
orps des pro
édures et l'instru
-tion goto permet de réaliser des sauts à 
es étiquettes. Il est possible de dé
rire des bran
hements
onditionels sous la forme if (
ondition) goto étiquette, 
ha
un 
orrespondant à une instru
tionma
hine.Dans les langages de programmation de première génération (exemple : FORTRAN IV), lesétiquettes (souvent numériques) et les instru
tions de bran
hement étaient les seules primitiveso�ertes aux programmeurs pour la prise de dé
ision dans les programmes. Depuis, les te
hniques1beq, bne, b

, bge, . . . (voir tables 1.2 et 1.12) 
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8.3. CONSTRUCTEURS ALGORITHMIQUES C 95dites de programmation stru
turée ont été généralisées. Elles évitent l'utilisation anar
hique debran
hements et permettent d'obtenir des programmes plus fa
ile à lire et maintenir.Les programmes sont aujourd'hui bâtis à partir d'un ensemble de 
onstru
teurs algorithmiquesintégrés dans la dé�nition des langages, tels que si alors sinon, tant que, ou les bou
les itéréeset la programmation à base de if et goto est à pros
rire.La suite de 
e 
hapitre montre 
omment passer d'un programme C normal à un programmeC équivalent en remplaçant toutes les o

uren
es des 
onstru
teurs algorithmiques 
lassiques parl'utilisation d'étiquettes et de goto, pour guider sa tradu
tion en langage d'assemblage.L'instru
tion goto et les étiquettes ne sont pas évidement pas destinées à la programmationordinaire d'appli
ations en C, bien que leur utilisation pon
tuelle peut parfois simpli�er la gestionde la remontée des erreurs2. Nous n'utilisons la forme intermédiaire ave
 if et goto que 
omme unenotation (que le 
ompilateur peut traduire, 
e qui permet d'en véri�er la justesse) de dé
omposi-tion en a
tions élémentaires pour la tradu
tion en langage d'assemblage.Le programme C de départ à traduire en langage d'assemblage doit être é
rit normalement,autrement dit sans goto, en utilisant les 
onstru
teurs algorithmiques 
lasssiques (if, while, for,swit
h, et
). Réservez les étiquettes et instru
tions goto à l'étape intermédiaire de tradu
tion d'unprogramme C normal en langage d'assemblage : n'utilisez jamais une programmation nonstru
turée à base de if et goto pour programmer une appli
ation.8.3 Constru
teurs algorithmiques C8.3.1 Instru
tion vide, instru
tion 
omposée et a

oladesLes a

olades permettent de délimiter une séquen
e d'instru
tions (séparées par des 
ara
-tères point-virgule) à 
onsidérer 
omme une unique instru
tion 
omposée. Il est ainsi possible de
onsidérer que le 
orps d'une bou
le ou d'une autre 
onstru
tion ne 
ontient qu'une instru
tion :instru
tion simple ordinaire ou suite d'instru
tions délimitée par les a

olades.Le 
ara
tère point virgule ( ;) est un marqueur de �n d'instru
tion. Utilisé seul, il 
orrespondà une instru
tion vide.8.3.2 if (
ondition) instr_alors else instr_sinonNoter l'absen
e de mot-
lé then entre la 
ondition et la bran
he alors.Le 
omportement de la 
onstru
tion dépend de la valeur de la 
ondition pla
ée entre paren-thèses. Les �è
hes illustrent le �ot d'exé
ution, les sauts étant représentés en trait pointillé.Les �è
hes sont étiquetées ave
 un 
ondition vraie (
) ou fausse (/
).L'expression 
ondition 
 est évaluée. Une valeur non nulle est interprétée 
omme VRAI 3, etindique que seule instru
tion_alors doit être exé
utée. Une valeur nulle est interpétée 
ommeFAUX et signi�e que seule instru
tion_sinon doit être exé
utée.2pour laquelle le mé
anisme d'ex
eption a été indroduit dans les langages orientés objet.3
f 2.2.4 : interprétation booléenne de variables entieres
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if (c)

else
instruction_sinon;

instruction_alors;

instruction_suivant_if;

/c c
if (!c) goto sinon;
instruction_alors;
goto fin_si;
instruction_sinon

fin_si:
sinon:

alors:

instruction_suivant_if;Fig. 8.1 � Transformation d'un si alors sinon/* Passage a la forme goto + etiquettes */if (x<y) /* debut_si: if (x>=y) goto sinon */{ /* */m = y; /* m = y; */inferieur ++; /* inferieur ++; */} /* goto fin_si; */else /* sinon: */m = x; /* m = x; */x++; /* x++; */maximum = m; /* fin_si: maximum = m; */Le le
teur notera le bran
hement au sinon sur la 
ondition (x >= y) opposée à 
elle du if(x < y) (la 
ondition inverse d'une inégalité stri
te in
lut aussi le 
as d'égalité).La bran
he sinon est fa
ultative, auquel 
as else et instr_sinon sont omis. Instr_alors etinstr_sinon peuvent elles-mêmes être des 
onstru
tions if, while, for, et
. En 
as d'ambiguïté, leelse se ratta
he à l'instru
tion if la plus pro
he.if ((d <= a) && (d <= b) && (d <= 
))mini = d;else if ((
 <= a) && (
 <= b) && (
 <= d))mini = 
;else if ((b <= a) && (b <= 
) && (b <= d))mini = b;elsemini = a;/* signifie */if ((d <= a) && (d <= b) && (d <= 
))mini = d;else{if ((
 <= a) && (
 <= b) && (
 <= d))mini = 
;else{if ((b <= a) && (b <= 
) && (b <= d))mini = b;elsemini = a; 
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8.3. CONSTRUCTEURS ALGORITHMIQUES C 97}}D'autre part, 
ompte tenu de l'interprétation booléenne des valeurs entières, si var_ent estune variable entière, alors if (var_ent) et if (var_ent != 0) sont synonymes.Notons en�n une variante de tradu
tion possible basée sur un bran
hement 
onditionnel utili-sant la 
ondition du if, non inversée, pour sauter à la bran
he alors. Cette variante peut paraîtreplus simple à 
omprendre, mais présente l'in
onvénient de générer deux instru
tions de bran
he-ment même en la bran
he sinon de l'instru
tion if est absente.if (
) goto alors;sinon: instru
tion_sinon;goto fin_si;alors: instru
tion_alors;fin_si: instru
tion_suivant_if;8.3.3 Tant que et répéter jusqu'à (while et do. . .while)La 
ondition du tant que est évaluée avant exé
ution du 
orps du tant que. Si l'évaluationretourne vrai, le 
orps du tant que est exé
uté. Le pro
essus est répété jusqu'à 
e que la 
onditionretourne la valeur faux.Le le
teur notera l'absen
e de ' ;' après la 
ondition et que la 
ondition n'est pas la 
onditionde sortie de bou
le, mais 
elle de 
ontinuation.
while (c)

instruction_corps;

instruction_apres;

instruction_corps;corps:
if (!c) goto suitetest:

goto test;
suite: instruction_apres;

/c
c

Fig. 8.2 � Transformation d'un tant queLe s
héma de tradu
tion pré
édent présente l'in
onvénient d'exé
uter deux instru
tions gotopar tour de bou
le. Pour l'éviter, il su�t de pla
er le test de la 
ondition (non inversée) après le
orps du tant que et d'ajouter un bran
hement in
onditionnel à 
e test devant le 
orps du tantque./* Passage a la forme goto + etiquettes */while (x != y) /* goto test; */{ /* 
orps: */x = x + 1; /* x = x + 1; */y = y / 2; /* y = y / 2; */} /* test: if (x!=y) goto 
orps; */z = x; /* z = x; */Remarque : while(1) dé�nit une bou
le in�nie (voir aussi l'instru
tion break).Le 
onstru
teur do. . .while 
orrespond à la primitive répéter jusqu'à. Il se 
omporte 
ommewhile, mais le 
orps est exé
uté au moins une fois avant évaluation de la 
ondition. Sa transfor-mation est identique à 
elle de while, à l'omission du bran
hement initial au test près.
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98 CHAPITRE 8. SAUTS ET CONSTRUCTEURS ALGORITHMIQUES/* Passage a la forme goto + etiquettes */do{ /* 
orps: */x = x + 1; /* x = x + 1; */y = y / 2; /* y = y / 2; */}while (x != y); /* test: if (x!=y) goto 
orps; */z = x; /* z = x; */8.3.4 Bou
les for itérées et génériquesConsidérons l'exemple de bou
le suivant./* Cal
ul des puissan
es de 2 */int tab_puissan
e[32℄; /* un tableau a remplir */int i; /* variable de bou
le prin
ipale */int deux_puissan
e_i; /* variable de bou
le se
ondaire *//* Initialisation (des variables) de la bou
le */i = 0;deux_puissan
e_i = 1;/* Condition de bou
le */while (i < 32){/* 
orps de la bou
le */tab_puissan
e[i℄ = deux_puissan
e_i;/* mise à jour des variables de bou
le */i ++;deux_puissan
e_i <<= 1; /* multipli
ation par 2 par de
alage */}Une bou
le générique manipule une ou plusieurs variables de (
ontr�le de la) bou
le et 
ombinequatre éléments :1. la séquen
e d'initialisation des variables de bou
le (i = 0 et deux_puissan
e_i = 1),2. la 
ondition de 
ontinuation4, testée avant 
haque exé
ution du 
orps de la bou
le (i<32),3. la mise à jour (souvent une in
rémentation) des variables après exé
ution du 
orps du bou
le(i++ et deux_puissan
e_i �= 1)4. le 
orps de la bou
le (a�e
tation à tab_puissan
e[i℄).Le 
orps de la bou
le for regroupe les instru
tions exé
utées à 
haque tour de bou
le, test de la
ondition et mise à jour des variables de bou
les ex
lues. Il est possible de spé
i�er un 
orps videave
 une paire d'a

olades n'en
adrant au
une instru
tion. A noter : on peut aussi spé
i�er (sou-vent involontairement) un 
orps vide en ajoutant un point-virgule après la parenthèse fermante.4For spé
i�e une 
ondition de 
ontinuation : si elle est vraie le 
orps est exé
uté (répéter tant que la 
onditionreste vraie). NB : en algorithmique, il est 
ourant de spé
i�er à l'inverse une 
ondition de sortie (répéter jusqu'à
e que la 
ondition devienne vraie). 
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8.3. CONSTRUCTEURS ALGORITHMIQUES C 99La syntaxe du for C est la suivante (remarquer l'absen
e de ' ;' après la parenthèse fermante) :for (init1, init2, ..., initn ; 
ondition ; maj1, maj2, ..., majn)instru
tion_simple_ou_
omposee;Réé
rivons notre exemple de bou
le ave
 une instru
tion for :/* le meme exemple ave
 une bou
le for */for (i=0, deux_puissan
e_i = 1; i < 32; i++, deux_puissan
e_i <<= 1)tab_puissan
e[i℄ = deux_puissan
e_i;La partie gau
he du 
ontenu des parenthèses (init1, init2, . . ., initn) est la séquen
e des ins-tru
tions d'initialisation des variables, séparées par des virgules. Dans l'exemple 
i-dessus, init1
orrespond à i = 0 et init2 à deux_puissan
e_i = 1.Le premier ' ;' sépare l'initialisation de la 
ondition de 
ontinuation de la bou
le, i
i i < 32.La partie droite après le deuxième ' ;' est la séquen
e des instru
tions de mise à jour desvariables à 
haque tour de bou
le. Notre exemple en 
omprend deux : maj1 (i ++) et maj2(deux_puissan
e_i �= 1).A titre d'exemple, l'itération C 
lassique de 0 à n-1 de par
ours d'un tableau de n éléments 5s'é
rit 
omme suit :/* 
al
ul de la somme des elements d'un tableau */
onst TAILLE_TAB = 10;int tableau[TAILLE_TAB℄ = { ... }; /* Liste de valeurs d'élements */...int 
umul_elements = 0;int i;...for (i=0; i<TAILLE_TAB; i++)
umul_elements += tableau[i℄;...Cha
un des trois 
omposants (initialisation, 
ondition, mise à jour) peut être omis. La bou
lefor ( ; ;) est une bou
le in�nie 6.8.3.5 Instru
tions 
ontinue et breakL'instru
tion 
ontinue est utilisée dans les bou
les for, while ou do. . .while. Elle arrête l'exé-
ution de l'itération 
ourante (dans le 
as d'une bou
le for, les instru
tions de mise à jour desvariables de bou
les sont 
ependant exé
utées)./* Cal
ul de la somme des éléments et rempla
ement *//* par la valeur absolue */...for (i = 0; i< TAILLE_TAB; i++){5Nous verrons que les tableaux C sont indi
és à partir de 0.6Voir aussi l'instru
tion break.
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100 CHAPITRE 8. SAUTS ET CONSTRUCTEURS ALGORITHMIQUESsomme += tableau[i℄; /* version equivalente */if (tableau[i℄ >= 0) 
ontinue; /* sauter 
hangement de signe */tableau[i℄ = - tableau[i℄; /* si élément déjà >= 0 */}Son exé
ution est suivie de l'évaluation de la 
ondition de bou
le et (selon le résultat) del'exé
ution de l'itération suivante ou de la sortie de la bou
le. L'instru
tion 
ontinue 
orrespondà un bran
hement in
ondtionnel au test de la 
ondition de bou
le.i = 0;test: if (i >= TAILLE_TAB) goto suite;somme += tableau[i℄;if (tableau[i℄ >=0) goto test;tableau[i℄ = - tableau[i℄;goto test;suite: /* ... */L'instru
tion break a pour e�et de terminer immédiatement l'exé
ution de l'instru
tion swit
h,while, do. . .while ou for à l'intérieur de laquelle elle est exé
utée./* version equivalente */while (x < N) /* while(1) { */{ /* if (!(x < N)) break; */y += x; /* y += x; */} /* } */L'utilisation de l'instru
tion break revient en général à exé
uter une instru
tion goto vers uneétiquette après la �n de la bou
le.test_while: /* neant : 
ondition toujours vraie */
orps_while: if (x >= N) goto suite;y += x;goto test_while;suite: /* ... */8.3.6 Constru
teur selon (swit
h . . . 
ase)L'instru
tion swit
h a pour paramètre une expression (en général une variable), notée entreparenthèses, dont le 
ontenu sera 
omparé à di�érentes 
onstantes entières7.Le 
orps du swit
h est une séquen
e d'instru
tions C étiquetées par des gardes. Une garde estun sorte d'étiquette un peu parti
ulière. Une garde ordinaire est de la forme 
ase 
onstante : .Deux gardes distin
tes ne doivent pas porter sur la même 
onstante. Une instru
tion peut êtreétiquetée par plusieurs gardes.La valeur de l'expression est 
omparée aux 
onstantes des di�érentes gardes dans l'ordre oùelles sont é
rites. En 
as d'égalité ave
 la 
onstante d'une garde, l'exé
ution se poursuit à partirde 
ette garde . En l'absen
e de garde répondant au 
ritère, l'exé
ution de l'instru
tion swit
h se7Il peut s'agir d'expressions évaluables à la 
ompilation.
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8.3. CONSTRUCTEURS ALGORITHMIQUES C 101termine.Il est possible de dé�nir une garde parti
ulière, identi�ée par default :, à pla
er en dernier, etqui est séle
tionnée si au
une autre garde ne 
orrespond à la valeur de la variable.Chaque séquen
e d'instru
tions gardées se termine en prin
ipe par une instru
tion break, detelle sorte que les instru
tions asso
iées aux gardes suivantes ne soient pas exé
utées.A titre d'exemple, dé
rivons un programme ayant le 
omportement suivant :� les nombres pairs à un seul 
hi�re sont traités individuellement,� le 
hi�re 1 est a�
hé,� un message est a�
hé pour tous les nombres impairs à un seul 
hi�re (1 in
lus),� un traitement 
ommun est appliqué à tous les nombres à plusieurs 
hi�res....swit
h (v) {
ase 0: printf ("v est égale a 0\n");traiter_la_valeur_nulle ();break; /* fin de bran
he normale */
ase 2: printf ("v est egale a 2\n");traiter_la_valeur_deux ();break;
ase 4: printf ("v est egale a 4\n");traiter_la_valeur_quatre ();break;
ase 6: printf ("v est egale a 6\n");traiter_la_valeur_six ();break;
ase 8: printf ("v est egale a 8\n");traiter_la_valeur_huit ();break;
ase 1: printf ("v est egale a 1\n");/* pas de break : poursuite en ligne ave
 affi
her impair */
ase 3:
ase 5:
ase 7:
ase 9: printf ("C'est un 
hiffre impair\n");break;default: traiter_pas_un_seul_
hiffre ();} L'absen
e volontaire de break en �n de bran
he d'un swit
h passe fa
ilement inaperçue à lale
ture du programme, et mérite un 
ommentaire.Comme les autres 
onstru
teurs, swit
h sera 
onverti en version à goto + étiquettes en vue desa tradu
tion en langage d'assemblage :test_0: if (v != 0) goto test_2;printf ("v est égale a 0\n");traiter_la_valeur_nulle ();goto fin_swit
h;
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102 CHAPITRE 8. SAUTS ET CONSTRUCTEURS ALGORITHMIQUEStest_2: if (v != 2) goto test_4;printf ("v est égale a 2\n");traiter_la_valeur_deux ();goto fin_swit
h;test_4: if (v != 4) goto test_6;printf ("v est égale a 4\n");traiter_la_valeur_quatre ();goto fin_swit
h;test_6: if (v != 6) goto test_8;printf ("v est égale a 6\n");traiter_la_valeur_six ();goto fin_swit
h;test_8: if (v != 8) goto test_1;printf ("v est égale a 8\n");traiter_la_valeur_huit ();goto fin_swit
h;test_1: if (v != 1) goto test_3;printf ("v est egale a 1\n");goto trouve_impair;test_3: if (v == 3) goto trouve_impair;test_5: if (v == 5) goto trouve_impair;test_7: if (v == 7) goto trouve_impair;test_9: if (v != 9) goto default;trouve_impair:printf ("C'est un 
hiffre impair\n");goto fin_swit
h;default: traiter_pas_un_seul_
hiffre ();fin_swit
h: /* instru
tions après le swit
h */Remarque : Lorsque les valeurs des gardes sont nombreuses et forment un sous-ensemble densed'un intervalle de valeurs entières, il est plus intéressant de re
ourir à un tableau de bran
hementindi
é par la variable du swit
h. Cette te
hnique é
onomise l'exé
ution d'une longue séquen
e deif (. . .) goto, et permet de séle
tionner la bran
he du swit
h en temps 
onstant.8.4 Quelques pièges liés à la syntaxe CLes parti
ularités syntaxiques du langage C réservent quelques pièges 
lassiques aux program-meurs habitués à d'autres langages de programmation tels que PASCAL ou ADA.Le programmeur novi
e en langage C ou 
onfronté à un 
omportement anormal de son pro-gramme a tout intérêt à relire son 
ode pour véri�er s'il n'a pas 
ommis une des étourderies
lassiques passées revues i
i.8.4.1 A�e
tations dans les 
onditionsUne erreur 
lassique 
onsiste à é
rire les a�e
tations i := et les 
omparaisons = 
omme dansd'autres langages. 
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8.4. QUELQUES PIÈGES LIÉS À LA SYNTAXE C 103L'utilisation de := dans les a�e
tations est fa
ile à déte
ter (le 
ompilateur C signalera l'er-reur) et à 
orriger par une simple 
ommande de substitution de texte.En revan
he, l'oubli de doubler le signe = dans les 
omparaisons est un piège redoutable à
ause de l'absen
e d'erreur de 
ompilation. L'utilisation d'une a�e
tation C, (qui est une aussiune expression retournant la valeur de son membre droit) 
omme 
ondition est parfaitement légaleen C.L'utilisateur habituel de langage PASCAL ou ADA 
roira programmer une 
omparaison entrex et y en é
rivant le 
ode C suivant.if (x=y) /* Erreur : if (x=y) au lieu de if (x==y) */printf("egalite \n");elseprintf("x et y sont différents\n");Il n'est rien : l'a�e
tation C sera éxé
utée et (en tant qu'expression) retournera la valeur de y.Une valeur de y di�érente de 0 sera 
onsidérée 
omme une 
ondition vraie, une valeur nulle 
ommeune 
ondition fausse. Le fragment de programme pré
édent est en réalité équivalent à la séquen
eC suivante, dont le 
omportement est très di�érent de 
e que souhaitait le programmeur :x = y;if (y != 0)printf ("egalite \n");elseprintf ("x et y sont différents\n");8.4.2 Corps de bou
le videIl est très fa
ile d'é
rire des bou
les dont le 
orps est vide. La 
ondition d'une bou
le while,notée entre parenthèses, est suivie du 
orps de bou
le, sans 
ara
tère de séparation entre les deux.Le 
orps peut se limiter à une simple instru
tion terminée par le 
ara
tère ' ;'.Or le 
ara
tère ' ;' utilisé seul est une instru
tion : l'instru
tion vide. Ajouter un ' ;' derrièrela 
ondition d'une bou
le 
onstitue une autre étourderie 
lassique. Un programmeur souhaitanté
rire un 
al
ul du plus grand 
ommun diviseur (PGCD) de x et y et maîtrisant en
ore mall'emploi du ' ;' en C, pourrait é
rire 
e genre de 
ode :while (x != y); /* Erreur : ajout d'un ; après la 
ondition */if (x >= y)x = x - y;elsey = y - x;Il sera sans doute très surpris en dé
ouvrant que son programme se 
omporte 
omme le 
odesuivant :while (x != y){/* 
orps vide : la bou
le est infinie si x != y au depart */}if (x >= y)
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104 CHAPITRE 8. SAUTS ET CONSTRUCTEURS ALGORITHMIQUESx = x - y;elsey = y - x;Il est re
ommandé de mettre en éviden
e l'utilisation volontaire de 
orps de bou
les vides enutilisant les a

