Révision de la manipulation des entiers en base 2 et 16

1 Ecriture des entiers naturels en base 2 et 16

1.1 Introduction

Les organes d’un ordinateur sont dimensionnés a un nombre fixe n de bits. Par exemple, les registres,
les unités de calcul, le bus d’acces a la mémoire d’'un ARMY7 sont tous dimensionnés a 32 bits. Tous les
calculs sont alors réalisés modulo 2" (environ quatre milliards pour n = 32 bits).

Un entier E peut étre représenté par une suite de n chiffres (ou digits) e;, tous inférieurs a la base
utilisée (0 < e; < B—1) et tels que £ = Z?:_ol e; * B'. Chaque chiffre e; représente le reste de la division
entiere de E/B* par B. La base B est éventuellement précisée en indice & droite du dernier chiffre ou
entre parentheses. Par défaut, il s’agit de la base 10.

L’entier composé des k chiffres de poids faibles de E est E modulo ! 2% et celui composé des n-k chiffres
de poids forts de E est E / 2¥. Exemple pour n=5 et k=2 :
2310 =5x4+ 3 =101115. 23/4 =5 = 1013. 23 modulo 4 = 3 = 11,

La table en annexe donne les principales puissances de 2, ainsi que la valeur binaire et décimale de
chaque chiffre hexadécimal.

101, = 1x224+0x214+1x20 = 4+1 = 51

10119 = 1x10240x10'+1x10° = 100+1 = 101y
1011 = 1x162+0x16'+1x16° = 256+1 = 25T
Adig = 10 x 16" +4 x 16° = 10%x16+4 = 164y

Conversions entre bases 2, 10 et 16 :

1. 2 vers 16 : ajouter éventuellement des 0 a gauche pour avoir 4k bits, convertir les k quartets en k
chifffres hexadécimaux.

2. 16 vers 2 : convertir chaque chiffre hexdécimal en quartet de bits

3. 10 vers B=2 ou B=16 : diviser par B, le reste donne un chiffre (poids faible), recommencer avec
le quotient, etc : le dernier reste donne le chiffre de poids fort.

Exemples :
17819 = B21¢ : 178/16 quotient 11, reste| 2| (poids faible),11/16 : quotient O reste 11((poidsfort))

1119 = 10119 = 5*2—|— (poids faible),5 = 2*2+,2 = 1*24—@,1 = 0*2—1— (poids fort)
10011011015 — 0010 0110 1101 — 26 B4

1.2 Propriété remarquable

n—1 ‘ A — 1 n—1 '

E azziletg 2'=2"—-1
a —

=0 i=0

Eneffet (a" ' +a"2+...+a'+1)(a—1)=(a"—a" ' +a" ' —a"2.. . +a—1)=(a" - 1))

L’entier dont la représentation est constituée de n bits & 1 est 2" — 1 : 11111111, = 28 — 1 =255

1. modulo = reste de la division entiere

1.3 Compléments a 1 et a 2

Soit = Z?;ol e; * 2° un entier naturel représenté sur n chiffres en base 2. . On appelle complément a
2" —1 de E (on dit habituellement complément a 1 de E) Uentier E =)" ;€ obtenu en remplagant les
1 par des 0 et les 0 par des 1 (€; = 1 — ¢;) dans la représentation en binaire de E. Il s’écrit "E en langage

C.OnaFE+E=Y"e2 +3 0 (1—e)2 =31 20=2" 1, dou E=2"—1-E.

On appelle complément a 2™ (on dit habituellement complément a deux) de E l'entier naturel E
I’entier naturel 2" — E, noté . Par définition, E=E + 1. Soit u la position du premier un? dans la

représentation en binaire de E/ . La représentation de E~ est obtenue a partir de celle de E en inversant
les n — u bits de poids forts et en conservant les u bits de poids faibles.

2 Addition

On rappelle le principe de calcul dans ’addition : colonne par colonne, de droite a gauche. Les re-
tenues, habituellement placées au dessus de I'opérande gauche, sont placées ici en dessous de I'opérande
droit. Dans chaque colonne, on fait la somme des chiffres du premier (a;) et du deuxiéme (b;) opérande,
ainsi que la retenue entrante (c¢;).