olades ou via un 
ommentaire approprié./* Attendre la disponibilité du périphérique */while ((*REG_ETAT_PERIPHERIQUE) & PERIPH_PRET); /* 
orps vide *//* ou en
ore */while ((*REG_ETAT_PERIPHERIQUE) & PERIPH_PRET){}8.4.3 En
haînement d'alternatives d'un selon (swit
h)En l'absen
e de break, l'exé
ution d'une bran
he d'un swit
h C se poursuit en séquen
e ave
le 
ode de l'alternative suivante....swit
h {meteo}{
ase NEIGE : enfiler_anorak (); /* poursuite dans pluie */
ase PLUIE : ouvrir_parapluie ();/* oubli de break i
i */
ase SOLEIL: mettre_maillot_de_bain ();mettre_
reme_solaire ();break;default: ;}Le 
omportement voulu dans 
et exemple est assez simple : sous la neige, le promeneur partiraabrité de son parapluie et équipé de son anorak. Si la température est assez élevée pour qu'ilpleuve au lieu de neiger, le parapluie su�ra et l'anorak restera dans sa penderie.L'oubli de l'instru
tion break donnera un résultat étonnant : un observateur sera surpris de voirun promeneur en�ler un maillot de bain et s'enduire d'huile solaire après avoir passé un anorak etouvert son parapluie pour a�ronter la neige . . . .8.5 Tradu
tion de if. . . goto en langage d'assemblageChaque instru
tion C if (
ondition) goto etiquette se traduit en langage d'assemblage parune séquen
e d'instru
tions mettant à jour les indi
ateurs Z, N, C et V en fon
tion de la 
onditionà tester, et (au moins) une instru
tion bcond etiquette.8.5.1 Tradu
tion de if. . .goto ave
 une 
omparaisonLa majorité des 
onditions sont des 
omparaisons d'entiers.
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8.5. TRADUCTION DE IF. . .GOTO EN LANGAGE D'ASSEMBLAGE 105register unsigned int r1, r2, r3;unsigned int maxi;...r3 = r1;if (r1 < r2) goto trouve;r3 = r2;trouve:maxi = r3;Pour l'expression des 
onditions en fon
tion des indi
ateurs, se reporter aux 
hapitres traitantde l'arithmétique entière, et aux tables 1.2 et 1.12.Conditions des instru
tions de bran
hement 
onditionnelType Entiers signés Naturels et adressesInstru
tion C Bxx Condition Bxx Conditiongoto BAL 1110 BAL 1110if (x== y) goto BEQ 0000 BEQ 0000if (x != y) goto BNE 0001 BNE 0001if (x < y) goto BLT 1011 BLO, BCC 0011if (x<= y) goto BLE 1101 BLS 1001if (x > y) goto BGT 1100 BHI 1000if (x>= y) goto BGE 1010 BHS,BCS 0010Fig. 8.3 � Utilisation des bran
hements 
onditionnels après une 
omparaisonLes if (
ondition) goto dans lesquelles la 
ondition porte sur la valeur relative de deux entiersseront traduits en langage d'assemblage par une instru
tion 
mp de 
omparaison des deux entiers,suivie d'une instru
tion de bran
hement 
onditionnel appropriée.mov r3, r1
mp r1, r2blo trouvemov r3, r2trouve: ldr r0, #maxistr r3, [r0℄Les indi
ateurs à tester dépendent de la 
ondition à tester et de la nature (signée ou non) desentiers à 
omparer. La table 8.3 résume les règles de 
hoix des instru
tions de bran
hement et le
odage en binaire du 
hamp 
ondition.8.5.2 Autres 
onditions testables par bcondIl est aussi possible de tester quelques 
onditions parti
ulières résumées dans la table 8.5.2.8.5.3 Choix de 
ondition inadaptée à la nature des entiersL'existen
e pour une même inégalité de deux variantes de bran
hement 
onditionnel est mal
omprise par de nombreux programmeurs en langage d'assemblage.
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106 CHAPITRE 8. SAUTS ET CONSTRUCTEURS ALGORITHMIQUESBxx Codage Indi
ateurs Sigle CommentaireBMI 0100 N Minus Résultat apparent < 0BPL 0101 N Plus Résultat apparent ≥ 0BVS 0110 V V Set Débordement signéBVC 0111 V V Clear Pas de débordement signéBAL 1110 1 Always Bran
hement in
onditionnelFig. 8.4 � Bran
hements testant des 
onditions parti
ulièresLe mauvais ré�exe 
lassique est de prendre parmi les instru
tions de bran
hement 
ondition-nel, et 
e quelque soit la nature des entiers à 
omparer, 
elle dont le sigle évoque le mieux la
omparaison é
rite en C, soit BEQ, BNE, BLT, BLE, BGT et BGE.Que se passe si l'on utilise par exemple BGE au lieu de BHS pour une 
ondition x ≥ y portantdes entiers x et y de type unsigned ?Lorsque x et y appartiennent à la même moitié de l'intervalle des entiers naturels repésentablestout se passe bien. En e�et, BGE interpréte x et y 
omme deux entiers de même signe et prendla même dé
ision que BHS.Dans le 
as 
ontraire, les deux entiers di�érent au moins par leur bit de pids fort (supposonsque xn−1 = 0 et yn−1 = 1). BHS déte
te un entier y supérieur à l'entier x, alors que BGE inter-préte y 
omme un entier signé négatif, don
 inférieur à l'entier signé x positif ou nul. Les deuxinstru
tions ont dans 
e 
as des 
omportements opposés.Si la 
omparaison porte sur des adresses dans le 
as d'un par
ours de tableau via un pointeur,les problèmes se poseront lorsque le tableau est implanté à 
heval sur les deux moitiés de l'espa
emémoire adressable (début avant 0x7FFFFFFF et �n après 0x80000000).8.5.4 Gestion de 
onditions quel
onquesBien que les 
omparaisons ordinaires représentent la grande majorité des 
as, l'expression dela 
ondition des if, while, do et for peut être plus 
omplexe.Comparaison impli
ite à 0Une 
ondition se limitant à une simple variable est une 
omparaison impli
ite ave
 0 : if (x) . . .est par dé�nition équivalent à if (x != 0) . . . .register int r1;... /* 
mp r1, #0 */if (x) goto ailleurs; /* bne ailleurs */Cal
uls et a�e
tations dans les 
onditionsLa 
ondition peut être une expression à 
al
uler, éventuellement a�e
tée à une variable aupassage, et dont la valeur est impli
itement à 
omparer à 0.Le 
al
ul peut être dépla
é avant l'évaluation de la 
ondition, en introduisant au besoin untemporaire. 
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8.5. TRADUCTION DE IF. . .GOTO EN LANGAGE D'ASSEMBLAGE 107register int r1, r2;...if ((r1 + r2) & 1) goto somme_impaire;.../* transformation */register int reg_temp; /* r3 */...reg_temp = (r1 + r2) & 1;if (reg_temp != 0) goto somme_impaire;...Dans 
e 
as de �gure, il est possible d'é
onomiser une instru
tion de 
omparaison si la dernièreinstru
tion de 
al
ul de l'expression met à jour les indi
ateurs.... add r3, r1, r2andS r3, #1 ; met à jour ZNCVbne somme_paire...8.5.5 Conditions 
omposées (|| et &&)Les 
onstru
tons algorithmiques à 
onditions 
omposites obtenues par assemblage de 
onditionssimples seront transformées en un assemblage équivalent de 
onstru
teurs et if. . .goto utilisant
ha
un une 
ondition simple.if ((a<b) && (b<
)) milieu = 
;/* version equivalente */if (a<b)if (b<
) milieu = 
;/* version equivalente transformee en if() goto */if (a >= b) goto fin_si;if (b >= 
) goto fin_si;milieu = 
;fini_si:if ((a>9) || (a<0)) printf ("Pas un 
hiffre\n");/* transformation */if (a>9) goto print;if (a>=0) goto fin_si;print: printf ("Pas un 
hiffre\n");fin_si:
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Chapitre 9Tableaux et arithmétique sur les pointeursLa notion de tableau 
orrespond à une 
olle
tion d'objets de même type, identi�és par desnuméros (ou indi
es), et sto
kés à des empla
ements mémoire 
onsé
utifs1.En C, il n'existe pas à proprement parler de type tableau : les a

ès aux tableaux sont en faitréalisés via les primitives de manipulation des pointeurs. Pour permettre la gestion de tableaux,le langage C o�re les fa
ilités suivantes :1. la réservation d'empla
ements 
ontigus en mémoire pour n éléments de même type, ave
 ousans valeurs initiales,2. une 
onvention de numérotation : les éléments d'un tableau C de n éléments sont indi
és àpartir de 0 et jusqu'à n− 1,3. l'opérateur d'indiçage et l'arithmétique asso
iée sur les adresses et les pointeurs ([ ℄),4. une 
onvention d'ordre de sto
kage des tableaux de tableaux, pour les tableaux à plusieursdimensions.9.1 Dé
laration de tableau à une dimension9.1.1 Syntaxe de la dé
larationUne dé
laration de tableau ave
 réservation de pla
e 
omprend dans l'ordre :� le type des éléments du tableau,� le nom du tableau dé
laré,� sa taille en
adrée par des 
ro
hets et exprimée en nombre d'éléments, qu'il est 
onseillé dedé�nir par une 
onstante symbolique.� une spé
i�ation optionnelle de valeur initiale, à savoir le signe égal suivi d'un 
ontenu detableau,� le marqueur de �n (
ara
tère ' ;').Le r�le de la dé
laration est triple :� asso
ier une information de type (type d'éléments et dimensions) au tableau en vue devéri�er la 
on
ordan
e de type dans les instru
tions utilisant le tableau,� réserver de la mémoire pour 
ontenir le tableau et l'initialiser le 
as é
héant,� asso
ier une étiquette du nom du tableau à l'adresse du 
ontenant : l'adresse du premierélément du tableau est 
elle du premier des o
tets réservés au sto
kage du tableau : ladé
laration d'un tableau t dé�nit impli
itement t 
omme synonyme de la 
onstante adresse&(t[0℄) 2.1
. . .en respe
tant les 
ontraintes d'alignement. . .2C'est la raison pour laquelle l'opérateur & ne s'applique par à un tableau : &t signi�erait &&(t[0℄).109



110 CHAPITRE 9. TABLEAUX ET ARITHMÉTIQUE SUR LES POINTEURSPour la tradu
tion en langage d'assemblage, une dé
laration de tableau de n éléments est trai-tée 
omme n réservations de pla
e pour un élément. En l'absen
e de valeur initiale expli
ite, letableau sera sto
ké dans la se
tion bss.Attention : la taille du tableau n'est pas sto
kée en mémoire ave
 ses éléments et au
unevéri�
ation dynamique de validité de l'indi
e n'est e�e
tuée à l'exé
ution. L'exé
ution d'un a

èsà t[i℄ ave
 i égal à -1 n'est pas légal, mais réalisera vraisemblablement un a

ès à la variabledé
larée avant le tableau t, sans générer d'erreur durant l'exé
ution.9.1.2 Syntaxe de l'initialisationLa syntaxe C dé
rivant un 
ontenu de tableau est un ensemble d'autant de 
onstantes qued'éléments, séparées par des virgules, et en
adré par des a

olades.La partie initialisation d'une dé
laration de tableaux peut spé
i�er moins de valeurs que d'élé-ments dé
larés (dimension) du tableau, les derniers éléments du tableau seront impli
itementinitialisés à 0.Lorqu'un tableau est dé
laré ave
 initialisation, la taille de sa dimension peut être omise : elleest alors dé�nie impli
itement à partir du nombre d'éléments dans la partie initialisation.9.1.3 Exemple sans initialisation#define TAILLE_NOM 35
har nom[TAILLE_NOM℄;int puis2 [4℄;Dans la tradu
tion en langage d'assemblage, il est possible de dé�nir une étiquette pour 
haqueélément du tableau..bssnom: /* adr tableau = adr 1er element */adr_nom_0: .skip 1 /* sto
kage de nom[0℄ */adr_nom_1: .skip 1 /* sto
kage de nom[1℄ */adr_nom_2: .skip 1 /* sto
kage de nom[2℄ */...adr_nom_34: .skip 1 /* sto
kage de nom[34℄ */.align 4puis2:adr_puis2_0: .skip 4 /* sto
kage de puis2[0℄ */adr_puis2_1: .skip 4 /* sto
kage de puis2[1℄ */adr_puis2_2: .skip 4 /* sto
kage de puis2[2℄ */adr_puis2_3: .skip 4 /* sto
kage de puis2[3℄ */Toutefois, l'adresse d'un élément est 
al
ulée à partir de son indi
e et de l'adresse (du premierélément) du tableau. Il su�t don
 de ne dé�nir qu'une étiquette, du nom du tableau, sur l'empla-
ement du premier élément..bssnom: .skip 35 
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9.1. DÉCLARATION DE TABLEAU À UNE DIMENSION 111.align 4puis2: .skip 169.1.4 Exemple ave
 initialisation#define TAILLE_NOM 35#define TAILLE_PUIS2 4
har nom[TAILLE_NOM℄={'
','o','n','t','e',n','u'};int puis2 [TAILLE_PUIS2℄ = {1,2,4,8};La dé
laration d'un tableau initialisé de n éléments est traitée 
omme n dé
larations d'élémentsinitialisés séparéments. Cependant les éléments doivent être 
ontigus : si un des éléments estinitialisé expli
itement, tous les éléments du tableau seront sto
kés dans la se
tion data..bssnom: .byte '
' � 7 elements ave
 initialisation.byte 'o'.byte 'n'.byte 't'.byte 'e'.byte 'n'.byte 'u'.skip 28 � 28 elements sans initialisation.align 4puis2: .word 1.word 2.word 4.word 8Notons que nous aurions pu rempla
er les sept dire
tives .byte par la dire
tive .as
ii "
ontenu".9.1.5 Un autre exempleshort int tab[5℄ = {3,6,10,15,-5};short int x = 4;short int y;.dataadr_tab_0: � 
ette etiquette est inutile mais rappelle� que tab est equivalent a &(tab[0℄)tab: .short 3.short 6.short 10.short 15.short -5x: .short 4.bssy: .skip 2
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112 CHAPITRE 9. TABLEAUX ET ARITHMÉTIQUE SUR LES POINTEURS9.1.6 Tableaux de 
haînes de 
ara
tèresRappelons que les 
haînes de 
ara
tères sont représentées 
omme des tableaux, la �n de 
haîneétant signalée par le 
ode ASCII 0.Pour sto
ker une 
haîne de n 
ara
tères, on doit dé
larer un tableau de n+1 éléments de type
har (ou unsigned 
har). La taille retournée par la fon
tion strlen n'in
lut pas le 0 de �n de 
haîne(strlen("ab") retourne 2).
har reponse[4℄="oui"; /* ou 
har reponse[4℄ = {'o','u','i',0}; */.datareponse: .as
iz "ab
"9.2 Indiçage de tableau et arithmétique sur les adresses9.2.1 Adresse du ième élément d'un tableauLa di�éren
e entre deux adresses d'éléments 
onsé
utifs d'un tableau de type type_t est si-zeof(type_t). Les éléments étant indi
és à partir de 0, l'adresse du iime élément d'un tableau estégale à l'adresse du (premier élément du) tableau plus i fois la taille d'un élément.
&(t[i]) vaut t + i ∗ sizeof(type_t)9.2.2 Arithmétique sur les adresses et indiçageL'opérateur d'indiçage de tableau en C est [ ℄ : t[i℄ est la notation du iime élément de t. Rap-pelons que l'adresse du premier élément (d'indi
e 0) est 
elle du tableau : t est synonyme de &(t[0℄).L'opérateur C d'addition d'un entier i à un pointeur p (ou une 
onstante adresse) multiplieimpli
itement l'entier par la taille du type d'objet reperé par p avant d'e�e
tuer l'addition. Ilpermet de se dépla
er de i éléments dans un tableau : si le 
ontenu de p est l'adresse d'un élémentde tableau t[k℄, alors l'expression p + i est l'adresse de l'élément de tableau t[k+i℄. Pour 
e faire,l'entier ajouté à un pointeur ou une 
onstante adresse est impli
itement multiplié par la taille dutype d'élément pointé.Considérons l'a�e
tation p = p + 3. Elle in
rémente le 
ontenu de p de 3 si p est de type(void *), (
har *) ou (unsigned 
har *), de 6 si p est de type (short int * ) ou (unsigned shortint *) et de 12 si p est un pointeur d'entier sur 32 bits.Par dé�nition de [ ℄ et *, t[i℄ est stri
tement équivalent à *(t+i) que l'on peut aussi é
rire*(&(t[0℄) + i).9.3 Tradu
tion des a

ès aux tableauxLa méthode de tradu
tion en langage d'assemblage des manipulations de tableaux en passepar deux réé
ritures du programme C d'origine dans des formes de C intermédiaire.La première réé
riture rempla
e les opérateurs d'indiçage [℄ par des opérateurs *. La deuxièmefait apparaître les variables intermédiaires pour les adresses et les 
ontenus et met en éviden
e lesmultipli
ations par la taille des éléments. 
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9.3. TRADUCTION DES ACCÈS AUX TABLEAUX 1139.3.1 Exemple à traduireshort int tab[5℄ = {3,6,10,15,-5};short int x = 4;short int y;register short int reg_ptr;...y = tab[3℄;tab[4℄ = 5;*tab = -2; /* tab[0℄ = -2 */reg_ptr = tab; /* reg_ptr repere tab[0℄ */*reg_ptr = 3 /* tab[0℄ = 3 */reg_ptr += 2; /* reg_ptr repere tab[2℄ */tab[x℄ = (*reg_ptr) + 4; /* tab[x℄ = tab[2℄ + 4 */y = *(reg_ptr+2) /* y = tab[4℄ */...}9.3.2 Elimination des opérateurs [ ℄La première version intermédiaire est obtenue remplaçant systématiquement toute expressiont[i℄ par *(t+i) et toute variable v sto
kée en mémoire par *&v.*&y = * (tab + 3);*(tab + 4) = 5;reg_ptr = tab;*reg_ptr = 3;reg_ptr += 2;* (tab + *&x) = *reg_ptr+4;*&y = * (reg_ptr+2);9.3.3 Forme intermédiaire pour la tradu
tionCette deuxième version intermédiaire destinée à la tradu
tion met en éviden
e l'utilisation destemporaires, 
omme pour la tradu
tion des a�e
tations et expressions utilisant des variables ordi-naires. Elle met aussi en éviden
e les multipli
ations impli
ites par la taille d'un élément de tableau.Dans 
ette forme intermédiaire, nous utilisons un registre pointeur de type (void *), dont letype est 
onverti en (short *) avant appli
ation de l'opérateur *. Ainsi, lorsqu'il est ajouté àreg_adr, le 
ontenu de reg_ajout n'est pas multiplié par sizeof(short int).La 
onversion du 
ontenu de reg_ptr en (void *) indique au 
ompilateur de ne pas multiplierimpli
itement l'ajout par sizeof(short).register void *reg_adr;register int reg_val1, reg_val2;register int reg_ajout;reg_adr = tab; � *&y = * (tab+3)reg_ajout = 3 * 2; � 3 *sizeof (short int)
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114 CHAPITRE 9. TABLEAUX ET ARITHMÉTIQUE SUR LES POINTEURSreg_val1 = * (short *) (reg_adr + reg_ajout);reg_adr = &y;*(short *) reg_adr = reg_val1;reg_val1 = 5; � *(tab+4) = 5reg_adr = tab;reg_ajout = 4 * 2; � 4* sizeof (short int)* (short *) (reg_adr + reg_ajout) = reg_val1;reg_ptr = tab;reg_val1 = 3 � *reg_ptr = 3*reg_ptr = reg_val1;reg_ptr = (short *) ((void *) reg_ptr + 2 * 2); � + 2 * sizeof(short )� *(tab + *&x) = *reg_ptr+4reg_ajout = 4 * 2; � 4 *sizeof (short)reg_val1 = * (short *)((void *)reg_ptr + reg_atout);reg_adr = &x;reg_val2 = *reg_adr;reg_adr = tab;reg_ajout = reg_val2 * 2; � 2 *sizeof (short)* (short*) (reg_adr + reg_ajout) = reg_val1;reg_ajout = 2 * sizeof (short int); � *&y = *(reg_ptr+2)reg_val1 = * (short int *)(reg_ptr + reg_ajout);reg_adr = &y;*reg_adr = reg_val1;9.3.4 Tradu
tion en langage d'assemblageLa tradu
tion en langage d'assemblage suppose une attribution arbitraire des registres géné-raux du pro
esseur aux variables reg_adr, reg_ajout, reg_val1, reg_val2 et reg_ptr.Les opérations entre registres sont traduites en instru
tions mov et add. Les a�e
tations dutype *regad = regval et regval = *regad 
orrespondent respe
tivement aux instru
tions storeet load.Les multipli
ations par 2x 
orrespondent à des instru
tions de dé
alage de x bits à gau
he(lsl reg, reg, #x). Les 
onstantes adresses sur 32 bits sont 
hargées par mov32, les 
onstantes
odables sur 8 bits par mov.� r0 : reg_ajout� r1, r2 : reg_val1 , reg_val2� r3 : reg_adr� r6 : reg_ptr.textmov32 r3, #tab � reg_adr = tabmov r0, #6 � reg_ajout = 3 *sizeof(short int) : 3 x 2
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9.4. BOUCLES DE PARCOURS D'UN TABLEAU À UNE DIMENSION 115ldrsh r1, [r3, r0℄ � reg_val1 = * (short *) ((void *) reg_adr + reg_ajout)mov32 r3, #adr_y � reg_adr = &ystrh r1, [r3℄ � * reg_adr = reg_val1mov r1, #5 � reg_val1 = 5mov32 r3, #tab � reg_adr = tabmov r0, #8 � reg_ajout = 4 *sizeof(short int) : 4 x 2strh r1, [r3, r0℄ � * (short *) ((void *) reg_adr + reg_ajout) = reg_val1mov32 r6, #tab � reg_ptr = tabmov r1, #3 � reg_val1 = 3strh r1, [r6℄ � *reg_ptr = regval1add r6, r6, #4 � reg_ptr += 2mov r0, #8 � reg_ajout = 4 * sizeof(short int) : 4 x 2ldrsh r1, [r6, r0℄ � reg_val1 = * (short *) ((void *) reg_ptr + reg_ajout)mov32 r3, #adr_x � reg_adr = &xldrsh r2, [r3℄ � reg_val2 = * reg_adrmov32 r3, #tab � reg_adr = tablsl r0, r2, #1 � reg_ajout = reg_val2 * 2 (de
ale G 1 bit)strh r1, [r3, r0℄ � * (short *) ((void *) reg_adr + reg_ajout) = reg_val1mov r0, #4 � reg_ajout = 2 *sizeof (short int)ldrsh r1, [r6,r0℄ � reg_val1 = * (short *) ((void *) reg_ptr + reg_ajout)mov32 r3, #adr_y � reg_adr = &ystrh r1, [r3℄ � * reg_adr = reg_val1Il est à remarquer que toutes les instru
tions store 
orrespondent à un opérateur * situé toutà gau
he des a�e
tations dans la première forme C intermédiaire du programme.9.4 Bou
les de par
ours d'un tableau à une dimension9.4.1 Bou
le de par
ours ave
 indi
eLa manière habituelle de par
ourir les éléments d'un tableau de N éléments est d'utiliser unevariable de bou
le par
ourant l'intervalle des indi
es [0, N-1℄ (autrement dit [0, N [ : intervalle de0 in
lus à N ex
lus).A titre d'exemple, l'extrait de 
ode suivant 
al
ule la somme des puissan
es de deux 
ontenuesdans le tableau puis2 (de taille paire).short int somme_puis2 = 0;int indi
e;.../* Rappel : indi
e ++ pourrait s'e
rire indi
e = indi
e + 1 */for (indi
e = 0; indi
e < TAILLE_PUIS2; indi
e++){somme += puis2 [i℄;}
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116 CHAPITRE 9. TABLEAUX ET ARITHMÉTIQUE SUR LES POINTEURS9.4.2 Bou
le de par
ours ave
 pointeurUne autre manière simple de par
ourir un tableau est d'utiliser un pointeur par
ourant lesadresses des éléments su

essifs (i
i de &puis2[0℄ jusqu'à &puis2[TAILLE_PUIS2℄ ex
lue).Rappelons que 
es adresses peut aussi s'é
rire puis2 et puis2 + TAILLE_PUIS2.short int somme_puis2 = 0;short int *ptr_short;.../* Rappel : ptr_short ++ pourrait s'e
rire ptr_short = ptr_short + 1 *//* ptr_short ++ signifie se de
aler d'un element dans le *//* tableau repere par ptr_short */for (ptr_short = puis2; ptr_short < puis2 + TAILLE_PUIS2; ptr_short++){somme += *ptr_element;}9.4.3 Conversion de bou
le : indi
e vers pointeurIl est possible de transformer progressivement un par
ours par indi
e en par
ours par pointeur.Considérons à titre d'exemple, la bou
le suivante qui ajoute à l'élément d'indi
e i le 
ontenu del'élément d'indi
e TAILLE_PUIS2 - i.register int indi
e;...for (indi
e = 0; /* initialisation */indi
e < TAILLE_PUIS2/2; /* 
ondition */indi
e ++) /* mise a jour */{puis2 [i℄ = puis2 [i℄ + puis2 [TAILLE_PUIS2 - i℄;}Remarquons que le 
al
ul des adresses dans l'a�e
tation implique d'e�e
tuer une soustra
tionet deux multipli
ations (indi
e fois taille d'un élément de tableau) par tour de bou
le3.Chaque tour de bou
le met en jeu six 
al
uls :1. une 
omparaison (
ondition sur l'indi
e)2. une in
rémentation de l'indi
e3. deux multipli
ations et une soustra
tion pour le 
al
ul des adresses4. une addition des 
ontenus des éléments de tableauLa première étape 
onsiste à dé
larer deux pointeurs qui repèrent en permanen
e puis2[i℄ etpuis2[TAILLE_PUIS2 -i℄. Ils sont initialisés en début de bou
le d'après la valeur initiale (0) deindi
e. A 
haque tour de bou
le, ils sont mis à jour en fon
tion de l'évolution de la variable indi
e.3Plus deux additions de l'adresse de début de tableau réalisables dans une instru
tion load et dont la présen
en'a�e
te don
 pas le temps d'exé
ution. 
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9.5. CONTRAINTES D'ALIGNEMENT ET TYPES D'ÉLÉMENTS PARTICULIERS 117int indi
e;register short int *ptdebut, *ptfin;...for (indi
e = 0, ptdebut = puis2, ptfin = puis2 + TAILLE_PUIS2;indi
e < TAILLE_PUIS2/2;indi
e ++, ptdebut++, ptfin --){/* Invariant : ptdebut = puis2 + indi
e *//* ==> ptdebut repere puis2[i℄ *//* Invariant : ptfin = puis2 + TAILLE_PUIS2 - indi
e *//* ==> pftin repere puis2[TAILLE_PUIS2 - indi
e℄ */*ptdebut = *ptdebut + *ptfin;}L'invariant nous permet de rempla
er indi
e par ptdebut - puis2 dans la 
ondition qui devientptdebut - puis2 < TAILLE_PUIS2 /2, puis ptdebut < puis2 + TAILLE_PUIS2 /2.Après modi�
ation de la 
ondition, la variable indi
e n'est plus utilisée ni dans le 
orps de bou
le,ni dans la 
ondition de 
ontinuation et peut être supprimée.register short int *ptdebut, *ptfin;...for (ptdebut = puis2, ptfin = puis2 + TAILLE_PUIS2;ptdebut < puis2 + TAILLE_PUIS2/2;ptdebut++, ptfin --){*ptdebut = *ptdebut + *ptfin;}Cette nouvelle version n'e�e
tue que quatre 
al
uls par tour de bou
le :1. une 
omparaison (
ondition sur le pointeur ptdebut)2. une in
rémentation (ptdebut++)3. une soustra
tion (pt�n�)4. une addition des 
ontenus des éléments de tableauOn trouve aujourd'hui des 
ompilateurs optimisant 
apables de réaliser eux-même 
e genrede transformation et aboutir à une bou
le di�érente, respe
tant la sémantique du programmed'origine, mais permettant de générer un 
ode ma
hine plus e�
a
e.9.5 Contraintes d'alignement et types d'éléments parti
u-liersTous les éléments d'un tableau doivent respe
ter les 
ontraintes d'alignement sur un multiplede leur taille. La réservation de pla
e pour le tableau sera don
 éventuellement pré
édée d'unedire
tive d'alignement.Les tableaux de pointeurs sont gérés de la même manière que les tableaux d'entiers longs.Rappelons que la taille d'un pointeur est 
elle d'une adresse, à ne pas 
onfondre ave
 la tailledu type d'objet pointé : quelque soient T et T' deux types C, la propriété suivante est véri�ée :
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118 CHAPITRE 9. TABLEAUX ET ARITHMÉTIQUE SUR LES POINTEURSsizeof (T *) = sizeof (T') = sizeof (void *). Ainsi, pour une ma
hine 32 bits, tous les poin-teurs ont une taille de 4 o
tets.L'opérateur sizeof tient 
ompte des 
ontraintes d'alignement propres aux stru
tures4. Ces
ontraintes s'appliquent évidement entre deux 
hamps appartenant à la même stru
ture, maiselles s'appliquent aussi entre deux éléments 
onsé
utifs d'un tableau de stru
tures. Il peut êtrené
essaire de laisser des o
tets inutilisés entre le dernier 
hamp d'une stru
ture d'indi
e i et lepremier 
hamp de la stru
ture de rang i + 1 pour respe
ter les 
ontraintes d'alignement de 
edernier.L'opérateur sizeof, utilisé par l'arithmétique sur les pointeurs et les 
al
uls d'adresse des élé-ments de tableau, doit en tenir 
ompte 
omme l'illustre l'exemple suivant. Bien que les 
hampsd'une stru
ture s soient dé
larés par ordre dé
roissant de taille et ne né
essitent don
 pas d'o
tetd'alignement entre eux, sizeof(stru
t s) retourne 8, soit la somme des tailles des 
hamps plus troispour les o
tets d'alignement né
essaires entre deux stru
tures de type s 
onsé
utives.typedef stru
t s { /* sizeof (stru
t s) = 8 */long l; /* un long de taille 4 */
har 
; /* un 
har de taille 1 */} type_stype_s tab [2℄ = {{4,'a'},{5,'b'}};/* Tradu
tion en langage d'assemblage */SIZEOF_STRUCT_S=8.datatab: .word 4 /* tab[0℄ */.byte 'a'.align 4 /* 3 o
tets d'alignement entre les 2 */.byte 'b' /* tab[1℄ */.align 4fin_tab:9.6 Tableaux à deux dimensions9.6.1 Dé
larationUn tableau à une dimension permet de représenter un ve
teur.On peut 
onsidérer une matri
e (m,n) 
omme un ve
teur de m ve
teurs 
omprenant n éléments
ha
un. Le langage C permet de dé
larer dire
tement des tableaux à 2 dimensions 
orrespondantà de telles matri
es sans nommer le type tableau à n éléments.Une dé
laration type_elem mat [M℄[N℄ dé�nit un tableau mat de taille M dont 
ha
un deséléments est lui-même un tableau de N éléments de type type_elem.#define N 3#define M 44Ce 
as in
luant 
elui des unions 
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9.6. TABLEAUX À DEUX DIMENSIONS 119/* Deux manières équivalentes de dé
larer des tableaux à deux dimensions */typedef long ve
t [N℄; /* ve
t : le type tableau de N entiers */long matri
e1 [M℄[N℄; /* matri
e (m,n) de
laree dire
tement */ve
t matri
e2 [M℄; /* matri
e (m,n) en tableau de tableaux */Le pro
édé est généralisable à plus de deux dimensions : la dé
laration int t [P℄[M℄[N℄ dé�nitun tableau t de P tableaux à deux dimensions de tailles M et N.En langage ma
hine, 
es dé
larations génère les mêmes dire
tives de réservation que la dé
la-ration d'un tableau à une dimension du même nombre d'éléments.N=3M=4.bssmatri
e1: .skip M*Nmatri
e2: .skip M*N9.6.2 Ordre de rangement et 
al
ul d'adresse d'un élémentEn mémoire, on trouve d'abord les N éléments du premier des M tableaux, puis les N élémentsdu deuxième tableau de N éléments, et ainsi de suite.On trouve don
 au début de la mémoire allouée au tableau l'élément d'indi
es[0℄[0℄, suivi del'élément d'indi
es [0℄[1℄ et suivants jusqu'à l'élément d'indi
es [0℄[N-1℄, puis l'élément d'indi
es[1℄[0℄ suivi de l'élément d'indi
es [0℄[1℄ et ainsi de suite jusqu'à [M-1℄[N-1℄. Autrement dit,lorsque l'on par
ourt les éléments du tableau dans l'ordre de leur rangement en mémoire, 
'estl'indi
e de la dernière dimension (indi
e le plus à droite) qui varie le plus vite.Soit type_t[Tn]...[T2][T1] un tableau à n dimensions, l'adresse de l'élément t[in][in−1] . . . [i1][i0]est : t + sizeof(type_t) ∗ ((. . . (in ∗ Tn−1 + in−1) ∗ Tn−2 + in−2) . . .) ∗ T1 + i1) ∗ T0 + i0).Comme le montre l'expression 
i-dessus, pour 
al
uler l'adresse d'un élément de tableau à ndimensions, il faut 
onnaître la taille des n-1 dernières dimensions.
j
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−−−−−−−−−−→
︷ ︸︸ ︷

T00 T01 T02
︸ ︷︷ ︸

T [i = 1] :
︷ ︸︸ ︷

T10 T11 T12
︸ ︷︷ ︸

T [i = 2] :
︷ ︸︸ ︷

T20 T21 T22
︸ ︷︷ ︸

T [i = 3] :
︷ ︸︸ ︷

T30 T31 T32
︸ ︷︷ ︸
















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


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︷ ︸︸ ︷

T [0][0] T [0][1] T [0][2]
︸ ︷︷ ︸
︷ ︸︸ ︷

T [1][0] T [1][1] T [1][2]
︸ ︷︷ ︸
︷ ︸︸ ︷

T [2][0] T [2][1] T [2][2]
︸ ︷︷ ︸
︷ ︸︸ ︷

T [3][0] T [3][1] T [3][2]
︸ ︷︷ ︸





Fig. 9.1 � Dé
omposition d'un tableau 4,3 en tableau de 4 tableaux
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120 CHAPITRE 9. TABLEAUX ET ARITHMÉTIQUE SUR LES POINTEURS9.6.3 InitialisationPour l'initialisation, un tableau à deux dimensions est 
onsidéré 
omme un tableau de tableaux.La valeur initiale du tableau est une suite d'éléments entre a

olades, 
ha
un de 
es éléments étantlui-même une suite de valeurs initiales entre a

olades, séparées par des virgules.Voi
i à titre d'exemple l'initialisation de la matri
e de la �gure 9.1.#define valT00 1000#define valT01 1001#define valT02 1002#define valT10 1010#define valT11 1011...#define valT32 1032long T [4℄[3℄ = { {valT00, valT01, valT02}, /* T[0℄ */{valT10, valT11, valT12}, /* T[1℄ */{valT20, valT21, valT22}, /* T[2℄ */{valT30, valT31, valT32} /* T[3℄ */};En langage d'assemblage, la réservation ave
 initialisation est traitée 
omme 
elle d'un tableauà une dimension.valT00=1000valT01=1001valT02=1002valT10=1010valT11=1011...valT32 1032.dataT: .word valT00 � debut du tableau T[0℄.word valT01.word valT02.word valT10 � debut du tableau T[1℄.word valT11....word valT32 � fin du tableau T[3℄9.6.4 Bou
le de par
ours par pointeurConsidérons le problème du 
al
ul de la somme des éléments d'un tableau à 2 dimensions. Laméthode 
lassique utilise deux bou
les emboîtées par
ourant 
ha
une les indi
es d'une dimension.for (ligne = 0; ligne < 4; ligne++)for (
olonne = 0; 
olonne < 3; 
olonne++)somme += t[ligne℄[
olonne℄;Mais on peut mettre à pro�t le fait que les éléments du tableau sont par
ourus dans l'ordre del'ordre sto
kage en mémoire et n'utiliser qu'une seule bou
le ave
 un pointeur :
©Philippe Waille UJF/UFR IMA 6 juillet 2006



9.6. TABLEAUX À DEUX DIMENSIONS 121for (ptr = t; ptr < &(t[4℄[3℄);ptr++)somme += *ptr;9.6.5 Passage de tableau à n dimensions en paramètreUne pro
édure re
evant un tableau passé en paramètre ne peut l'indi
er 
orre
tement sans in-formation sur la taille des n−1 dernières dimensions du tableau. Lorsque 
elles-
i sont 
onstantes,elles peuvent être indiquées à la dé
laration des arguments de la pro
édure.Une dé
laration d'un paramètre t de type int t [ ℄[4℄[3℄ dans un prototype de fon
tion n'estpas une dé
laration réservant de la pla
e pour sto
ker un tableau. Elle indique simplement lagéométrie du tableau dont l'adresse est passée à la pro
édure.
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122 CHAPITRE 9. TABLEAUX ET ARITHMÉTIQUE SUR LES POINTEURS
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Chapitre 10Pro
édures sans ré
ursionCe 
hapitre présente la gestion simpli�ée des appels de pro
édures, qui ne serait appli
ablequ'aux appels sans ré
ursion. La méthode de gestion générale appliquée à tous les 
as sera présentéedans le 
hapitre suivant.10.1 Notion de pro
édure10.1.1 Prin
ipeSoit une même suite d'opérations à exé
uter dans di�érentes parties d'un programme. Pourréduire la taille des programmes et éviter les problèmes de mise à jour de 
opies multiples en
as de modi�
ation, il est préférable de n'in
lure qu'un seul exemplaire de la suite d'instru
tions
orrespondante, qui 
onstituera le 
orps d'une pro
édure. Le programmeur peut passer des argu-ments à la pro
édure pour en paramétrer le fon
tionnement.Chaque utilisation de la suite d'opérations 
onstitue un point d'appel de la pro
édure. En
haque point d'appel est inséré une instru
tion de bran
hement aller vers le début (ou prologue)de la pro
édure. L'épilogue de la pro
édure 
ontient une instru
tion de bran
hement retour versl'instru
tion qui suit le point de bran
hement.10.1.2 Exemple sans pro
édureSoient les dé
larations de variables suivantes.long t = 2;long x = 4;long y = 5;long z = 6;int a = 1;int b = 0;int 
 = 1;int d = 0;register long *p1, *p2;register long i1, i2;Considérons un extrait de 
ode, qui réalise quatre é
hange de 
ontenus de deux variables.123