Le chiffre (res;) du résultat res est égal a :
— cette somme, la retenue® sortante (c;11) étant 0, si somme < base,
— cette somme moins la base, la retenue sortante (C' = ¢;41) étant 1, si somme > base.

a3 az a1 ag opérande gauche a;
“+base b3 by by by opérande droit b;
C=c4 c¢c3 3 ¢1 «co retenues sortante | ¢;41 ¢; | entrante
rg r9 T1 1o résultat apparent T
3 6 4 3 3 6 4 3
+10 5 7 8 5 5! ﬁ g 5
C=01100 |[C=01 ~1 1| <1 0 ~0 0
9 4 2 8 9<10 |9 14210& 12210& 8<10 | 8
0 1 1 1 0 1 1
+9 0 1 1 0 0 F [
C=0 1100 [C=0 1 ~1 1] <1 0
1 101 1< 2|1 3> 21| 2>2]0| 1<2

Dans une addition normale, la retenue entrante initiale (cy, colonne de droite) est nulle. L’utilisation
d’une retenue initiale & 1 permet de calculer 'expression opgquche + 0Pdroit + 1 (pour réaliser des sous-
tractions par addition du complément a deux).

C=1

—l_= O O
== = =
— -0 O

1 1
1 0
0] | <0 0] [«0
0 1< 2|1 1< 2

OO = =
— o O =

| C
2

VI
N

2. Vi,e; =1 =1 > u, (u=0 si E=0)
3. carry en anglais

010 0 0 1 0
42 1.0 1 0 1 0 1
C=0 0001 [C=0 0| [«0 0|[«0 o0

T 1 1 1 1<2]1| 1<2]1]| 1<z2]|1 1<2

3 Conventions d’interprétation (entiers naturels et relatifs)

Soit e = 222872 ¢;2'. Sur n bits, on peut coder 2" valeurs différentes. Mais l'interprétation de ce
codage n’est pas unique. En pratique, 'entier écrit e,_1 e,—2 €,-3... €1 €y en base deux représente la
valeur E = ae,—12" 1 +e.

Les regles de calcul pour l'addition et la soustraction sont les mémes quel que soit « : seule l'in-
terprétation des valeurs des opérandes et du résultat change.

3.1 Pour entiers naturels (N) : a =1et £ =3 ""0""¢?2".

7

En pratique, il n’est pas rare que les entiers manipulés dans la vie courante sortent de l'intervalle de
valeurs représentables dans les formats inférieurs & 64 bits. A titre d’exemple, les capitalisations boursieres
des sociétés ne sont pas toutes représentables sur 32 bits.

Pour stocker une valeur entiére toujours positive ou nulle?, le programmeur peut décider d’utiliser
une variable entiere en interprétant son contenu comme un entier naturel (attribut unsigned de type
entier en langage C) afin de maximiser l'intervalle de valeurs représentables : [0...2" — 1].

Le bit de poids fort n’a pas de signification particuliére : il indique simplement si la valeur représentée
est supérieure & 2"~ ! ou pas.

Dans le langage C, le type entier naturel est spécifié avec I'attribut unsigned, ou les types entier
naturel de taille précise uintzz_t (x € {8,16,32,64}) définis dans stdint.h (révisions récentes du langage).

La figure en cercle 1 illustre les 2* = 16 codes binaires possibles sur 4 bits (incluses dans le cercle
intérieur) et (sur la couronne extérieure,en décimal) les valeurs d’entiers naturels représentées.

Chaque entier correspond & un angle de rotation depuis I'origine dans le sens trigonométrique . L’ad-
dition de 2 entiers peut étre interprétée comme la sommation des angles de rotation des opérandes. A
partir d'un tour complet, il y a débordement (résultat apparent obtenu modulo 2* et C=1 qui indique
qu’il faudrait un bit de plus (a 1) pour représenter le vrai résultat).

3.2 Pour entiers relatifs (Z) : a = —1 et £ = —e, 12" + >0 ¢, 20

Le bit de poids fort représente maintenant le signe de I’entier et le principe consiste a retrancher 2"
a la valeur associée aux entiers dont le bit de poids fort est a 1. Cette convention représente les entiers
négatifs selon la technique du complément & deuz® : I'entier relatif -x est représenté comme ’entier natu-
rel 2" — z. Dans les langages, cette convention d’interprétation est généralement utilisée par défaut (type

4. Les constantes adresse et les variables pointeurs entrent dans cette actégorie.

5. ou anti-horaire

6. La convention alternative ”signe (codé dans le bit de poids fort) et valeur absolue (codée sur les n-1 bits de poids faibles)
a linconvénient de définir deux zéros : +0 et -0. Rarement utilisée pour les entiers, elle peut s’appliquer a la représentation
les nombres & virgule flottante.