124 CHAPITRE 10. PROCÉDURES SANS RÉCURSIONvoid main (){x--;/* é
hanger les 
ontenus de x et y si a != 0 */if (a != 0){p1 = &x;p2 = &y;i1 = *p1; /* debut sequen
e d'instru
tions 
ommune */i2 = *p2;*p1 = i2;*p2 = i1; /* fin sequen
e d'instru
tions 
ommune */}y = y-4;/* é
hanger les 
ontenus de x et z si b != 0 */if (b !=0){p1 = &x;p2 = &z;i1 = *p1; /* debut sequen
e d'instru
tions 
ommune */i2 = *p2;*p1 = i2;*p2 = i1; /* fin sequen
e d'instru
tions 
ommune */}z = z+4;/* é
hanger les 
ontenus de y et z si 
 != 0 */if (
 != 0){p1 = &y;p2 = &z;i1 = *p1; /* debut sequen
e d'instru
tions 
ommune */i2 = *p2;*p1 = i2;*p2 = i1; /* fin sequen
e d'instru
tions 
ommune */}x++;/* é
hanger les 
ontenus de t et z si d != 0*/if (d != 0){p1 = &t;p2 = &z;i1 = *p1; /* debut sequen
e d'instru
tions 
ommune */i2 = *p2;*p1 = i2;*p2 = i1; /* fin sequen
e d'instru
tions 
ommune */} 
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10.1. NOTION DE PROCÉDURE 125t++;}10.1.3 Exemple ave
 pro
édures sans paramètreDé
larons une pro
édure d'é
hange et une pro
édure milieu qui englobe les deux deuxième ettroisième é
hanges :void e
hanger (){ /* prologue *//* début du 
orps */i1 = *p1; /* 4 , 13 , 22, 32 */i2 = *p2; /* 5 , 14 , 23, 33 */*p1 = i2; /* 6 , 15 , 24, 34 */*p2 = i1; /* 7 , 16 , 25, 35 *//* fin du 
orps */} /* épilogue + retour */ /* 8 , 17 , 26, 36 */void milieu(){ /* prologue *//* debut du 
orps */if (b != 0){p1 = &x; /* 11 */p2 = &z; /* 12 */e
hanger(); /* B */ /* 13 */suiteB:}z = z+4; /* 18 */if (
 != 0){p1 = &y; /* 19 */p2 = &z; /* 20 */e
hanger(); /* C */ /* 21 */suiteC:x++; /* 27 */}} /* epilogue+retour */ /* 28 */Le programme modi�é 
ontient un appel de la pro
édure milieu et quatre de la pro
édureé
hanger : la suite d'instru
tions dans le 
orps de la pro
édure é
hanger est exé
utée quatre fois.L'ordre d'exé
ution des instru
tions est noté en 
ommentaire. La �n de 
haque pro
édure
ontient une instru
tion de bran
hement retour. Chaque appel de pro
édure 
ontient une instru
-tion de bran
hement vers le prologue de la pro
édure.L'ordre des bran
hements de retour est l'inverse de 
elui des bran
hements aller. Le premierretour est exé
uté par la dernière pro
édure appelée : 
ette propriété est dite "LIFO" (Last InFirst Out).
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126 CHAPITRE 10. PROCÉDURES SANS RÉCURSIONvoid main (){x--; /* 0 */if (a != 0){p1 = &x; /* 1 */p2 = &y; /* 2 */e
hanger(); /* A : point d'appel de e
hanger */ /* 3 */suiteA:}y = y-4; /* 9 */milieu (); /* 10 */suiteM:if (d != 0){p1 = &t; /* 29 */p2 = &z; /* 30 */e
hanger(); /* D */ /* 31 */suiteD:t++; /* 37 */}} /* 38 */
10.1.4 Gestion des bran
hements aller et retourLa tradu
tion de 
et exemple en langage d'assemblage de notre pro
esseur RISC �
tif n'appellepas de 
ommentaire parti
ulier ex
epté pour la tradu
tion des bran
hements aller et retour.Il 
onvient de dé�nir une 
onvention de sto
kage pour le paramètre impli
ite qu'est l'adressede retour : elle pourrait être sto
kée en mémoire à une adresse dé�nie statiquement (par exempledans bss), ou dans un registre du pro
esseur. Nous 
hoisissons de la sto
ker dans le dernier registregénéral du pro
esseur : que nous appelerons link register. Le symbole lr sera un synonyme de r31..Les instru
tions bcondl (bran
h and link) et jmpl (jump and link) sont destinées aux appelsde pro
édures. Avant de modi�er le 
ompteur ordinal, elles le sauvegardent dans le registre lr.Au moment de la sauvegarde, le 
ompteur ordinal repère l'instru
tion qui suit l'instru
tion debran
hement bcondl ou jmpl. L'adresse de bran
hement de retour 
ontenue dans lr à la �n de lapro
édure é
hanger est suite1 lors de l'appel A, suiteB lors de l'appel B, suiteC lors de l'appel Cet suiteD lors de l'appel D.Dans l'épilogue de la pro
édure, le bran
hement retour à l'adresse 
ontenue dans lr 
orrespondà l'instru
tion jmp lr. 
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10.1. NOTION DE PROCÉDURE 12710.1.5 Tradu
tion de l'exemple.datat: .word 2x: .word 4y: .word 5z: .word 6a: .word 1b: .word 0
: .word 1d: .word 0� affe
tation arbitraire des registres aux variables� r0 : i1 r1: p1 r2:i2 r3:p3 r4,r5: temporaires */.text/* tradu
tion de l'appel de la pro
édure é
hanger sans paramètre */e
hanger: � prologue de e
hanger : vide i
i� il faudra ajouter sauver registres modifiés */ldr r0, [r1℄ � i1 = *p1ldr r2, [r3℄ � i2 = *p2str r2, [r1℄ � *p1 = i2str r0, [r3℄ � *p2= r3� epilogue de e
hanger : vide i
i� il faudra ajouter restaurer registres modifiés */jmp lr � bran
hement retour :� à suiteA au premier retour� à suiteB au deuxième retour� à suiteC au troisième retour� à suiteD au quatrième retourmilieu: � prologue de milieu : vide i
i� il faudra ajouter sauver registres modifiés */mov32 r5, #bldr r4, [r5℄
mp r4, #0beq suiteBmov32 r1, #x � p1 =&xmov32 r3, #z � p2 =&zbl e
hanger � e
hanger() : lr <- suiteB; b e
hangersuiteB: � z = z + 4mov32 r5, #zldr r4, [r5℄sub r4, r4, #4str r4, [r5℄mov32 r5, #
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128 CHAPITRE 10. PROCÉDURES SANS RÉCURSIONldr r4, [r5℄
mp r4, #0beq suiteCmov32 r1, #y � p1 =&ymov32 r3, #z � p2 =&zbl e
hanger � e
hanger() : lr <- suiteC; b e
hangersuiteC: � x ++mov32 r5, #xldr r4, [r5℄sub r4, r4, #1str r4, [r5℄� epilogue de milieu : vide i
i� il faudra ajouter restaurer registres modifiés */jmp lr � bran
hement retour (a suiteM)main: � prologue de main : vide i
i� prévoir l'ajout de sauver registres modifiés� x--mov32 r5, #xldr r4, [r5℄sub r4, r4, #1str r4, [r5℄mov32 r5, #aldr r4, [r5℄
mp r4, #0beq suiteAmov32 r1, #x � p1 =&xmov32 r3, #y � p2 =&ybl e
hanger � e
hanger() : lr <- suiteA; b e
hangersuiteA: � y = y - 4mov32 r5, #yldr r4, [r5℄sub r4, r4, #4str r4, [r5℄bl milieu � milieu () : lr <- suiteM; b milieusuiteM: mov32 r5, #dldr r4, [r5℄
mp r4, #0beq suiteEmov32 r1, #t � p1 =&tmov32 r3, #z � p2 =&zbl e
hanger � e
hanger() : lr <- suiteD; b e
hangersuiteD: � t ++mov32 r5, #tldr r4, [r5℄sub r4, r4, #1str r4, [r5℄ 
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10.2. PASSAGE DE PARAMÈTRE PAR VALEUR ET PAR ADRESSE 129� épilogue de main : vide i
i� prévoir la restauration des registres modifiésjmp lr � retour au 
ode qui a appelé mainNotons que les bran
hements aller pourraient être réalisés en utilisant l'instru
tion jmpl aulieu de bl.� Variante utilisant jmpl au lieu de blsuiteM: mov32 r5, #d...mov32 r3, #z � p2 =&zmov32 r4, #e
hangerjmpl r4 � lr <- suiteD, saut absolu à é
hangersuiteD:10.2 Passage de paramètre par valeur et par adresseIl est souvent utile de passer expli
itement lors de l'appel des arguments permettant de pa-ramétrer le fon
tionnement de la pro
édure. En C, il n'existe qu'un seul mode de passage deparamètre : par valeur. Chaque argument passé lors de l'appel est une expression qui est évaluéeet dont la valeur est 
opiée à l'endroit 
onvenu pour le sto
kage des paramètres.La pro
édure appelée peut modi�er le 
ontenu de son paramètre, mais le passage par valeur nelui permet pas de modi�er les variables utilisées dans l'expression passée en argument. Même sil'expression passée à l'appel se limite à une variable1, la pro
édure ne peut modi�er qu'une 
opiedu 
ontenu de 
ette variable sto
kée dans son paramètre, 
e qui n'a�e
te pas la variable passée enparamètre.Il existe une notion de paramètre de type résultat dans des langages tels que PASCAL ouADA, mais pas en C. Dans d'autre langages tels que FORTRAN, les variables sont passées paradresse, 
e qui permet à la pro
édure appelée de les modi�er.Bien le C ne propose que le passage par valeur, il est possible de réaliser un passage par adressegrâ
e aux pointeurs. En passant en paramètre la valeur d'un pointeur qui repère une variable, ilest possible de modi�er 
ette variable dans le 
orps de la pro
édure appelée via l'opérateur *.Voi
i à titre d'exemple un programme dé�nissant et utilisant deux pro
édures lire_entier eté
rire_entier.Les pro
édures qui doivent modi�er une variable de l'appelante utilisent un paramètre de typepointeur : les pro
édures de le
ture au 
lavier entrent dans 
ette 
atégorie. Celles qui n'ont besoinque d'une valeur utilisent des paramètres de type normal : 
'est notament le 
as des pro
éduresd'a�
hage à l'é
ran./******************************************************************//* pro
édure e
rire_entier *//* affi
he en binaire un entier 32 bits à l'é
ran *//******************************************************************/1variable simple ou élément de tableau ou membre de stru
ture
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130 CHAPITRE 10. PROCÉDURES SANS RÉCURSIONvoid e
rire_entier (int x){int i;for (i=0; i<32;i++){if (x<0) /* x<0 si bit de poids fort == 1 */put
har ('1');elseput
har ('0');}x = x << 1; /* dé
aler d'un bit à gau
he */}/******************************************************************//* pro
édure lire_entier *//* lit en binaire un entier 32 bits au 
lavier *//******************************************************************/void lire_entier (int *x){int r;r = 0;for (i=0; i<32;i++){/* Vérifi
ation omise : get
har doit retourner '0' ou '1' */r = r << 1 + (get
har () - '0');}*x = r;}int a;void tester (){lire_entier (&a);e
rire_entier (3*a+1);}10.3 Sauvegarde et restauration des registres10.3.1 Prin
ipeL'intérêt du mé
anisme d'appel de pro
édure ne se limite pas à la rédu
tion de la taille du
ode ma
hine. Les pro
édures 
onstituent également un élément de stru
turation des programmes.Une fois les interfa
es d'appel 
lairement dé�nies, le 
orps de la pro
édure appelée peut être é
ritsans 
onnaître le 
orps de la ou les pro
édures qui l'appelent, et ré
iproquement. Le mé
anismede gestion des pro
édures ne doit pas imposer de 
ontraintes sur les appels : n'importe quellepro
édure doit pourvoir être appelée dans le 
orps de n'importe quelle autre pro
édure.
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10.3. SAUVEGARDE ET RESTAURATION DES REGISTRES 131Toutes les pro
édures utilisent au moins une partie d'un ensemble de ressour
es 
ommunes : lesregistres du pro
esseur. Ce
i pose un problème lorsque l'appelée modi�e le 
ontenu d'un registreque l'appelante a déjà utilisé : sans pré
aution parti
ulière, au retour de l'appel de pro
édurel'information que l'appelante y avait sto
kée est perdue.On pourrait imaginer de faire en sorte que l'appelante et l'appelée utilise des ensembles deregistres disjoints. Cette stratégie n'est pas appli
able en pratique : si l'interse
tion de leurs en-sembles de registres modi�és n'est pas vide, deux pro
édures ne peuvent pas s'appeler entre elles.La solution générale 
onsiste à e�e
tuer une sauvegarde en mémoire du 
ontenu des registresavant exé
ution du 
orps de la pro
édure appelée et une opération inverse de restauration aprèsexé
ution du 
orps.Plusieurs stratégies sont envisageables :� sauvegarde par l'appelante : avant d'exé
uter le bran
hement aller, l'appelante sauvegardeen mémoire le 
ontenu des registres dans lesquelles elle a sto
ké des informations.� sauvegarde par l'appelée : dans le prologue et l'épilogue, la pro
édure appelée sauvegarde etrestaure les registres sont elle modi�e le 
ontenu.� absen
e de sauvegarde : l'appelante fait en sorte de ne sto
ker dans les registres que desinformations qui ne sont plus utiles au moment où un appel de pro
édure est exé
uté (
ettestratégie n'est appli
able qu'à un ou quelques-uns des registres du pro
esseur)� appro
hes mixtes : des politiques de sauvegarde di�érentes sont appliquées 
ha
une à unepartition de l'ensemble des registres du pro
esseur.Pour notre pro
esseur RISC de référen
e, nous 
hoisissons de ne pas sauver un des registresgénéraux lors des appels de pro
édures. Ce registre sera désigné sous le nom ip (intrapro
édure :
onserve sa valeur tant que l'on e�e
tue pas d'appel de pro
édure), synonyme de r28. Ce registresera entre autre utilisé 
omme temporaire de sto
kage de l'adresse de la zone de sauvegarde desregistres.Nous utiliserons la 
onvention suivante : la pro
édure appelée sauvegarde dans le prologue etrestaure dans l'épilogue le 
ontenu de tous les registres généraux qu'elle modi�e, ex
epté ip.10.3.2 Instru
tions ldm et stmPour la sauvegarde des registres, nous supposerons que notre pro
esseur RISC �
tif disposedes instru
tions ldm et stm pour transférer une suite de mots entre un ensemble de registres etun blo
 de mots 
ontigus en mémoire.L'instru
tion stm rp, {liste de registres} é
rit le 
ontenu des x registres spé
i�és dans laliste dans un blo
 de x mots 
onsé
utifs en mémoire dont la limite est repérée par un registregénéral quel
onque rp. L'instru
tion ldm rp, {liste de registres} e�e
tue le transfert en sensinverse.La liste de registres est 
omposée d'éléments séparés par des virgules. Chaque élément peutêtre un registre unique ou un ensemble de registres dont les numéros forment un intervalle :{r0, r3-r6, r8} dé
rit l'ensemble de registres {r0, r3, r4, r5, r6, r8}. L'ordre de rangementest prédé�ni : les registres de numéros 
roissants sont sto
kés à des adresses 
roissantes.Le registre rp peut repérer une 
ase à l'intérieur ou à l'extérieur au début ou à la �n du blo
 enmémoire. La position de rp par rapport aux 
ases mémoires à a

éder dé�nit quatre possibilités
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132 CHAPITRE 10. PROCÉDURES SANS RÉCURSIONillustrées par la �gure 10.1 : in
rement after (ia), in
rement before (ib), de
rement after (db),de
rement before (db). Le su�xe indique si l'adresse fournie par rp doit être in
rémentée oudé
rémentée avant ou après le transfert du premier mot.

r1

r2

r7

stmia/stmea  rp, {r1,r2,r7}

rp

rp!

r1

r2

r7

stmdb/stmfd  rp, {r1,r2,r7}

rp!

rp

r1

r2

r7

r1

r2

r7

rp!

rp

ldmda/ldmfa  rp, {r1,r2,r7}

r1

r2

r7rp

rp!

ldmdb/ldmea  rp, {r1,r2,r7}

r1

r2

r7

rp

rp!

ldmia/ldmfd  rp, {r1,r2,r7}

r1

r2

r7

stmib/stmfa  rp, {r1,r2,r7}

rp

rp!

case vide

case pleine pointeur final (ldm/stm rp!)

pointeur initial / final (ldm/stm rp)

rp

rp!

r1

r2

r7

ldmib/ldmed  rp, {r1,r2,r7}

adresses basses

adresses hautes

rp!

rp

stmda/stmed  rp, {r1,r2,r7}

Fig. 10.1 � Comportement des instru
tions ldm et stmLes versions normales de ldm et stm ne modi�ent pas le 
ontenu du registre pointeur rp. Lesvariantes ldmxx/stmxx rp !, {liste de registres} dé
alent l'adresse 
ontenue dans le registrepointeur rp d'autant de mots que de registres transférés. Il peut alors être réutilisé tel que pourun nouveau transfert de même type.Notons qu'un transfert dé
rit par une instru
tion stm peut être réalisé par une séquen
e d'ins-
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10.4. GESTION DES PARAMÈTRES ET DES VARIABLES LOCALES 133tru
tion str ordinaires 2� séquen
e d'instru
tions équivalentes à stmdb sp!, {r1, r2, r7}� str r7, [sp,#-4℄! � ou str r7, [sp, #-4℄str r2, [sp,#-4℄! � str r7, [sp, #-8℄str r1, [sp,#-4℄! � str r7, [sp, #-12℄� sub sp, sp, #12�� séquen
e d'instru
tions équivalentes à stmda sp!, {r1, r2, r7}� str r7, [sp℄, #-4 � ou str r7, [sp, #0℄str r2, [sp℄, #-4 � str r7, [sp, #-4℄str r1, [sp℄, #-4 � str r7, [sp, #-8℄� sub sp, sp, #12�� séquen
e d'instru
tions équivalentes à ldmia r0, {r5-r7}� ldr r5, [r0, #0℄ldr r6, [r0, #4℄ldr r7, [r0, #8℄�� séquen
e d'instru
tions équivalentes à ldmib r0, {r5-r7}� ldr r5, [r0, #4℄ldr r6, [r0, #8℄ldr r7, [r0, #12℄Les instru
tions ldm et stm admettent des su�xes synonymes fd, fa, ea, ed dont la si-gni�
ation se rapporte à la notion de pile (utilisée pour les appels de pro
édures autorisant laré
ursion).10.4 Gestion des paramètres et des variables lo
alesLa dé
laration d'une pro
édure dé�nit une liste (éventuellement vide) de paramètres formelsen spé
i�ant leur type. L'instru
tion d'appel fournit alors une liste de paramètres réels dé�nissantles valeurs des paramètres pour 
et appel.Notons que l'appel fournit systématiquement un paramètre impli
ite : l'adresse destination dubran
hement de retour en �n de pro
édure.10.4.1 Convention d'appel et sto
kage des paramètresUne 
onvention d'appel doit être dé�nie de telle sorte que la pro
édure appelée puisse déter-miner où trouver le 
ontenu des paramètres que la pro
édure appelante lui a passé.Les deux 
onventions de passage des paramètres les plus simples sont :1. sto
kage dans les registres du pro
esseur2
f 6.9 pour les variantes de ldr et str ave
 préin
rémentation et postin
rémentation
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134 CHAPITRE 10. PROCÉDURES SANS RÉCURSION2. sto
kage dans une zone mémoire allouée statiquement à 
haque pro
édure, par exemple dansla se
tion bss.3. appro
he mixte : passage des p premiers paramètres dans les registres du pro
esseur etsto
kage des n-p autres paramètres dans bss.La premère stratégie est e�
a
e, mais le nombre d'arguments ne peut pas dépasser le nombrede registres disponibles. La deuxième stratégie a

epte un nombre quel
onque (mais �xé) d'argu-ments, mais au prix de deux a

ès mémoire par argument (une é
riture par l'appelante et unele
ture par l'appelée).Dans 
e 
hapitre, nous utiliserons la 
onvention suivante : l'adresse de retour (paramètre im-pli
ite) est passée dans le registre lr du pro
esseur, le premier paramètre expli
ite est passé dansle premier registre r0, les autres paramètres sont passés en mémoire. Le 
hoix du nombre de pa-ramètres expli
ites passés dans les premiers registres du pro
esseur (i
i un) est arbitraire3 et tient
ompte du nombre total de registres.10.4.2 Sto
kage des variables lo
alesComme pour les paramètres, trois appro
hes sont possibles pour le sto
kage des variableslo
ales :1. sto
kage dans les registres du pro
esseur2. sto
kage dans une zone mémoire allouée statiquement à 
haque pro
édure,3. appro
he mixte : quelques variables sto
kées dans les registres du pro
esseur et les autres enmémoire.Notons que la première la première méthode est plus e�
a
e que la deuxième, mais n'est pasappli
able� lorsque le nombre de variables ex
ède le nombre de registres disponibles� aux variables dont on prend l'adresse.Dans 
e 
hapitre, nous utiliserons la 
onvention suivante : toutes les variables lo
ales sontsto
kées en mémoire.10.5 Exemple ave
 paramètres et variables lo
alesDans notre exemple, il est judi
ieux de dé�nir des pro
édures re
evant des paramètres expli-
ites plut�t que de passer les informations via les variables globales p1 et p2. Les variables i1 et i2,qui ne sont utilisées que dans la pro
édure é
hanger, devennent des variables lo
ales de 
elle-
i.Cond, 
ond1 et 
ond2 illustrent le passage de paramètre par valeur, et les paramètres pointeursp et q 
orrespondent à un passage d'adresses des variables à é
hanger.3Dans la 
onvention utilisée par le 
ompilateur C GNU, il est de 4 pour le ARM et 6 pour le SPARC
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10.6. TRADUCTION DE L'EXEMPLE 135long t = 2;long x = 4;long y = 5;long z = 6;int a = 1;int b = 0;int 
 = 1;int d = 0;
void e
hanger (int 
ond, long *p, long *q){long i1;long i2;if (
ond != 0){i1 = *p;i2 = *q;*p = i2;*q = i1;}}void main (){x--;e
hanger(a,&x,&y);y = y-4;milieu(b,
);e
hanger(d,&t, &z);t++;}
void milieu (int 
ond1, int 
ond2){e
hanger(
ond1,&x,&z);z = z+4;e
hanger(
ond2,&y,&z);x++;}

10.6 Tradu
tion de l'exempleExaminons la tradu
tion des deux pro
édures de l'exemple ave
 paramètres.La pro
édure é
hanger reçoit deux paramètres de type entier long, il 
onvient don
 d'allouer8 o
tets dans la se
tion bss pour 
ette pro
édure.Dans le 
orps de é
hanger, on ne prend pas l'adresse des variables i1 et i2. Il serait don
 possiblede les sto
ker dans les registres r0 et r2 plut�t que dans bss, auquel on peut supprimer quatreinstru
tions d'a

ès à la mémoire (
ommentées "opt" dans le 
ode) et réduire à 0 la 
onstanteECHANGER_TAILLE_VAR.Pour répérer les paramètres re
us de l'appelante et les variables lo
ales, nous utiliserons unregistre à usage général, de nom fp (fun
tion parameters)4, synonyme de r29.Pour repérer les paramètres passés à la pro
édure appelée, nous utiliserons un registres à usagegénéral de nom sp (sommet de pile5), synonyme de r30.La �gure 10.2 représente l'état de la mémoire et des registres juste après la troisième exé
utionde bl e
hanger.La pro
édure main a utilisé le registre sp pour initialer les paramètres 
ond1 et 
ond2 demilieu. Dans le prologue de milieu, le registre lr qui 
ontenait l'adresse de retour dans main a étésauvegardé dans la zone param_milieu.4le nom o�
iel est frame pointer : soit pointeur de 
adre en français5l'expli
ation de 
e nom est expliqué dans le 
hapitre 
onsa
ré à la gestion de pro
édures ave
 ré
ursion
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136 CHAPITRE 10. PROCÉDURES SANS RÉCURSIONLe 
orps de milieu utilise le registre pointeur fp pour repérer les paramètres reçus de mainet sp pour initialiser les paramètres passés à é
hanger.La pro
édure é
hanger sauvegardera les registres qu'elle modi�e et allouera de la mémoirepour ses variables i1 et i2 dans la zone mémoire réservée avant param_é
hanger. Elle modi�erafp pour repérer les paramètres qu'elle a reçus de milieu.ECHANGER_TAILLE_PARAM=8 /* taille des args */ECHANGER_P = 0 /* empla
ement relatif de p */ECHANGER_Q = 4 /* empla
ement relatif de q */ECHANGER_TAILLE_REGS=16 /* sauvegarde des registres */ECHANGER_TAILLE_VAR=8 /* taille des vars *//* empla
ement relatif de i1 */ECHANGER_I1=-(4+ECHANGER_TAILLE_REGS)/* empla
ement relatif de i2 */ECHANGER_I2=-(8+ECHANGER_TAILLE_REGS).bss.skip ECHANGER_TAILLE_VAR + ECHANGER_TAILLE_REGSparam_e
hanger: .skip ECHANGER_TAILLE_PARAM.texte
hanger: � prologue de e
hanger� affe
tation des registres :� r0 : paramètre 
ond� r1 : 
opie du paramètre p� r2 : valeur de i2� r3 : 
opie du paramètre q� r4 : valeur de i1� fp : pointeur de paramètres� sauvegarde des registresmov32 ip, #param_e
hanger - ECHANGER_TAILLE_REGSstmia ip, {r1-r4,fp}� test de 
ond
mp r0, #0beq fin_e
hangermov32 fp, #param_e
hanger� ré
upération des paramètres p et q dans r1 et r3ldr r1, [fp, #ECHANGER_P℄ldr r3, [fp, #ECHANGER_Q℄ldr r4, [r1℄ � i1 = *pstr r4, [fp, #ECHANGER_I1℄ � optldr r2, [r3℄ � i2 = *q
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10.6. TRADUCTION DE L'EXEMPLE 137str r2, [fp, #ECHANGER_I2℄ � optldr r2, [fp, #ECHANGER_I2℄ � *p = i2 � optstr r2, [r1℄ldr r4, [fp, #ECHANGER_I1℄ � *q = i1 � optstr r4, [r3℄fin_e
hanger:� epilogue de e
hanger :� restaurer 
ontenu initial des registresldmia ip, {r1-r4, fp}jmp lr � bran
hement retour :MILIEU_TAILLE_PARAM=4 /* taille des args */MILIEU_COND2=0 /* position de 
ond2 */MILIEU_TAILLE_REGS=24 /* sauvegarde des registres */MILIEU_TAILLE_VAR=0 /* taille des vars */.bss.skip MILIEU_TAILLE_VAR + MILIEU_TAILLE_REGSparam_milieu: .skip MILIEU_TAILLE_PARAMmilieu: � prologue de milieu� Affe
tation des registres� r0 : premier paramètre reçu/passé� r1 : temporaire adresse� r2 : temporaire valeur� sauvegarde des registresmov32 ip, #param_milieu - MILIEU_TAILLE_REGSstmia ip, {r0-r2,sp,fp,lr}� 
orps de milieumov32 sp, #param_e
hangermov32 fp, #param_milieu� le paramètre 
ond1 est déjà dans r0mov32 r1, #x � e
hanger (
ond1,&x, &z)str r1, [sp, #ECHANGER_P℄mov32 r1, #zstr r1, [sp, #ECHANGER_Q℄bl e
hanger � detruit le 
ontenu de ipmov32 r1, #z � z = z + 4ldr r2, [r1℄sub r2, r2, #4str r2, [r1℄ldr r0, [fp, #MILIEU_COND2℄ � e
hanger (
ond2,&x, &z)mov32 r1, #ystr r1, [sp, ECHANGER_P℄
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138 CHAPITRE 10. PROCÉDURES SANS RÉCURSIONmov32 r1, #zstr r1, [sp, ECHANGER_Q℄bl e
hanger � detruit le 
ontenu de ipmov32 r1, #x � x++ldr r2, [r1℄sub r2, r2, #1str r2, [r1℄� epilogue de milieu� restaurer registres modifiés */mov32 ip, #param_milieu - MILIEU_TAILLE_REGSldmia ip, {r0-r2,sp,fp,lr}jmp lrmain: ...� extrait du 
ode de main : appel de milieu�mov32 sp, param_milieumov32 r1, #b � param 
ond1 = bldr r0, [r1℄mov32 r1, #
 � param 
ond2 = 
ldr r1, [r1℄str r1, [sp, #MILIEU_COND2℄bl milieu...
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10.6. TRADUCTION DE L'EXEMPLE 139

lr

de main
dans le corps
des registres
Valeurs

sp

fp

d:

b:
c:

a:
z:
y:
x:
t:

DATA

1
0

0
1

2

-1
10

5

param
milieu

echanger
param

fp main
lr main

sp main

cond2 = 1

BSS

p = &y
q = &z

r0 main
r1 main
r2 main

bl milieu

bl echanger

main:

milieu:

echanger:

TEXT

+

-

les registres
sauvegarder  ici

stocker ici i1
stocker ici i2

r1,r2, r3, r4, fp

Adresses basses

Adresses hautes

Fig. 10.2 � Etat de la ma
hine dans le prologue de é
hanger
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Chapitre 11Pro
édures ave
 ré
ursion
11.1 Notion de ré
ursionLes appels de fon
tions dé�nissent une relation de �liation entre les fon
tions. Le graphe de
ette relation possède un ar
 d'une fon
tion g vers une fon
tion f si et seulement si g 
ontient unappel de la pro
édure f.Dans un programme ré
ursif, le graphe de �liation 
ontient (au moins) un 
y
le (d'appels en
as
ade). Un 
y
le de longueur un 
orrespond à une ré
ursion dire
te et un 
yle plus long à uneré
ursion indire
te. Une fon
tion ré
ursive dire
te 
ontient un appel à elle-même.Considérons par exemple un ensemble de fon
tions ré
ursives impliquées dans un 
y
le de lon-gueur trois : la première fon
tion 
ontient un appel à la deuxième fon
tion, qui 
ontient un appelà la troisième, 
ette dernière in
luant un appel à la première.La notion de ré
ursion en programmation 
orrespond à la notion mathématique de ré
urren
e.11.1.1 Exemple de ré
ursion dire
te : la suite de Fibona

iLa suite de Fibona

i est dé�nie 
omme suit : u0 = u1 = 1 et un = un−1 + un−2 pour n > 1.Voi
i un exemple de ré
ursion dire
te pour 
al
uler 
ette suite.unsigned long x = 4;unsigned long resultat;int m = 0;void fibo (unsigned long *s, unsigned long n){unsigned long f;unsigned long res;res = n;if (n > 1){fibo (&res,n-1);fibo (&f,n-2);res = res + f;}*s = res;} 141



142 CHAPITRE 11. PROCÉDURES AVEC RÉCURSIONint main (){long m;m = 6;fibo (&resultat,x);} Voi
i une tra
e des appels et des retours de pro
édure générés par le 
al
ul de Fibona

i(4).Appel de fibo (...,4)Appel de fibo (...,3)Appel de fibo (...,2)Appel de fibo (...,1)Retour de fibo(...,1)Appel de fibo (...,0) /* point d'observation F */Retour de fibo(...,0)Retour de fibo(...,2)Appel de fibo (...,1)Retour de fibo(...,1)Retour de fibo(...,3)Appel de fibo (...,2)Appel de fibo (...,1)Retour de fibo(...,1)Appel de fibo (...,0)Retour de fibo(...,0)Retour de fibo(...,2)Retour de fibo(...,4)11.1.2 Exemple de ré
ursion indire
te : 
al
ul de Σn

i=0
iVoi
i un exemple de 
al
ul de la somme 1 + 2 + 3 · · ·+ n− 1 + n par un programme utilisantune ré
ursion indire
te 1.unsigned long x = 4;unsigned long resultat;int m=0;extern void sigma_pair (unsigned long, unsigned long *);extern void sigma_impair (unsigned long, unsigned long *);void sigma_pair (unsigned long n, unsigned long *s){unsigned long f;if (n==0)f = 0;else{sigma_impair (n-1,&f);1Cette somme peut évidement être 
al
ulée itérativement ou ave
 la formule Σ

n

i=0i =
n(n+1)

2 .
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11.1. NOTION DE RÉCURSION 143f = f + n;}*s = f;}void sigma_impair (unsigned long n, unsigned long *s){unsigned long f;if (n==1)f = 1;else{sigma_pair (n-1,&f);f = f + n;}*s = f;}void sigma (unsigned long n, unsigned long *sigma){if ((n %2) == 0)sigma_pair(n,sigma);elsesigma_impair(n,sigma);}int main (){ sigma (x,&resultat);printf ("sigma(%d) = %d\n",x,resultat);} Voi
i une tra
e des appels et des retours générés par l'appel de sigma(4,...).Appel de sigma(4,...)Appel de pair (4,...) /* point d'observation de la pile */Appel de impair (3,...)Appel de pair (2,...)Appel de impair (1,...) /* point d'observation S */Retour de impair(1,...)Retour de pair(2,...)Retour de impair(3,...)Retour de pair(4,...)Retour de sigma(4,...)11.1.3 Contraintes spé
i�ques liées à la ré
ursionLa ré
ursion se traduit par la 
oexisten
e simultanée de plusieurs instan
es d'appel de la mêmepro
édure (ave
 des paramètres di�érents).
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144 CHAPITRE 11. PROCÉDURES AVEC RÉCURSIONAu point d'observation F de l'exemple Fibona

i, 
inq instan
es d'exé
utions de la pro
édure�bo sont en 
ours, ave
 di�érentes valeurs du paramètre n : 0, 1, 2, 3 et 4. Il en va de même dansl'autre exemple : au point d'observation S, il existe deux instan
es d'exé
ution de sigma_impair(pour n=1 et n=3) et deux de sigma_pair (pour n=0 et n=2).Il n'est don
 pas possible d'allouer statiquement une zone de sto
kage de paramètres et de va-riables lo
ales à 
haque pro
édure 
omme nous l'avons fait au 
hapitre pré
édent. Il est né
esaired'allouer dynamiquement une zone de sto
kage à 
haque nouvel appel de pro
édure et de la libérerlors du retour.Chaque instan
e d'exé
ution de pro
édure utilise trois blo
s de mémoire distin
ts :1. un blo
 mémoire de paramètres reçus partagé ave
 et alloué par la pro
édure appelante,2. un espa
e privé de sto
kage de variables lo
ales, de temporaires et de sauvegarde de registres,alloué par l'instan
e d'exé
ution de la pro
édure en 
ours,3. un blo
 de paramètres transmis, alloué par la pro
édure 
ourante lorsqu'elle appelle à sontour une autre pro
édure, partagé ave
 
ette dernière.De plus, la mise en ÷uvre de l'allo
ation et la libération de mémoire lors des appels et retoursne peut pas être réalisé sous forme d'appel de pro
édure ordinaire2.Remarquons que les allo
ations et libérations respe
tent la propriété LIFO des appels et desretours : le dernier blo
 de mémoire alloué (lors du dernier appel) est le premier blo
 libéré lorsdu (premier) retour.11.2 Allo
ation et libération de blo
s dans la pile11.2.1 Notion de pileLa zone mémoire utilisée pour l'allo
ation dynamique de mémoire liée aux appels de pro
é-dures est appelée la pile. La pile se présente 
omme un tableau d'o
tets alloué impli
itement parle système d'exploitation ou dé
laré expli
itement par le programmeur (
as d'appli
ations embar-quées sans système d'exploitation).� exemple de dé
laration expli
ite d'une pile dans bss par le programmeur� l'allo
ation est normalement realisee impli
itement par le systeme� d'exploitation, dans une zone pile distin
te de bss.TAILLE_PILE = 100000 � taille arbitraire : 100 Ko.bssdebut_file: .skip TAILLE_PILEfin_pile: .text� initialisation du registre sommet de pile a réaliser� avant exé
ution du programme prin
ipal (main)� i
i pour une pile de type "full des
ending"init: move32 sp, fin_pile2Le mé
anisme ordinaire d'appel de pro
édure ne peut pas à la fois utiliser le mé
anisme d'allo
ation de mémoireet servir à le 
onstruire. 
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11.2. ALLOCATION ET LIBÉRATION DE BLOCS DANS LA PILE 145Les blo
s alloués sont 
ontigus et rangés en mémoire dans l'ordre de leur allo
ation. Le registresommet de pile (sp) repère la limite entre la portion pleine de la pile allouée aux appels de pro
é-dures en 
ours et la portion vide utilisables pour de nouveaux appels.Autrement dit, le sommet de la pile permet de repérer la limite entre le premier blo
 à libérerparmi 
eux déjà alloués et le pro
hain blo
 qui sera alloué. Allouer ou libérer un blo
 de T o
tetsrevient simplement à dé
aler le sommet de pile de T o
tets.L'opération empiler(x) 
onsiste à allouer un blo
 dans le tableau pile, et à en initialiser le
ontenu ave
 la valeur de x. L'opération x = dé(sem)piler()3 
onsiste à lire le 
ontenu du der-nier blo
 et à libérer ensuite.Pour empiler un ensemble de n mots, on peut e�e
tuer n fois l'opération empiler, ou allouerun blo
 de n mots, et remplir les mots de 
e blo
 ensuite.Le registre sommet peut repérer le dernier o
tet déjà alloué ou le premier o
tet libre. D'autrepart, l'allo
ation des premiers blo
s peut être réalisée en début de pile (pile 
roissante) ou en �nde pile (pile dé
roissante).Il existe don
 quatre 
onventions possibles de pile :1. pleine, 
roissante (full, as
ending) : premiers blo
s alloués en début de pile, sp repère ledernier o
tet déjà alloué (
ase pleine),2. vide, 
roissante (empty, as
ending) : premiers blo
s alloués en début de pile, sp repère lepremier o
tet libre (
ase vide),3. pleine, dé
roissante (full des
ending) : premiers blo
s alloués en �n de pile, sp repère ledernier o
tet déjà alloué,4. vide, dé
roissante (empty des
ending) : premiers blo
s alloués en �n de pile, sp repère lepremier o
tet libre.La �gure 11.1 illustre l'allo
ation de trois blo
s dans l'ordre 1, 2, 3 dans les quatre 
onventionsde pile :
sp

1

2

3

fin_pile

debut_pile

vide

4

allouer

liberer

sp

1

2

3

fin_pile

debut_pile

vide

3

allouer

liberer

1

2

3
sp

fin_pile

debut_pile

vide

allouer

liberer

1

1

2

3
sp

fin_pile

debut_pile

vide

allouer

liberer

2Fig. 11.1 � Les quatre 
onventions de pile3Le terme 
orre
t est désempiler, mais l'usage du terme impropre dépiler est très répandu
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146 CHAPITRE 11. PROCÉDURES AVEC RÉCURSIONDans la suite de 
e do
ument, sauf pré
ision 
ontraire, nous utiliserons une pile dé
roissanteave
 sommet de pile repérant une 
ase pleine (numéro 3 sur la �gure).Ave
 
e type de pile, allouer(T) signi�e sp = sp - T et libérer(T) 
orrespond à sp = sp + T.Il faut utiliser les instru
tions str registre, [sp,#-4℄ ! ou stmdb sp !, {liste_regs} pour empi-ler le 
ontenu d'un (ensemble de) registre(s). L'opération inverse (dé(sem)piler4), 
orrespond auxinstru
tions ldr rd, [sp℄, #4 ou ldmia sp !, {liste_regs}Croissan
e pile Sommet Empiler Dé(sem)piler
descendante plein str rd, [sp,#-4℄ ! ldr rd, [sp℄, #4
descendante vide str rd, [sp℄,#-4 ldr rd, [sp, #4℄ !
ascendante plein str rd, [sp,#4℄ ! ldr rd, [sp℄, #-4
ascendante vide str rd, [sp℄,#4 ldr rd, [sp,#-4℄ !Tab. 11.1 � Utilisation de ldr et str selon les 
onventions de pilePour le programmeur de pro
édures, il est plus 
ommode de spé
i�er le type de pile utiliséeque l'ordre dans lequel l'in
rémentation ou la dé
rémentation et le premier a

ès à la mémoiredoivent être réalisés. C'est pourquoi l'assembleur a

epte les synonymes suivant pour ldm et stm :Croissan
e pile Sommet Empiler Synonyme Dépiler Synonyme

descendante plein (full) stmfd stmdb ldmfd ldmia
descendante vide (empty) stmed stmda ldmed ldmib
ascendante plein (full) stmfa stmib ldmfa ldmda
ascendante vide (empty) stmea stmia ldmea ldmdbTab. 11.2 � Utilisation de ldm et stm selon les 
onventions de pile11.2.2 Allo
ation, libération, notion de lien dynamiqueA l'état initial, le sommet de pile repère �n_pile 5. L'allo
ation d'un blo
 de taille T 
onsisteà dépla
er le sommet de pile de T o
tets vers les adresses basses : (sp = sp - T). Le sommetde pile repère alors le premier o
tet du blo
 qui d'etre alloué. La libération 
onsiste à l'inverse àdépla
er le sommet de pile en sens inverse (sp = sp + T).Chaque pro
édure reçoit un blo
 de paramètres alloué et rempli par la pro
édure apppelante ets'alloue deux blo
s 
ontigus : l'un de taille L pour ses variables lo
ales, temporaires et sauvegardesde registres, l'autre de taille A pour passer des arguments lors des appels de pro
édure qu'elleexé
ute dans son 
orps.La �gure 11.2 illustre l'état de la pile lors de la première exé
ution de la pro
édure sigma_pair.La partie gau
he de la �gure illustre l'état de la pile juste avant que le 
orps de la pro
édure sigmaexé
ute le bran
hement à sigma_pair. La partie droite de la �gure montre l'état de la pile lorsquele prologue de sigma_pair a été exé
uté.Au retour de la pro
édure, l'appelante libère l'espa
e mémoire alloué aux arguments dans lapile. La partie utilisée de la pile 
roît à 
haque appel de pro
édure et dé
roit à 
haque retour. Dansle 
as d'une ré
ursion dire
te, tous les blo
s sont de même taille et toutes les instan
es d'exé
utions4le fon
tionnement de ldm et stm a été présenté dans le 
hapitre 
onsa
ré aux pro
édures sans ré
ursion5Rappel : nous avons 
hoisi arbitrairement la 
onvention (pile des
endante, 
ase pleine)
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11.2. ALLOCATION ET LIBÉRATION DE BLOCS DANS LA PILE 147de la pro
édure ré
ursive situées à la même profondeur dans l'arbre des appels utiliseront la mêmeportion de mémoire.Il est souvent 
ommode de gérer deux registres pointeurs de pile : le sommet de pile sp quipointe sur le début du blo
 d'arguments à passer lors d'un pro
hain appel de pro
édure, et le poin-teur d'arguments fp qui repère la limite entre le blo
 de paramètres reçus et le blo
 de variableslo
ales. Cette te
hnique est 
onnue sous le terme de lien dynamique.11.2.3 Prin
ipe de 
odage ave
 lien dynamiqueLe 
ode d'une pro
édure se 
ompose d'un prologue, d'un 
orps et d'un épilogue.

param
sigma vers
sigma_pair

variables locales
de sigma

registres par
sigma

sauvegarde des

A

L

fp de main

vers sigma

 param main

de main
variables locales

sauvegarde des

main
registres par

fp

sp

variables locales
de sigma

registres par
sigma

vers sigma

 param main

sauvegarde des

de main
variables locales

sauvegarde des

main
registres par

sigma_pair
registres par

sauvegarde des
de sigma_pair

variables locales

param
sigma vers
sigma_pair

sigma_impair
sigma_pair vers
param

Adresses hautes

Adresses basses

sp

fp

Delta

Delta

Delta

k

i

v fp de sigma

Fig. 11.2 � La pile avant et après exé
ution du prologue de sigma_pairAu début du prologue, le sommet de pile sp repère le début du tableau d'arguments reçus quel'appelante a sto
kés dans la pile. Le 
ode du prologue1. sauvegarde les registres dans les mots mémoire qui pré
èdent les arguments reçus,
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148 CHAPITRE 11. PROCÉDURES AVEC RÉCURSION2. 
opie sp dans fp de telles sorte que fp repère la limite entre les arguments reçus et lessauvegardes de registres et3. dépla
e le sommet de pile sp de L o
tets, L 
orrespondant à l'espa
e mémoire o

upé parles sauvegardes de registres et les variables lo
ales (et éventuels temporaires en mémoire) dela pro
édure.
res = 0

n = 0

s

res = 2

res = 3

res = 4

n = 1

s

s

n = 2

s

n = 3

res = 1

n = 4

s

x = 4

DATA

BSS

resultat

m = 6

fibo(4)

fibo(0)

fibo(1)

fibo(3)

fibo(2)

main

r

r

r

r

p

p

p

p

pr

arg/param

var+sauve_regs de fibo(n)

p
r params (de fibo(n+1))

args (vers fibo(n-1))