F1GURE 1 — Représentation d’entiers naturels et signés sur 4 bits

entier sans attribut unsigned ou type intzz_t en langage C).

Un entier relatif E dont le bit de signe est 0 (> 0) appartient & Iintervalle [0...2"~! — 1] et sa valeur
associée est la méme que dans la convention pour entier naturels.

Un entier E dont le bit de signe est 1 (< 0) appartient & I'intervalle [-2"~1 427~ — 1] et sa valeur
associée est —€2 = —(2" — e).

— Pour calculer 'opposé d’un entier, il faut prendre le complément & deux de cet entier (et non
inverser simplement le bit de signe).

— Sur n bits, entier —2"~! est son propre complément & deux et l'entier relatif 4271 n’est pas
représentable.

— L’ajout d’un bit a 0 en poids fort d’'un entier relatif négatif inverse son signe et change sa valeur.

La couronne intérieure de la figure 1 illustre le codage des entiers relatifs sur 4 bits. A chaque entier
peut ére associé un angle de rotation dans le sens trigonométrique pour les entiers positifs ou nuls et dans
le sens horaire pour les entiers négatifs.

Le code 1001 peut représenter selon la convention d’interprétation soit ’entier naturel 9 soit I'entier
relatif -7. De méme, 0101 est le code common aux entiers natruel 5 et relatif +5.

L’addition de deux entiers relatifs de méme signe donne une erreur lorsque la somme des angles corres-
pondant aux entiers va au-dela d’une rotation d’un demi-tour, avec un résultat apparent de signe opposé
a celui des opérandes. Cette erreur vient du fait que le résultat attendu n’appartient pas a 'intervalle des
valeurs représentables sur le nombre de bits de codage utilisé.

3.3 Intervalles représentables

n Convention naturels Convention relatifs

n [0 A 2n —1 | —2n-! A I |
8 |0 a 255 | -128 a +127
16 |0) 65535 (64K3-1) | -32768 (-32K3) a +32767 (32K3-1)
3210 a 4294967295 (4Gy-1) | -2147483648 (-2Gy) a +2147483647 (2Gy-1)
64 | 0 a 1,8 x 10"(16E, — 1) | —9 x 10'8(—4FEy) A +9 x 1018(+4E, — 1)

Pour les bornes de l'intervalle sur 64 bits, le tableau mentionne 'ordre de grandeur (préfixé par) :
la valeur exacte représente une vingtaine de chiffres. Les préfixes Kj (kilo) et M, (méga) représentent
210 = 10241 et 220 = 104857610, dont la valeur est proche de 1000 (1K) et 1000000 (1M). Méme principe
pour G, (giga : 23°) et Ep (eta : 299).

4 Changement de format, manipulation booléenne des bits, décalages

4.1 Extension et réduction de format

Des conversions de taille sont nécessaires lors de la copie d’un entier entre 2 contenants de tailles
différentes, par exemple un registre de 32 bits et un emplacement mémoire de 8 ou 16 bits.

La réduction de format élimine les bits de poids forts excédentaires (opération modulo). La valeur
entiere n’est pas modifiée si elle est représentable sur le contenant de plus petite taille.

En sens inverse, la représentation de I’entier doit étre étendue en ajoutant des bits de poids forts selon
la nature de ’entier :

— ajout de bits a 0 pour un entier naturel

— duplication de l'ancien bit de poids fort (bit de signe) pour un entier relatif

Il existe ainsi 3 instructions ARM de transfert d’un entier entre un registre 32 bits regx et un
emplacement de 16 bits en mémoire mem[y]. L’instruction ldrh est destinée aux entiers naturels codés
sur 16 bits, et 1drsh aux entiers relatifs.