PILE

Fig. 11.3 � Fibona

i : état de la pile au point FL'épilogue e�e
tue le travail inverse du prologue et e�e
tue le bran
hement de retour.Chaque appel de pro
édure :1. empile un tableau d'arguments,2. e�e
tue de bran
hement aller à la pro
édure et
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11.2. ALLOCATION ET LIBÉRATION DE BLOCS DANS LA PILE 1493. libère la pla
e allouée au tableau d'argumentsDans le 
orps de la pro
édure, le iième argument reçu de l'appelante est a

essible à l'adresse
fp + ∆i. L'adresse d'une variable lo
ale v est fp−∆v. Le kième argument passé dans la pile lorsd'un appel de pro
édure est à l'adresse sp + ∆k.Le sommet de pile se dépla
e 
haque fois que la pro
édure alloue ou libère de la pla
e pourun argument a passer à une pro
édure qu'elle appelle. La position relative des arguments reçuset des variables lo
ales de la pro
édure par rapport au sommet de pile 
hange au gré des appelsexé
utés par la pro
édure. Il est alors 
ommode d'y a

éder via le deuxième pointeur de pile (fp),qui reste �xe dans tout le 
orps de la pro
édure.La �gure 11.3 illustre l'état de la pile au point S du 
al
ul de la suite de �bona

i.11.2.4 Exemple ave
 lien dynamiqueextern void a1 (p0, p1, p2);extern void a2 (p0, p1, ..., p5);void b (int re
u0, re
u1, ..., re
u5){int v0, v2, ...,v7;v2 = re
u3;...a1 (10,11,12);a2 (20,re
u0,re
u2+3,23,24,25); /* 6 paramètres au total */}� On suppose que b a 8 variables lo
alesB_TAILLE_VARS = 8*4.textb: � prologue de b le sommet de pile est en sp0� sauvegarde des registres� On suppose que le 
orps de b modifie le registre r0� ==> a sauver ainsi que fp et lr (adresse de retour)stmdb sp, {r0,fp,lr} � sp non modifié� stm a sauvegardé 4 registresB_TAILLE_REGS = 3*4� fp repere les arguments reçus et regs sauvegardésmov fp, sp� l'adresse de retour est a

essible en fp - 4� l'an
ien fp est a

essible en fp - 8� la sauvegarde de r0 est a

essible en fp - B_TAILLE_REGSB_DELTA_lr = -4
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150 CHAPITRE 11. PROCÉDURES AVEC RÉCURSIONB_DELTA_r0 = -TAILLE_REGS� les positions des paramètres reçus par rapport à fpB_DELTA_re
u0 = B_DELTA_r0 � reçu0 dans la sauvegarde de r0B_DELTA_re
u1 = 0 � reçu1 en début de tableau empiléB_DELTA_re
u2 = 4 � par l'appelante de aB_DELTA_re
u3 = 8B_DELTA_re
u4 = 12B_DELTA_re
u5 = 16 � reçu5 en fin de tableau empilé� allo
ation de mémoire pour sauvegarde, lo
aux et� les arguments pour l'appel de a1 et a2sub sp, sp, #B_TAILLE_REGS+B_TAILLE_VARS� les positions des variables de b sto
kées dans la pileB_DELTA_V0 = - (TAILLE_REGS+ TAILLE_VARS)B_DELTA_V1 = B_DELTA_V0 + 4B_DELTA_V2 = B_DELTA_V0 + 8... � et
 jusqu'à 8� i
i le sommet de pile est en sp1� 
orps de b� affe
tation : v2 = reçu3ldr r0, [fp, #B_DELTA_RECU3℄str r0, [fp, #B_DELTA_V2℄� ...� appel de a1 : 2 arguments en pile, le 1er dans r0mov r0, #12 � empiler p2 = 12str r0, [sp, #-4℄!mov r0, #11 � empiler p1 = 11str r0, [sp, #-4℄!mov r0, #10 � p0 dans r0 = 10bl a1add sp, sp, #8 � libérer le blo
 (p1,p2)
� appel de a2 : 5 arguments en pile, le 1er dans r0mov r0, #25 � empiler p5 = 25str r0, [sp, #-4℄!mov r0, #24 � empiler p4 = 24str r0, [sp, #-4℄!mov r0, #23 � empiler p3 = 23str r0, [sp, #-4℄!ldr r0, [fp, #B_DELTA_RECU2℄ � empiler p2 = re
u2+3
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11.2. ALLOCATION ET LIBÉRATION DE BLOCS DANS LA PILE 151

sauve lr
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recu1
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+12
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+8

+4
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sauve r0
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+68

+72

taille_vars

taille_regs

taille_args
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+12

+16

- 8

- 4

+4

+8

sauve fp

sauve lr

recu2

recu1

recu3

recu4

recu5

fp
(sp0)

Fig. 11.4 � Extrait de la pile ave
 (à gau
he) et sans (à droite) lien dynamiqueadd r0, r0, #3str r0, [sp, #-4℄!ldr r0, [fp, #B_DELTA_RECU0℄ � empiler p1 = re
u0str r0, [sp, #-4℄!mov r0, #20 � p0 dans r0 = 20� i
i le sommet de pile est en sp2bl a2add sp, sp, #20 � libérer blo
 (p1,p5)� epilogue de b � libérer lo
auxmov sp, fp� sp pointe juste au_dessus de la zone de sauvegardeldmdb sp, {r0,fp,lr}� rétablit les 
ontenus de fp et lr avant l'appeljmp lr11.2.5 Te
hnique de 
odage sans lien dynamiqueUne autre te
hnique 
onsiste à n'utiliser que le registre sp pour a

éder à tous les élémentssto
kés dans la pile, auquel 
as le 
odage est nettement fa
ilité si la position du sommet de pilereste �xe dans tout le 
orps de la pro
édure.Le prin
ipe 
onsiste à préallouer dans le prologue de la mémoire pour le tableau d'argumentsà passer. Si le 
orps de la pro
édure e�e
tue plusieurs appels de pro
édure, 
e tableau sera dimen-sionné pour l'appel qui passe le plus grand nombre d'arguments6.6au prix d'un léger gaspillage de pla
e dans la pile, 
e tableau étant évidement surdimensionné pour les autres
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152 CHAPITRE 11. PROCÉDURES AVEC RÉCURSIONLe blo
 d'arguments passés est alors a

essible à l'adresse sp, 
elui des variables lo
ales àl'adresse sp + A et 
elui des paramètres reçus à l'adresse sp + A + L.A2_NB_ARGS = 6 � pro
eure A2 a 6 argumentsB_NB_ARGS = 6 � pro
édure B à 6 argumentsB_TAILLE_VARS = 8*4 � 8 variables lo
ales en pileB_TAILLE_REGS = 2*4 � 2 registres sauvegardésB_TAILLE_ARGUMENTS=(A2_NB_ARGS-1)*4 � param p1 à p5 de a2B_TAILLE_ALLOC=B_TAILLE_ARGUMENTS+B_TAILLE_VARS+B_TAILLE_REGS.textb: stmdb sp, {r0,lr}sub sp, sp, #B_TAILLE_ALLOC� empla
ement de sauvegarde de r0 : debut de TAILLE_REGSB_DELTA_r0 = B_TAILLE_ARGUMENTS+B_TAILLE_VARS� les positions des paramètres reçusB_DELTA_re
u0 = B_DELTA_r0 � reçu0 dans la sauvegarde de r0� les autres dans la pileB_DELTA_re
u1 = B_TAILLE_ALLOC + 0B_DELTA_re
u2 = B_TAILLE_ALLOC + 4... � et
 jusqu'à re
u5 et +16� les positions des variables de b sto
kées dans la pileB_DELTA_V0 = B_TAILLE_ARGUMENTSB_DELTA_V0 = B_TAILLE_ARGUMENTS+4... � et
 jusqu'à v8 et +8� 
orps de b� affe
tation : v2 = reçu3ldr r0, [sp, #B_DELTA_RECU3℄str r0, [sp, #B_DELTA_V2℄� ...� appel de a1 : 2 arguments en pile, le 1er dans r0mov r0, #12 � passer p2 =12str r0, [sp, #4℄mov r0, #11 � et p1 =11str r0, [sp, #0℄mov r0, #10 � p0 dans r0 =10bl a1� appel de a2 : 5 arguments en pile, le 1er dans r0appels 
©Philippe Waille UJF/UFR IMA 6 juillet 2006



11.3. TAILLE DE PILE ET DÉBORDEMENT 153mov r0, #25 � passer p5 =25str r0, [sp, #16℄mov r0, #25 � et p4 =24str r0, [sp, #12℄mov r0, #25 � et p3 =23str r0, [sp, #8℄ldr r0, [sp, #B_DELTA_RECU2℄ � et p2 = re
u2+3add r0, r0, #3str r0, [sp, #4℄ldr r0, [sp, #B_DELTA_RECU0℄ � et p1 = re
u0str r0, [sp, #0℄mov r0, #20 � p0 dans r0bl a2� epilogue de badd sp, sp, #B_TAILLE_ALLOC� sp pointe juste au_dessus de la zone de sauvegardeldmdb sp, {r0,lr}jmp lr11.3 Taille de pile et débordementLa taille de la pile à prévoir dépend de la profondeur de l'arbre des appels, qui peut êtreélevée dans le 
as de programmes ré
ursifs. Il existe don
 deux zones de données sus
eptibles degrossir au 
ours de l'exé
ution d'un programme : la pile, ave
 les appels de pro
édure, et le tas(généralement une extension de bss) au gré des allo
ations dynamique de mémoire.Deux 
as de �gure peuvent alors se présenter :� Le programmeur est 
apable de déterminer la borne supérieure de la 
onsommation demémoire de son algorithme et a dimensionné les se
tions bss et pile en 
onséquen
e� Le programmeur ne 
onnaît pas la 
onsommation maximale de mémoire de son programme(par exemple par
e qu'elle dépend des données à traiter) et il doit véri�er avant 
haqueallo
ation de mémoire (expli
ite ou lors d'un appel de pro
édure) qu'il reste assez de mémoirelibre pour le faire.En général, on 
hoisit de faire 
roître le tas vers les adresses hautes et la pile vers les adressesbasses. En l'absen
e de système d'exploitation, le programmeur devrait in
lure des tests de débor-dement dans son 
ode. Une te
hnique de gestion simple 
onsiste à pla
er la mémoire libre entrele tas et la pile : la mémoire libre est épuisée lorsque le sommet de la pile et l'extrémité du tas serejoignent.Sur les ma
hines dotées d'un mé
anisme de mémoire virtuelle, les débordements sont déte
tésautomatiquement par le matériel, qui en informe le noyau du système d'exploitation et 
e dernierinterrompt l'exé
ution du programme fautif : le programmeur (ou le 
ompilateur) peut se dispenserde tester les débordements de mémoire.
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Chapitre 12Pro
édures : 
as parti
uliers
12.1 C ANSI et blo
s à la PASCALDans les langages à stru
ture de blo
s tels que PASCAL, il est possible de dé�nir des pro-
édures à l'intérieur d'autres pro
édures. Chaque pro
édure a alors automatiquement a

ès auxvariables lo
ales et aux pro
édures lo
ales des pro
édures qui l'englobent.Le langage C tel qu'il a été dé�ni initialement par Kernighan et Rit
hie a une stru
ture "plate" :les pro
édures sont dé
larées les unes à 
oté des autres et ne s'englobent pas. Le passage de para-mètres de type pointeur via un appel (des appels en 
as
ade) est l'unique méthode permettant àune pro
édure de modi�er les variables lo
ales d'une autre pro
édure.La norme ANSI dé�nissant le langage C a enri
hi la dé�nition initiale et le C ANSI est devenuun langage à stu
ture de blo
 autorisant la dé
laration de pro
édures à l'intérieur d'autres pro
é-dures. Nous ne détaillerons pas la tradu
tion en langage d'asemblage des a

ès aux variables etpro
édures dé
larés par les pro
édures englobantes.12.2 Fon
tionsUn fon
tion est une routine retournant un résultat utilisable dans une a�e
tation. Outre laliste des paramètres et leur type, la dé
laration d'une fon
tion pré
ise le type de résultat qu'elleretourne. En C, les pro
édures (qui ne retournent pas de résultat) sont dé
larées 
omme des fon
-tions parti
ulières retournant void (absen
e de type : pas de résultat).Une fon
tion rempla
e habituellement une pro
édure qui ne 
al
ule qu'un seul résultat.int b, a=3;/* variante pro
édure */ /* variante fon
tion */void pro
_fois2 (int x, int *res) int fon
_fois2 (int x){ {*res = x + x; return (x + x);} }void essaip () void essaif (){ {pro
_fois2 (a, &b); b = fun
_fois2 (a);} }155



156 CHAPITRE 12. PROCÉDURES : CAS PARTICULIERSLa fon
tion appelante et la fon
tion appelée doivent 
onvenir d'un empla
ement de sto
kagedu résultat. Une 
onvention répandue 
onsiste à sto
ker le résultat en lieu et pla
e du premierparamètre reçu. Dans notre exemple, le résultat d'une fon
tion sera sto
ké dans le premier registrer0. .dataa: .word 3.bssb: .skip 4.text� x dans r0, résultat dans r0fon
_fois2: add r0, r0, r0jmpl lressaif: ... � prologue : sauvegarde regsmov32 r1, #aldr r0, [r1℄bl fon
_fois2mov32 r1, #bstr r0, [r1℄... � epilogue : restauration regs + retour12.3 Pointeurs de fon
tionsComme tout objet C ayant une adresse mémoire, une fon
tion1 peut être repérée par unpointeur. L'entité obtenue en appliquant l'opérateur * au 
ontenu d'un pointeur de fon
tion estune fon
tion que l'on peut appeler.int oppose (int x){return (-x);}/* Définition du type intfint : *//* fon
tion d'un entier retournant un entier */typedef int intfint (int);intfint *pointe_fon
 =&oppose; /* un pointeur de fon
tion */void main (){/* appel de oppose */b = (*pointe_fon
) (3); /* b = - 3 */pointe_fon
 = &fon
_fois2;/* appel de fois2 */1ou une pro
édure 
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12.4. PARAMÈTRE DE TYPE TABLEAU 157b = (*pointe_fon
) (b); /* b = - 6 */} .datapointe_fon
: .word oppose � intfint *pointe_fon
 = &oppose.text... � extraits du 
ode de main� appel b = (*pointe_fon
) (3)mov r0, #3mov32 r1, #pointe_fon
ldr r1, [r1℄jmpl r1mov r1, #bstr r0, [r1℄ � pointe_fon
 = &fon
_fois2mov r0, #fon
_fois2mov32 r1, #pointe_fon
str r0, [r1℄ � b = (*pointe_fon
) (b)mov r0, #bldr r0, [r0℄mov32 r1, #pointe_fon
ldr r1, [r1℄jmpl r1mov r1, #bstr r0, [r1℄...12.4 Paramètre de type tableauRappelons qu'une dé
laration de tableau dé�nit simplement une 
onstante pointeur du nomdu tableau, repérant son premier élément. Ce
i a deux 
onséquen
es :� Un paramètre tableau est toujours passé par adresse. Le prototype de la fon
tion peutdé
larer le paramètre 
omme un tableau sans pré
iser sa dimension, ou 
omme un pointeur :les deux notations sont synonymes.� Si la pro
édure a besoin de 
onnaître la taille du tableau, 
elle-
i doit être passée à part
omme un deuxième paramètre./* 
al
ul du maximum et du minimum des éléments d'un tableau */#define TAILLE_TAB 4long t [TAILLE_TAB℄ = { 5, 2, 0, 9};long maxtab (unsigned long t[℄, long taille){int i;unsigned long max;max = 0;
©Philippe Waille UJF/UFR IMA 6 juillet 2006



158 CHAPITRE 12. PROCÉDURES : CAS PARTICULIERSfor (i=0; i< taille; i++)if (*(t+i) > max) max = t[i℄; /* t[i℄ et *(t+i) synonymes */return max}long mintab (unsigned long *t, long taille){int i;unsigned long min;max = 0;for (i=0; i< taille; i++)if (t[i℄ > min) min = *(t+i);return min}void main (){unsigned long l;l = mintab(t,TAILLE_TAB);l = maxtab(t,TAILLE_TAB);}12.5 Paramètre et résultat de type stru
tureDans la dé�nition initiale du C, une fon
tion ne pouvait a

epter que des paramètres s
alaires2 :entier, nombre �ottant ou pointeur.Dans la version initiale du langage C, pour passer le 
ontenu d'une stru
ture à une pro
édure, leprogrammeur devait passer expli
itement autant de paramètres que de membres dans la stru
ture.Le C ANSI autorise les paramètres de stype stru
tures, le tradu
teur devant se 
harger de letransformer en passage individuel de 
ha
un des membres.stru
t point { float x,y;};stru
t droite {stru
t point orig;stru
t point dest;};stru
t droite dd = {{1.0, 2.0}, {3.5, 6.0}};/* 
al
ul de longueur : norme C ANSI */float longueur (stru
t droite d){float l;l = (d.dest.x-d.orig.x)*(d.dest.x-d.orig.x);l += (d.dest.y-d.orig.y)*(d.dest.y-d.orig.y);return sqrt(l);}/* 
al
ul de longueur : */2s
alaire signi�e i
i sto
kable dans un mot ou un registre
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12.6. GESTION DES APPELS À NOMBRE VARIABLE D'ARGUMENTS 159/* 
onversion à l'an
ienne norme C Kernighan & Rit
hie */float longueur_an
ien (float xorig, float yorig, float xdest, float ydest){float l;l = (xdest-xorig)*(xdest-xorig);l += (ydest-yorig)*(ydest-yorig);return sqrt(l);}void main (){float norme;norme = longueur (dd);norme = longueur_an
ien (dd.orig.x, dd.orig.y,dd.dest.x, dd.dest.y);} Le même prin
ipe s'applique au fon
tions devant retourner un objet de type stru
ture : 
esfon
tions seront 
onverties en pro
édures re
evant un paramètre de type pointeur, soit expli
ite-ment par le programmeur (norme K&R), soit impli
itement par le tradu
teur (C ANSI)./* exemple de resultat de type stru
ture, nouvelle norme */stru
t droite de
aler (){stru
t droite res;res.orig.x = dd.orig.x + 2.0;res.orig.y = dd.orig.y + 3.0;res.dest.x = dd.dest.x + 2.0;res.dest.y = dd.dest.y + 3.0;return(res);}/* idem , norme C K&R */void de
aler_an
ien(stru
t droite *res){*res.orig.x = dd.orig.x + 2.0;*res.orig.y = dd.orig.y + 3.0;*res.dest.x = dd.dest.x + 2.0;*res.dest.y = dd.dest.y + 3.0;}void main(){dd = de
aler (); /* norme ANSI */de
aler_an
ien(&dd); /* 
onversion norme K&R */}12.6 Gestion des appels à nombre variable d'argumentsCertaines fon
tions sont 
onçues pour a

epter une liste d'arguments de taille quel
onque. Lalongueur de la liste peut être dé�nie par le 
ontenu du premier argument, ou la liste peut être
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160 CHAPITRE 12. PROCÉDURES : CAS PARTICULIERSdélimitée par un marqueur de �n (typiquement l'entier 0 ou le pointeur NULL). A titre d'illustra-tion de la première méthode, 
itons les fon
tions printf et s
anf. La primitive posix exe
l est unbon exemple d'utilisation de marqueur de �n de liste.Dans le prototype de la fon
tion, on note ... la liste de paramètres de longueur variable. Cetteliste est pré
édée d'au moins un paramètre nommé expli
itement.Les fon
tions à nombre de paramètres quel
onques exploitent le fait que les arguments sontsto
kés sous forme de tableau dans la pile, bien que de nombreuses 
onventions d'appel stipulentque les arguments r à n sont empilés et que les arguments 0 à r-1 sont passés dans r registres dupro
esseur.Pour se ramener dans tous les 
as à un 
as unique simple de par
ours de tableau de paramètresdans la pile, les fon
tions à nombre quel
onque de paramètres re
opient les premiers paramètresdes registres dans la pile avant d'e�e
tuer la sauvegarde de l'adresse de retour et des autres re-gistres modi�és dans le 
orps de la pro
édure. La �gure 12.1 illustre 
ette re
opie pour r = 4.
sp2/fp

registres
sauve autres

pt_arg

r3
r2
r1
r0

dans la pile

arguments des registres

recopie des premiers

vars locales

registres

transmis
dans

args

args
transmis
dans
la pile

sp1

boucle de
parcours

de la liste

d’arguments

(r)