— strh : regx modulo 26 — mem|[y]

— 1drh : regx extension en ajoutant 16 fois un bit 0 mem]y]

— ldrsh : regx extension en ajoutant 16 fois le bit de poids fort de mem]y]

4.2 Décalage et rotation

Le décalage logique a gauche de k bits (Logic Shift Left #k en langage d’assemblage ARM, < k en
C) d’un entier e ajoute d bits & 0 & droite, ce qui revient & multiplier e par 2¢. Le format de représentation
restant inchangé, le décalage supprime les k bits de poids forts de e. Si 'un de ces bits éjectés n’est pas
0, le résultat de la multiplication n’est pas représentable sur le nombre de bits utilisé.

Remarque : 'entier 2% est I'entier 1 décalé de k bits a gauche (((uint32_t)1 < k) en C).

Une opération de rotation est un décalage dans lequel les bits ajoutés & une extrémité sont ceux qui
sont éjectés de 'autre extrémité de I’entier. Une rotation a gauche de k bits et une rotation a droite de

n — k bits ont le méme effet.
Le décalage de k bits & droite correspond & la division par 2% : les k bits de poids faibles sont éjectés.

Le décalage logique de k bits & droite (Logic Shift Right #k en langage d’assemblage ARM, > k sur
une variable unsigned en C) est destiné aux entiers naturels : k bits & 0 sont ajoutés en poids forts et
Ientier est divisé par 2F.

Le décalage arihmétique a droite (Arithmetic Shift Right en langage d’assemblage ARM) est destiné
aux entiers relatifs : le bit de poids fort (signe) d’origine est recopié dans les bits ajoutés a gauche. L’entier
est divisé par 2% §’il en était un multiple au départ.

4.3 Opérations booléennnes bit a bit

Un chiffre de la base 2 (bit d’un entier) et un booléen ont la méme écriture : 0 ou 1.
Les opérateurs bit a bit traitent un entier sur n bits comme une collection de n booléens : chaque bit
de rang j du résultat correspond a une opération booléenne sur les bits de rang j des opérandes.

La négation (un seul opérande) bit a bit (en C) inverse tous les bits de l’entier : elle réalise le
complément a 1 de celui-ci.

Les autres opérations booléennes classiques a 2 deux opérandes existent aussi en version bit a bit :
— Et bit & bit (& en C)

— Ou bit & bit (— en C)

— Ou exclusif bit a bit (* en C, remarquer que ce n’est pas I'opérateur d’élévation & la puissance)

Noter la différence avec les opérateurs booléens classiques du C :
— 11 && 13 donne 1 (11 #0) : vrai, 13 # 0 : vrai, vrai et vrai : vrai — 1
— 11 & 13 donne 9 : seuls les bits 0 et 3 sont & 1 dans les deux entiers.

5 Soutraction

Dans chaque colonne, on fait la somme du chiffre du deuxiéme (b;) opérande et de 'emprunt entrant
(e;) et 'emprunt entrant initial ey est nul. Le chiffre (r;) du résultat est égal :
— au chiffre du premier opérande (a;) moins cette somme, 'emprunt sortant (e;y;) étant 0, si
somme < a;,
— au chiffre du premier opérande (a;) plus la base moins cette somme, ’emprunt sortant (e; 1) étant
1, si somme > a;,

a3 as a1 ag opérande gauche a;
+pase b3 by b1 by opérande droit b;
E=e4 e3 ey e ey emprunts sortant | e;41 e; | entrant
r3 1o T1 T résultat apparent T
8 6 4 8 8 6 8
—10 5 7 9 5) 7)
E=0 1100 [E=0 1| [«1 1 <0 0
2 8 5 3 6<8 |2 8>618 9>14 5<8 |3

1 1 0 1 1 1 0 1
— 0 1 1 0 0 F 1 0
E=0 11 0 0 E=0 1| [«1 1 ~1 0 <0 0
0 1 1 1 0<1[0) 2>1]1] 1>0]1 0<1]1
01 00 0 F 0 0
— 0 1 0 1 0 1 0 1
E=1 1110 [E=1 1| | «1 «~1 1 «~1 0
1111 1>0 0| 2>1L 1>0]1 1>0]1

6 Soustraction par addition du complément a deux

En pratique, toutes les soustractions sont réalisées par addition du complément a 2. On exploite la
propriété suivante (calculs sur n bits) : x + 7% =z + 2" —

Les résultats étant obtenus modulo 2", on peut calculer I'expression x — y en effectuant une addition
comme suit :
— Premier opérande : x
— Deuxieme opérande : 3
— Retenue initiale : 1 (pour faire z + 3 + 1)
— On observe que la ligne des retenues dans cette addition de ¥y est le complément de la ligne des
emprunts dans la soustraction normale.