Fig. 12.1 � Fon
tions varargs : bou
le de par
ours des argumentsDans le 
orps d'une telle fon
tion, pour par
ourir le tableau d'arguments de taille variable, onutilise une variable pointeur (nommée pt_arg dans l'exemple) de type va_list.Pour initialiser le pointeur d'argument à l'adresse du dernier argument nommé expli
itement(r dans l'exempe), on utilise la ma
ro va_arg(pt_arg,r). Cette ma
ro génère un 
ode que l'onpourrait é
rire : pt_arg = (va_list) &r ; pt_arg++ : pt_arg repère l'argument dans la pilequi suit immédiatement l'argument r.Pour 
onsulter l'argument 
ourant pointé par pt_arg, l'a�e
ter à une variable v de type t etpasser à l'argument suivant dans la liste, on utilise la ma
ro va_arg : v=va_arg(pt_arg,t).L'expansion de 
ette ma
ro 
orrespond à v= *(t *)pt_arg ; ((t *)pt_arg)++.La ma
ro va_end(pt_arg) ne génère pas de 
ode : elle permet d'indiquer au 
ompilateur laportée de la dé
laration du pointeur d'arguments pt_arg#in
lude <stdio.h>#in
lude <stdarg.h> 
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12.6. GESTION DES APPELS À NOMBRE VARIABLE D'ARGUMENTS 161/* Cal
ul la somme d'une liste d'entiers terminée par 0 */void somme (unsigned *r,...){register int s, arg_lu; /* 
ode equivalent aux ma
ros va_xxx */va_list pt_arg; /* { void * pt_arg *//* affe
ter à pt_arg l'adresse du premier argument *//* de la liste, qui se trouve juste après r */va_start(pt_arg,r); /* pt_arg = &r; *((int *) pt_arg)++ */s=0;do{arg_lu = va_arg(pt_arg,int); /* arg_lu = * (int *) pt_arg; *//* ((int *) pt_arg)++ */s+= arg_lu;}while (arg_lu != 0);va_end(pt_arg); /* } fin de la portée de la dé
laration de pt_arg */*r = s;}void main (){int x;somme (&x, 1,2,3,4,5,0); /* liste de 5 arguments + argument initial */printf ("somme=%d\n",x);somme (&x, 4,5,0); /* liste de 2 arguments + argument initial */printf ("somme=%d\n",x);}� Tradu
tion de somme� Convention d'appel : quatre premiers arguments dans registres r0 à r3�� Allo
ation des registres (arbitraire)� r0 : arg_lu� r1 : s� r2 : pt_arg� r3 : r .textsomme: � prologue parti
ulier� i
i l'appelante a laissé le sommet de pile en sp1stmfd sp!, {r0-r3} � re
opie des 4 premiers args dans la pile� i
i le sommet de pile est en sp2 : repère tableau d'argumentsstmfd sp!, {fp,lr} � sauvegarde des autres registres� fp repère les premiers arguementsadd fp, sp, #8
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162 CHAPITRE 12. PROCÉDURES : CAS PARTICULIERSDELTA_R = 0DELTA_DEBUT_LISTE_ARGS=4� 
orps de sommeadd r2, fp, #DELTA_DEBUT_LISTE_ARGS � va_start(pt_arg,r)mov r1, #0 � s = 0;
orps_do: ldr r0, [r2℄, #4 � va_arg(pt_arg,int)add r1, r1, r0 � s += arg_lu
mp r0, #0 � while (arg_lu != 0)bne 
orps_doldr r3, [fp, #DELTA_R℄ � *r = sstr r1, [r3℄� epilogueldmfd sp!, {fp, lr} � restaurer registresadd sp, sp, #16 � libérer pla
e des� 4 premiers args� retourmov p
, lr12.7 Paramètres de mainMain est une fon
tion appelée par le 
ode d'initialisation standard ajouté par défaut à toutprogramme C. Main retourne un 
ode d'erreur que le pro
essus qui a lan
é l'exé
ution du pro-gramme peut ré
upérer. Un 
ode de retour nul indique habituellement l'absen
e d'erreur.La �gure 12.2 illustre la pile lors de l'exé
ution d'un programme de 
al
ul lan
é ave
 la lignede 
ommande 
i-dessous. La �gure suppose que la 
onvention d'appel spé
i�e que le premierparamètre est transmis dans r0.mama
hine> 
al
ul 1234 56mama
hine>Les paramètres de main lui permettent d'a

éder aux arguments de lan
ement. Dans un envi-ronnement posix, 
es arguments 
orrespondent aux 
haînes de 
ara
tères représentant les mots dela ligne de 
ommande ("
al
ul", "1234" et "56") et aux dé�nitions de variables d'environnement(du genre "PATH=/usr/.../bin", "TERM=xterm", "SHELL=/bin/t
sh").Les trois paramètres standard de main sont :1. arg
 : le nombre d'éléments du tableau argv,2. argv : un tableau de arg
 pointeurs sur les 
haînes de 
ara
tères représentant les argumentsde la ligne de 
ommande,3. envp : un tableau de arg
 pointeurs sur les 
haînes de 
ara
tères représentant les argumentsde la ligne de 
ommande, terminé par la 
onstante NULL.#in
lude <stdio.h> 
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Fig. 12.2 � Les paramètres de main dans la pileint main (int arg
, 
har *argv[℄, 
har *envp[℄){int i;printf ("arg
 : %d\n",arg
);for (i=0;i<arg
;i++)printf ("argv[i℄ : %s\n", argv[i℄);i=0;while (envp[i℄ != NULL){printf ("envp[i℄ : %s\n", envp[i℄);i++;}return 0;}/* Ce programme affi
he le texte suivant : *//* arg
 : 3 */
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164 CHAPITRE 12. PROCÉDURES : CAS PARTICULIERS/* argv[0℄ : 
al
ul *//* argv[1℄ : 123 *//* argv[2℄ : 456 *//* envp[0℄ : PATH=/usr/...../bin *//* envp[1℄ : TERM=/xterm *//* envp[2℄ : SHELL=/bin/t
sh */
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Chapitre 13Compilation séparée et attributs desto
kageUn programme est habituellement dé
omposé en modules 
ompilés séparément en �
hiers ob-jets relogeables, fusionnés en un �
hier exé
utable unique lors de l'édition de liens.Certains langages o�rent une gestion des modules élaborée, telle la gestion des "paquetages"dans le langage ADA. La notion des modules en C et en langage d'assemblage est moins élaboréeet 
e 
onfond ave
 
elle de �
hier : 
haque �
hier est un module. Dans 
e 
hapitre, les termesmodules et �
hiers sont synonymes.La tradu
tion séparée des �
hiers pose deux problèmes di
tin
ts :1. lors de la 
ompilation du C : la 
ohéren
e de type des objets dé�nis (et exportés) dans un�
hier et utilisés (importés) dans un autre2. lors de l'assemblage ou de la 
ompilation du C : la dé�nition de la portée des symboles pourla phase d'édition de liens,Un symbole partagé 
orrespond typiquement à une variable 
ommune utilisée dans plusieurs�
hiers ou à une fon
tion dé�nie dans un �
hier et utilisée dans un autre.13.1 Cohéren
e de type et 
ompilation séparée en CUn 
ompilateur a besoin de 
onnaître le type d'une variable (respe
tivement les types des pa-ramètres et du résultat pour une fon
tion) pour traduire 
orre
tement les a

ès (respe
tivementles appels) à 
elle-
i : le type spé
i�e la taille et l'interprétation du 
ontenu de la variable (respe
-tivement des paramètres à passer et du résultat à retourner) à transférer.13.1.1 Dé
laration de type d'une variableUne dé
laration ordinaire de variable a un double r�le :1. dé�nir le type de la variable et2. réserver de la mémoire pour la sto
ker.Le partage entre plusieurs �
hiers 
ompilés séparéments né
essite deux types de dé
larations :1. une dé
laration ordinaire ave
 allo
ation de mémoire dans le module qui dé�nit (exporte) lavariable et 165



166 CHAPITRE 13. COMPILATION SÉPARÉE ET ATTRIBUTS DE STOCKAGE2. une dé
laration spé
iale sans réservation de mémoire pour spé
i�er le type dans les modulesqui a

èdent à (importent) 
ette variable sans la dé�nir.Dans le langage C, une dé
laration de variable du deuxième type est pré
édée de extern : 
etattribut de sto
kage indique que la dé
laration spé
i�e uniquement le type de la variable et qu'unautre module doit déjà réserver de la mémoire pour sto
ker 
ette variable.13.1.2 Dé
laration de (proto)type d'une fon
tionUne dé
laration ordinaire dé�nit le type d'une fon
tion et alloue de la mémoire aux instru
tionsqu'elle 
ontient. La dé
laration de 
ompose de deux parties :1. le prototype, qui spé
i�e le nom de la fon
tion et le type de résultat qu'elle retourne, ainsique (délimités par une paire de parenthèses) la liste des types et noms des arguments.2. le 
orps de la fon
tion, 
omposé d'une ou plusieurs instru
tions (pré
édées éventuellementde dé
larations de variables lo
ales) en
adrées par une paire d'a

olades.Le type de la fon
tion (autrement dit la manière de l'appeler) est entièrement dé�ni par sonprototype. Le 
orps de la fon
tion spé
i�e le 
ontenu initial de la mémoire allouée à 
ette fon
tion.Il est traduit en une suite d'autant de valeurs initiales que de mots réservés, qui 
orrespondent au
odes des instru
tions ma
hines (et éventuellement aux 
onstantes) utilisées dans la fon
tion.Une dé
laration de fon
tion sans 
orps ne spé
i�e que le type et n'alloue pas de mémoire pourla fon
tion. Pour dé�nir le (proto)type de la fon
tion, la liste des types des paramètres su�t etleur nom peut être omis.L'attribut extern est optionnel : une dé
laration sans 
orps ne peut être qu'une simple spé
i-�
ation du type de la fon
tion.La seule dé
laration du type d'une fon
tion est né
essaire dans deux 
ontextes :1. l'utilisation dans un module d'une fon
tion dé�nie dans un autre �
hier, 
omme pour lesvariables et,2. la dé
laration de fon
tions mutuellement ré
ursives.13.1.3 Gestion de la 
ohéren
eLors de la 
ompilation séparée de �
hiers, il 
onvient de déte
ter toute dis
ordan
e de typeentre la dé
laration qui réserve la mémoire dans le module qui dé�nit (exporte) une variable ouune fon
tion et la ou les dé
larations de type dans les modules qui l'utilisent (importent).La te
hnique habituelle en C 
onsiste à pla
er les dé
larations de type dans un �
hier su�xé.h et à l'in
lure 
e dernier dans tous les �
hiers qui utilisent (y 
ompris 
elui qui dé�nit) les va-riables ou fon
tions 
itées dans le �
hier .h. Toute divergen
e entre la spé
i�
ation de type in
lusedans le �
hier .h et la dé
laration d'une variable ou d'une fon
tion dans le module qui la dé�nitdé
len
hera une erreur lors de la 
ompilation de 
e dernier.Un �
hier tru
.h in
lus par la dire
tive #in
lude<tru
.h> spé
i�e les types et prototypesasso
iés aux bibliothèques standard livrées ave
 le système d'explitation et les 
haînes de 
ompi-lation. Il appartient à un des répertoires prédé�nis dé
rivant 
es bibliothèques.
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13.1. COHÉRENCE DE TYPE ET COMPILATION SÉPARÉE EN C 167Un �
hier monprog.h in
lus par la dire
tive #in
lude"monprog.h" est sto
ké ave
 les�
hiers .
 du programme et dé
rit les variables et fon
tions partagées du programme à 
ompiler.13.1.4 ExempleConsidérons à titre d'exemple le squelette de programme suivant, 
omposé de trois �
hiers :1. un �
hier prog.h dé�nissant le type des variables et fon
tions partagées,2. un �
hier prog2.
 dé�nissant x et f et utilisant y et 
al
ul,3. un �
hier prog.
 dé�nissant y et 
al
ul et utilisant x et f./*****************************************************************//* fi
hier prog.h *//*****************************************************************//* Définition du type des variables partagées */extern long x;extern long y;/* Définition du prototype des fon
tions partagées */extern void 
al
ul (long, long *);extern long f (long);On peut remarquer l'absen
e de nom des paramètres des fon
tions dans le �
hier de dé�nitiondes prototypes./*****************************************************************//* fi
hier prog2.
 *//*****************************************************************/#in
lude "prog.h"/* Variable définie et exportée */long x = 4;/* Fon
tion définie et exportée */long f(long t){long r;/* ... */
al
ul (y+2,&r); /* 
al
ul et y sont définies dans prog.
 *//* ... */return (r);} Le �
hier prog.
 illustre l'utilisation des prototypes pour prédé
larer le type de fon
tions mu-tuellement ré
ursives./*****************************************************************//* fi
hier prog.
 *//*****************************************************************/
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168 CHAPITRE 13. COMPILATION SÉPARÉE ET ATTRIBUTS DE STOCKAGE#in
lude "prog.h"/* Variable définie et exportée */long y = 13;/* Pro
édure définie et exportée */void 
al
ul (long x, long *r){*r = x +3;}/* Ce prototype est né
essaire pour dé
larer 
orre
tement *//* les pro
édures mutuellement ré
ursives lo
ales */stati
 void re
ursive1 (long); /* Cette dé
laration est indispensable */stati
 void re
ursive2 (long); /* Cette dé
laration est fa
ultative */stati
 void re
ursive2 (long b){/* ... */if (b>1) re
ursive1(b-1);/* ... */}stati
 void re
ursive1 (long a){/* ... */re
ursive2(a/2);/* ... */}/* Main utilise f et x définies dans prog2.
 */int main (){/* ... */re
ursive1(x);f(11);/* ... */return 0;}13.2 Exportation de symbolesLa dé�nition d'un symbole (variable ou fon
tion) dans un module 
orrespond à la dé�nitiond'un nom symbole asso
ié à l'empla
ement mémoire alloué au sto
kage du 
ontenu de la variableou des instru
tions de la fon
tion.Le langage utilisé doit permettre de spé
i�er si la dé�nition d'un symbole dans un �
hier estutilisable dans les autres �
hiers (dé�nition globale/exportée) ou si la portée de la dé�nition estlimitée au seul �
hier qui la 
ontient (dé�nition à portée lo
ale).
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13.2. EXPORTATION DE SYMBOLES 169Notons que tout symbole non dé�ni utilisé dans un module sera impli
itement réputé importéd'un autre module. En C, en l'absen
e de spé
i�
ation de type, le symbole sera supposé de typeint (ou retourner un résultat de type int à partir de paramètres de type int pour une fon
tion).13.2.1 Exportation en langage d'assemblageEn langage d'assemblage, une étiquette a par défaut une portée limitée au module qui ladé�nit. La dire
tive d'exportation d'une dé�nition d'étiquette vers les autres �
hiers 
ompilésséparément est .global étiquette.Si deux variables1 dé�nies dans deux modules di�érents ont le même nom, elles sont 
onsidé-rées 
omme deux variables distin
tes. Tout se passe 
omme si l'on avait impli
itement pré�xé lenom de variable par le nom du �
hier dans laquelle la variable est dé�nie, pour donner deux nomsde variables di�érents.Si un symbole est utilisé dans un �
hier sans être dé�ni, il est supposé importé depuis un autre�
hier (dans lequel il aura l'attribut global) et sa dé�nition sera 
onnue lors de la phase d'éditionde liens.13.2.2 Exportation en langage CLes variables et les fon
tions dé�nies à l'intérieur d'une fon
tion ne sont a

essibles que dansle 
orps de 
ette fon
tion.Les variables et fon
tions dé�nies à l'extérieur de toute fon
tion sont par défaut exportablesvers d'autres �
hiers. Une variable ou une fon
tion lo
ale à un �
hier doit être dé�nie ave
 l'attri-but de sto
kage stati
 pour en 
a
her la dé�nition aux autres modules.Le mé
anisme d'exportation par défaut du langage C est 
ependant 
riti
able. Supposons quedeux programmeurs é
rivant deux modules d'un même programme utilisent fortuitement le mêmenom de variable privée (éventuellement de types di�érents) dans leurs �
hiers respe
tifs.Si dans les deux �
hiers la variable est dé
larée ave
 l'attribut stati
, tout est 
orre
t : ellessont 
onsidérées 
omme deux variables distin
tes. Si la variable est dé
larée dans les deux �
hierssans l'attribut stati
, l'édition de liens signalera une erreur de double dé�nition.En revan
he, si l'un des programmeurs ne spé
i�e pas l'attribut stati
 et que l'autre oubliede dé
larer sa variable, au
une erreur ne sera générée et les deux modules utiliseront une variablepartagée (du type spé
i�ée par le permier module) au lieu de deux variables indépendantes.La tradu
tion en langage d'assemblage d'une dé
laration C génère don
 :1. une réservation de mémoire2. une dé�nition de symbole étiquette et3. une dire
tive .global d'exportation du symbole, omise en présen
e de l'attribut stati
.Notons que dans les 
hapitres pré
édents, au
une des dé
larations C ne spé
i�ait l'attributstati
. Cependant les dire
tives .global 
orrespondant à 
es dé
larations ont été omises dans latradu
tion en langage d'assemblage pour ne pas perturber le le
teur.1même 
hose pour des fon
tions
©Philippe Waille UJF/UFR IMA 6 juillet 2006



170 CHAPITRE 13. COMPILATION SÉPARÉE ET ATTRIBUTS DE STOCKAGE13.2.3 ExempleVoi
i à titre d'exemple deux des modules (export1.
 et export2.
) d'un programme C (quien 
omporte d'autres). Ces deux modules partagent une variable (variable_partagee) et deuxfon
tions (f1_partagee et f2_partagee). En revan
he, 
ha
un dé
lare une variable (var_lo
ale)et deux fon
tions de même nom (f_lo
ale) et deux fon
tions de noms di�érents (essai et essai2),privées toutes les 
inq./****************************************************************//* fi
hier export.h *//****************************************************************/extern long var_partagee;extern long f1_partagee (long);extern long f2_partagee (long);/****************************************************************//* fi
hier export1.
 *//****************************************************************/#in
lude "export.h"long var_partagee = 1234;long f1_partagee (long a){return (a & 1);}stati
 long var_lo
ale = 3;stati
 int f_lo
ale (int x){return (3*x);}stati
 void essai (){/* ... */var_lo
ale = f1_partagee (4);var_partagee = f2_partagee (3);var_lo
ale = f_lo
ale (2);/* ... */}/****************************************************************//* fi
hier export2.
 *//****************************************************************/#in
lude "export.h" 
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13.2. EXPORTATION DE SYMBOLES 171long f2_partagee (long a){return (a/2);}stati
 long var_lo
ale = 5;stati
 int f_lo
ale (int x){return (x+2);}stati
 void essai2(){/* ... */var_lo
ale=f_lo
ale(8);var_partagee=f1_partagee(6);/* ... */} Voi
i à quoi ressemble sa tradu
tion en langage d'assemblage :������������������������������������������������������������������ fi
hier export1.s�����������������������������������������������������������������.data.global var_partageevar_partagee: .word 1234var_lo
ale: .word 3.text.global f1_partageef1_partagee: and r0, r0, #1jmp lrf_lo
ale: add r0, r0, r0, LSL #1jmp lressai: � sauvegarde et restauration� des registres modifies omises� ...mov r0, #4bl f1_partageemov32 r1, #var_lo
alestr r0,[r1℄mov r0, #3bl f2_partageemov32 r2, #var_partagee
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172 CHAPITRE 13. COMPILATION SÉPARÉE ET ATTRIBUTS DE STOCKAGEstr r0,[r2℄mov r0, #2bl f_lo
alemov32 r1, #var_lo
alestr r0,[r1℄� ...jmpl lr������������������������������������������������������������������ fi
hier export2.s�����������������������������������������������������������������.datavar_lo
ale: .word 5.text.global f2_partageef2_partagee: mov r0, r0, ASR #1jmp lrf_lo
ale: add r0, r0, #2jmp lressai2: � sauvegarde et restauration� des registres modifies omises� ...mov r0, #8bl f_lo
alemov32 r2, #var_lo
alestr r0,[r2℄mov r0, #6bl f1_partageemov32 r1, #var_partageestr r0,[r1℄� ...jmpl lr13.3 Attributs de sto
kageLa dé
laration d'une variable peut être pré
édée d'un attribut ou d'un quali�
ateur de sto-
kage : auto, stati
, extern, register, 
onst ou volatile.13.3.1 Classes de sto
kageIl n'existe que deux 
lasses de sto
kage d'une variable C :1. statique : la mémoire de sto
kage de la variable est allouée statiquement (se
tions data oubss) et le 
ontenu de la variable est a

essible pendant toute la durée du programme,
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13.3. ATTRIBUTS DE STOCKAGE 1732. automatique : la mémoire de sto
kage est allouée dynamiquement (dans la pile2) au débutet libérée à la �n de l'exé
ution du blo
 d'instru
tions qui dé
lare la variable (après quoi son
ontenu est détruit).La 
lasse de sto
kage d'une variable dé�nie dans une fon
tion (ou dans un blo
 d'instru
tionsin
lus dans le 
orps d'une fon
tion) est impli
itement automatique. D'autre part, la 
lasse desto
kage d'une variable dé
larée à l'extérieur de toute fon
tion est toujours statique.La 
lasse automatique étant impli
ite dans tous les 
as de �gure où elle peut être utilisée,l'attribut de sto
kage auto ne sert en fait à rien et peut être systématiquement omis.L'attribut register, quelque peu tombé en désuétude, spé
i�e également une 
lasse de sto-
kage automatique, mais indique au 
ompilateur de pla
er si possible la variable dans un registre.L'opérateur "adresse de" (&) n'est pas appli
able à une variable register.13.3.2 Attribut de sto
kage stati
L'attribut de sto
kage stati
 a deux signi�
ations totalement di�érentes selon que la variableest dé
larée à l'intérieur d'une fon
tion ou à l'extérieur de toute fon
tion. Cette double sémantiquene 
onstitue pas le 
hoix de 
on
eption du langage C le plus heureux.Comme exposé pré
édemment, à l'extérieur de toute fon
tion, il masque la dé�nition de lavariable aux autres modules 
omposant le programme.Une variable dé
larée ave
 l'attribut stati
 à l'intérieur d'une fon
tion a un statut hybride :� Sa 
lasse de sto
kage est statique et elle 
onserve son 
ontenu entre deux appels de la fon
tion
omme si elle était dé
larée statiquement à l'extérieur de toute fon
tion.� Son nom n'est 
onnu et elle n'est a

essible qu'à l'intérieur du 
orps de la fon
tion : ellereste bien une variable privée de la fon
tion 
ontrairement à une variable qui serait dé
laréeà l'extérieur de 
elle-
i.Ce genre de dé
laration est par exemple utile pour dé�nir une fon
tion 
apable de 
ompter
ombien de fois elle a déjà été exé
utée./**********************************************************************//* gestion de ti
kets de file d'attente *//**********************************************************************/stati
 unsigned long donner_un_ti
ket (){stati
 unsigned long numero_
ourant = 1;return numero_
ourant++;}�����������������������������������������������������������������������.datanumero_
ourant_de_donner_un_ti
ket: .word 12un 
ompilateur optimisant peut aussi dé
ider de pla
er la variable dans un registre, sans 
hanger pour autantla durée du sto
kage
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174 CHAPITRE 13. COMPILATION SÉPARÉE ET ATTRIBUTS DE STOCKAGE.textdonner_un_ti
ket: stmfd sp!, {...,lr}mov32 r1, numero_
ourant_de_donner_un_ti
ketldr r2, [r1℄mov r0, r1add r2, r2, #1str r2, [r1℄ldmfd sp,! {....,lr}jmp lr13.3.3 Quali�
ateurs de sto
kage 
onst et volatileOutre un attribut de sto
kage, une dé
laration de variable peut in
lure un quali�
ateur desto
kage : 
onst ou volatile.L'attribut 
onst indique que la variable 
ontient une 
onstante : modi�er son 
ontenu est illé-gal. Le 
ompilateur peut alors véri�er l'absen
e d'a�e
tation dire
te d'une valeur à 
ette variable3.L'attribut volatile indique au 
ompilateur que le 
ontenu de la variable peut être modi�é enl'absen
e de tout a

ès dans le 
ode qu'il génère. Ce 
as de �gure se ren
ontre en parti
ulier en
as de partage d'une variable entre plusieurs pro
essus ou lorsqu'une addresse 
orrespond à undispositif d'entrée/sortie.Le 
ompilateur n'a pas le droit d'optimiser l'a

ès à une variable volatile sto
kée en mémoireen supposant que son 
ontenu vient d'être lu et sto
ké dans un registre par les instru
tions pré
é-dentes.stati
 long nonvol=0;stati
 volatile long vol=0;if (nonvol != 0) nonvol --;if (vol != 0) vol --;.datanonvol: .word 0vol: .word 0.textmov32 r1, #nonvolldr r0, [r1℄
mp r0, #0beq finnonvol� r0 
ontient en
ore la valeur a
tuelle de nonvol� on peut don
 omettre l'instru
tion ldr 
i-dessous� ldr r0,[r1℄sub r0, r0, #1str r0, [r1℄finonvol: mov32 r1, #vol3L'attribut 
onst n'est pas une assuran
e "tous risques" : une modi�
ation de la variable via un pointeur àl'insu du 
ompilateur reste généralement possible. 
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13.3. ATTRIBUTS DE STOCKAGE 175ldr r0, [r1℄
mp r0, #0beq finvol� la valeur de vol lue dans r0 peut etre obsolete� on ne peut don
 pas omettre l'instru
tion ldr 
i-dessousldr r0,[r1℄sub r0, r0, #1str r0, [r1℄finvol:
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Chapitre 14Spé
i�
ités du jeu d'instru
tions ARM
14.1 Registres, 
ompteur ordinal et instru
tions de 
al
ul14.1.1 RegistresUn pro
esseur ARM est doté de 16 registres généraux. Contrairement à la majorité des autrespro
esseurs, le 
ompteur ordinal d'un pro
esseur ARM est a

essible en tant que registre gé-néral : r15 (en langage d'assemblage on peut é
rire au 
hoix p
 ou r15).Lorsque p
/r15 est utilisé 
omme opérande, son 
ontenu est l'adresse de l'instru
tion 
ourantequi l'utilise plus huit. Pour optimiser les performan
es, les pro
esseurs sont 
onçus de manièreà exé
uter une nouvelle instru
tion par 
y
le (te
hique de pipeline). Ave
 
ette te
hnique, le +8s'explique par le fait que lorsque le 
ompteur ordinal est lu par l'instru
tion 
ourante, le pro
esseurest déjà en train de lire la deuxième instru
tion qui suit.La 
onvention de nommage des registres est la suivante : lr est synonyme de r14, sp de r13,ip de r12 et fp de r11.Les quatre o
tets du registre d'état, appelé 
psr1, sont notés 
,x,s,f, le dernier étant 
elui depoids forts 
ontenant les indi
ateurs NZCV. L'instru
tion spé
iale mrs 
opie le 
ontenu du re-gistre d'état dans un registre général. L'instru
tion e�e
tuant le transfert inverse est mrs, et il estpossible de ne modi�er que 
ertains o
tets du registre d'état.� transfert du registre d'état dans r2mrs r2, 
psr� transfert inverse, affe
tant les quatre o
tets du registre d'étatmsr 
psr_fsx
, r214.1.2 Constantes entières sur 32 bitsToutes les instru
tions ARM sont sur un seul mot de 32 bits, sans ex
eption. Pour 
hargerune 
onstante 32 bits quel
onque dans un registre, on utilise une instru
tion ldr ave
 une adresserelative au 
ompteur ordinal, qui permet d'a

éder à tout mot (de la se
tion text) dans le voisinagede l'instru
tion ldr (l'entier ajouté à p
 restant 
odable sur 12 bits).L'assembleur fournit une pseudo instru
tion de la forme ldr reg, etiquette ave
 etiquettedans le voisinage de l'instru
tion.1Current Program Status Register 177



178 CHAPITRE 14. SPÉCIFICITÉS DU JEU D'INSTRUCTIONS ARM� int ajout1 (int x) int ajout2 (int x)� { {� return (x+0x11111111); return (x+0x22222222);� } }� .textajout: ldr r1, [p
, #(
te1-ajout-8)℄ � r1 <- 11111111add r0, r0, r12mov p
, lr�� Utilisation de la pseudo-instru
tion ldr reg, étiquettei
i: ldr r2, 
te2 � génère ldr r2, [p
, #(
te2-i
i-8)℄add r0, r0, r12mov p
, lr
te1: .word 0x11111111 � 
es .word sont dans le voisinage
te2: .word 0x22222222 � de ajout et i
iPour fa
iliter en
ore plus le travail, l'utilisation de la dire
tive .ltorg et de la pseudo-instru
tionldr reg,=
te évite de dé
larer les mots 
ontenants les 
onstantes à 
harger dans les registres.Ainsi, la tradu
tion ARM de l'instru
tionmov32 r0,#12345678 s'é
rit ldr r0,= 0x12345678,suivi de (une seule fois et un peu plus loin dans la se
tion text) .ltorg.� 
harger 11112222 dans r1� 
harger 33334444 dans r2� 
harger 55556666 dans r3�� ave
 pseudo ldr = � 
ode expansé par l'assembleurldr r1, =0x11112222 � i
i1: ldr r1, [p
, #(
1 -i
i1 -8)℄ldr r2, =0x33334444 � i
i2: ldr r2, [p
, #(
2 -i
i2 -8)℄ldr r3, =0x33334444 � i
i3: ldr r3, [p
, #(
3 -i
i3 -8)℄... ...� sto
ker les 
onstantes i
i.ltorg � 
1: .word 0x11112222� 
2: .word 0x33334444� 
3: .word 0x4444555514.2 Instru
tions de 
al
ulLe tableau 14.1 résume les instru
tions ARM de 
al
ul.Les deux variantes d'addition add et ad
 utilisent respe
tivement 0 et l'indi
ateur C 
ommeretenue initiale. Le même prin
ipe d'applique aux instru
tions de soustra
tion (sub, sb
) qui re-tran
hent l'opérande droit de l'opérande gau
he. Il est également possible de soustraire l'opérandegau
he de l'opérande droit (rsb, rs
2).Le jeu d'instru
tion 
omprend une instru
tion pour 
haque opération bit à bit (and, or, eor),ainsi que andnot (bi
3 : opgauche& õpdroit).2Reverse SuBstra
t, Reverse Substra
t with Carry3BIt Clear 
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14.2. INSTRUCTIONS DE CALCUL 179
ode-op Nom Expli
ation du nom Opération remarque0000 AND AND et bit à bit0001 EOR Ex
lusive OR ou ex
lusif bit à bit0010 SUB SUBstra
t soustra
tion0011 RSB Reverse SuBstra
t soustra
tion inversée0100 ADD ADDition addition0101 ADC ADdition with Carry addition ave
 retenue0110 SBC SuBstra
t with Carry soustra
tion ave
 emprunt0111 RSC Reverse Substra
t with Carry soustra
tion inversée ave
 emprunt1000 TST TeST et bit à bit pas rd1001 TEQ Test EQuivalen
e ou ex
lusif bit à bit pas rd1010 CMP CoMPare soustra
tion pas rd1011 CMN CoMpare Not addition pas rd1100 ORR OR ou bit à bit1101 MOV MOVe 
opie pas rn1110 BIC BIt Clear et not bit à bit1111 MVN MoVe Not not (
omplément à 1) pas rnTab. 14.1 � Instru
tions de 
al
ul : nom rd, rn, op_droitL'instru
tion mov de 
opie d'un opérande (de type opérande droit) dans un registre destina-tion admet une variante mvn4 qui 
omplémente l'opérande.Toutes 
es instru
tions (par exemple de soustra
tion) déposent le résultat de l'opération dansun registre destination et existent en deux versions (subS, sub) qui mettent à jour ou non lesindi
ateurs ZCNV.Les instru
tions tst, teq et 
mp5 sont des variantes de andS, eorS et subS qui mettent àjour les indi
ateurs mais ne déposent pas le résultat apparent dans un registre (
e qui évite dedétruire un 
ontenu utile d'un registre pour faire de simples 
omparaisons). L'instru
tion 
mn6
ompare ave
 le 
omplément de l'opérande droit.14.2.1 Opérande droit, dé
alages et rotationsL'opérande droit d'une instru
tion de 
al
ul peut être un registre général ou un opérande im-médiat, à savoir un entier naturel 
odable sur 8 bits à une rotation à droite d'un nombre pair debits près.Il n'y a pas d'instru
tion ARM spé
i�que de dé
alage et de rotation, mais il est possible de lesappliquer à l'opérande droit de toute instru
tion de 
al
ul, s'il est de type registre (le 
ontenu duregistre n'est pas modi�é : le dé
alage est appliqué sur la 
opie du 
ontenu envoyée à l'unité de
al
ul)� Quelques exemples d'opérandes droits dans les 
al
uls� mov r3, #255 � 255 : 0xffadd r3, r3, #520 � 520 : 0x210, rotation de 0x214MoV Not5TeST, Test EQuivalen
e, CoMPare6CoMpare Not
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180 CHAPITRE 14. SPÉCIFICITÉS DU JEU D'INSTRUCTIONS ARMadd r2, r1, r1, LSL #3 � r2 = 9 * r1mov r1, r2, ASR r3 � r1 = r2 >> r3 (r3 int)mov r1, r2, LSR r3 � r1 = r2 >> r3 (r3 unsigned int)and r1, r1, r2, ROR #4 � rotation à droite 4 bitsorr r1, r1, r2, ROR r3 � rotation à droite de r3 bitsmov r1, r2, RRX � rotation 1 bit à droite de (r2,C)Sont disponibles le dé
alage arithmétique à droite (ASR), la rotation à droite (ROR et ledé
alage logique à gau
he ou à droite LSL, LSR7) de b bits. Le nombre de bits b doit appartenirà l'intervalle [1, 32℄8. Il peut s'agir d'une 
onstante entière 
odée sur 5 bits ou du 
ontenu d'untroisième registre.L'absen
e de modi�
ation de l'opérande droit est traité 
omme un dé
alage de zéro bits. Unerotation à droite de zéro bit est interprétée 
omme un rotation à droite d'un bit appliquée à unentier de 33 bits obtenu en 
on
aténant l'opérande droit et l'indi
ateur C (rotation notée RRX).14.3 Bran
hements et 
onditionsLes bran
hements relatifs utilisent un dépla
ement signé sur 24 bits exprimé en nombre d'ins-tru
tions et qui tient 
ompte du fait que PC pointe deux instru
tions en avan
e. Soit dest l'adressede l'instru
tion destination du bran
hement et source l'adresse de l'instru
tion de bran
hementrelatif, l'expression du dépla
ement est dest−source−8

4
. En pratique, le programmeur utilise des éti-quettes et l'assembleur se 
harge de 
al
uler la valeur du dépla
ement.En pratique, toutes les instru
tions ARM ordinaires sont 
onditionnelles : si la 
ondition estfausse, l'instru
tion n'a pas d'autre e�et que de faire passer le 
ompteur ordinal à l'instru
tionsuivante. Si la 
ondition est vraie, l'instru
tion est exé
utée normalement. En l'absen
e de su�xede 
ondition dans le mnémonique, la 
ondition toujours vraie est impli
itement utilisée (sub estsynonyme de subal). Cette fa
ilité permet de traduire de petites séquen
es 
onditionnelles sansbran
hement.� tradu
tion de si (r0==r1) r0 = r0*2; else r1 = r1 + 1;�� sans bran
hement ave
 bran
hement
mp r0, r1 
mp r0, r1bne sinonalors: addeq r0, r0, r0 alors: add r0, r0, r0bal finsisinon: addne r1, r1, #1 sinon: add r1, r1, #1finsi: finsi:�� Equivalent ARM de l'instru
tion jmp r1+r2 du RISC fi
tif :� add p
, r1, r2Notons que toute addition ou soustra
tion sto
kant son résultat dans p
/r15 est aussi un bran-
hement relatif, mais dont le dépla
ement est exprimé en o
tets et sur 8 bits seulement.L'instru
tion de bran
hement abolu jmp de notre pro
esseur RISC �
tif 
orrespond à uneinstru
tion ARM add ou mov a�e
tant p
.7Arithmeti
 Shift Right, ROtate Right, Logi
 Shift Left/Right, ROtate with eXtension832 
odé 
omme 0, intervalle [0, 31℄ pour LSL et [1,31℄ pour ROR
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14.4. VARIANTES DES INSTRUCTIONS LOAD ET STORE 181� RISC de référen
e � instru
tion ARM équivalentejmp 1r mov p
, 1rjmp r1+r2 add p
, r1, r2jmpl r1 mov lr,p
 � sauver adresse retourmov p
, r1 � bran
hement14.4 Variantes des instru
tions load et storeLes instru
tions ARM ldm et stm se 
omportent 
omme 
elles du pro
esseur RISC �
tif ave
une limitation : si le registre pointeur est mis à jour (variante ldm/stm reg !,liste-regs), il ne doitpas faire partie de la liste de registres à transférer (stmfd sp !, {fp,sp} n'est pas autorisé).Il existe quelques di�éren
es mineures entre les instru
tions ldr et str du jeu d'instru
tionsARM et 
elui de notre pro
esseur RISC �
tif.Les seules instru
tions d'a

ès à la mémoire dans la première dé�nition du jeu d'instru
tionsARM permettaient uniquement :1. la le
ture (ldr) dans un registre et l'é
riture (str) en mémoire d'un mot de 32 bits,2. l'é
riture en mémoire d'un o
tet, 9 (strb),3. la le
ture en mémoire d'un o
tet 
onsidéré 
omme un entier naturel (ldrb), ave
 extensionde format à 32 bits par remplissage de 0 des 24 bits de poids forts du registre destinataire.Le jeu d'instru
tions ARM a ensuite étendu pour in
lure :1. la le
ture d'un o
tet 
onsidéré 
omme un entier relatif (ldrsb) ave
 extension de format à32 bits par remplissage des 24 bits de poids fort du registre destinataire ave
 le bit de signe(bit 7) de l'o
tet,2. l'é
riture d'un demi-mot de 16 bits (strh),3. la le
ture d'un demi-mot de 16 bits ave
 extension à 32 bits appropriée, selon sa nature :entier naturel (ldrh) ou entier relatif (ldrsh).Ce deuxième groupe d'instru
tion o�re des possibilités d'adressages restreintes : il n'est paspossible d'appliquer un opérateur de dé
alage ( LSL, LSR, ASR ou ROR10, noté dé
 dans le ta-bleau : ) sur le deuxième registre et la 
onstante entière 
odable est plus petite.Mode adresse nouvelle Limitations surd'adressage utilisée valeur reg1 ldrsb, ldrh, lrsh, sth[reg1, ± reg2℄ reg1 ± reg2 reg1 au
une[reg1, ± reg2℄ ! reg1 ± reg2 reg1 ± reg2[reg1℄, ± reg2 reg1 reg1 ± reg2[reg1, # ±entier℄ reg1 ± entier reg1 Codage de[reg1, # ± entier℄ ! reg1 ± entier reg1 ± entier l'entier sur[reg1℄, # ± entier reg1 reg1 ± entier 8 bits au lieu de 12[reg1, ± reg2, dé
 #n℄ reg1 ± reg2 n
↔ reg1 Indisponible[reg1, ± reg2, dé
 #n℄ ! reg1 ± reg2 n
↔ reg1 ± reg2 n

↔[reg1℄, ± reg2, dé
 #n reg1 reg1 ± reg2 n
↔9pris dans l'o
tet de poids faible d'un registre10En pratique, seul le dé
alage à gau
he présente un intérêt dans un 
al
ul d'adresse
©Philippe Waille UJF/UFR IMA 6 juillet 2006



182 CHAPITRE 14. SPÉCIFICITÉS DU JEU D'INSTRUCTIONS ARMVoi
i quelques exemples d'utilisation de 
es modes d'adressage :ldrh r0, [r1, r2℄ldrsb r0, [r1, -r2℄!ldrsh r0, [r1℄, -r2ldr r0, [r1, #-4095℄ldrh r0, [r1, #255℄!ldr r0, [r1℄, #4095ldr r0, [r1, r2, LSL #3℄!14.5 Convention d'appel et pile du 
ompilateur ARM GNULa 
onvention d'appel utilisée par le 
ompilateur g

 est la suivante :1. Les quatre premiers paramètres expli
ites sont sto
kés dans les registres r0 à r3.2. les paramètres expli
ites suivant sont empilés et sp repère le premier d'entre eux.3. L'adresse de retour est déposée dans le registre lr.4. La sauvegarde des registres est à la 
harge de l'appelée, ex
epté pour ip.5. Le résultat d'une fon
tion est retourné dans le registres r0.Le prologue standard d'une fon
tion empile après les arguments transmis par la pro
édureappelante :1. l'adresse de l'instru
tion d'allo
ation mémoire dans le prologue (
ette information n'est pasné
essaire à la gestion des appels, mais fa
ilite la mise au point des programmes ave
 undébogueur),2. l'adresse de retour dans l'appelante,3. le sommet de pile sp laissé par l'appelante,4. le pointeur de paramètres fp de l'appelante.

fp

bloc param
e -> fonc

sp

fp

adresse retour

ancien sp

alloc

ancien fp

Delta
variables
sauve autres
registres

bloc param

bloc param
e -> fonc

fonc -> g

sp

Fig. 14.1 � Etat de la pile ARM au début (à gau
he) et à la �n (à droite) du prologue
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14.6. DIVERS 183Le pointeur de paramètres repère le premier item de 
e blo
 de quatre sauvegardes de registres.Le squelette typique d'une pro
édure à nombre �xe d'arguments est le suivant :fon
: � prologuemov ip, spstmfd sp!, {fp,ip, lr, p
}sub fp, ip, #4allo
: sub sp, sp, #AUTRES_REGS+LOCAL+PARAM_PASSES� 
orps de la pro
édure...� épilogueldmea fp, {fp, sp, p
}14.6 DiversLa dire
tive d'alignement align x aligne sur un multiple de 2n au lieu d'un multiple de n, quiest obtenu par la dire
tive .balign x.14.7 Exemple de 
ode ARMConsidérons à titre d'exemple la séquen
e C suivante :short int s = 15;stati
 long int x = 1234;long int pro
 (long l){s = s + 3;...return (5*l);} En voi
i la tradu
tion en langage d'assemblage ARM :.data.global ss: .short 15.balign 4 � ou .align 2x: .word 1234.text.global pro
DELTA_PROC=8 � sauvagarde : r4 et r5pro
: mov ip, spstmfd sp!, {fp,ip, lr, p
}sub fp, ip, #4
©Philippe Waille UJF/UFR IMA 6 juillet 2006



184 CHAPITRE 14. SPÉCIFICITÉS DU JEU D'INSTRUCTIONS ARMsub sp, sp, #DELTA_PROCstr r4, [sp, #(DELTA_PROC-4)℄str r5, [sp, #(DELTA_PROC-8)℄ldr r4,= s � mov32 r4, #sldrsh r5, [r4℄add r5, r5, #3strh r5, [r4℄...add r0, r0, r0, LSL #2ldr r5, [sp, #(DELTA_PROC-8)℄ldr r4, [sp, #(DELTA_PROC-4)℄� retour + restaurer fp,spldmea fp, {fp, sp, p
}.ltorg
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