Le calcul de 13 — 6 (réalisable) et 4 — 5 (impossible pour des entiers naturels) est illustré par les
deux derniers exemples des paragraphes 5 (soustraction normale) et 2 (soustraction par addition du
complément a deux).

7 Indicateurs et débordements

Lors d’une opération (addition ou soustraction) sur les entiers, l'unité de calcul d’un processeur
synthétise quatre indicateurs booléens a partir desquels il est possible de prendre des décisions.
7.1 Nullité et indicateur : Z

L’indicateur Z (Zéro) et vrai si et seulement tous les bits du résultat apparent sont a 0, ce qui signifie
que ce dernier est nul.
7.2 Signe du résultat apparent : N

L’indicateur N est égal au bit de poids fort du résultat apparent. Si ce dernier est interprété comme
un entier relatif, N=1 signifie que le résultat apparent est négatif.
7.3 Débordement en convention d’entiers naturels : C'

L’indicateur C' (Carry) est la derniere retenue sortante de 'addition. Il n’a de sens que dans une

interprétation de 'opération sur des entiers naturels.

Apres une addition, C' = 1 indique un débordement : le résultat de I'opération est trop grand pour
étre représentable sur n bits. Le résultat apparent est alors faux : il correspond au vrai résultat a 2" pres.

FE est le dernier emprunt sortant d’une soustraction. £ = 1 indique que la soustraction est impossible
parce que le deuxiéme opérande est supérieur au premier. Les soustractions sont en pratique réalisées
par addition du complément & deux. C correspond alors & E. Aprés une soustraction par addition du
complément & deux, C' = 0 indique que la soustraction est impossible, C' = 1 que I'opération est correcte .

7.4 Débordement en convention d’entiers relatifs : V/

Pour les entiers, la soustraction est toujours réalisée par addition de I'opposé du deuxiéme opérande.

La valeur absolue de la somme de deux entiers relatifs de signes opposés est inférieure ou égale a la
la plus grande des valeurs absolues des opérandes et le résultat est toujours représentable sur n bits. La
somme de deux entiers relatifs de méme signe peut ne pas étre représentable sur n bits, auquel cas le
résultat apparent sera faux :

— Sa valeur n’est égale a celle du vrai résultat de 'opération qu’a 2™ pres.

— Son bit de signe (bit de poids fort) est également faux : la somme de deux entiers positifs donnera

un résultat apparent négatif et la somme de deux entiers négatifs donnera un résultat apparent
positif ou nul.

L’indicateur V (oVerflow ®) est I'indicateur de débordement destiné & la convention d’interprétation
pour entiers relatifs. V' = 1 indique un débordement, auquel cas les deux derniéres retenues sont de
valeurs différentes.

0 01 1 43 01 1 0 46 1 01 0 -6

+2 1 0 1 1 -5 +2 01 0 0 +4 +2 1 1 0 0 -4
V=0 0=0 1 1 0 V=1 0#1 0 0 O V=1 1#0 0 0 O

1 1 1 0 -2 101 0 -6 0 1.1 0 +6

Le signe du vrai résultat (sans erreur) de 'opération s’écrit : V& N = V.N + V.N. Ainsi, le signe du

résultat de 'opération sans erreur est N signe du résultat apparent s’il n’y a pas de débordement (V),
ou le signe opposé N de celui du résultat apparent en cas de débordement (V).

7.5 Expressions des conditions avec les indicateurs ZNCV

Apres synthese des indicateurs lors du calcul de x — y, il est possible de tester diverses conditions.

Par exemple ,I’expression de la condition ”strictement inférieur” (x < y) est :
— C si x et y sont considérés comme des entiers naturels (la soustraction est impossible)
— V&N sixety sont considérés comme des entiers relatifs (le vrai résultat est négatif).

8 Table des puissances de 2, cercle des entiers codés sur 4 bits

Le tableau suivant récapitule les principales puissances de 2 utiles, avec leur représentation en hexadécimal
et les puissances de 10 approchées correspondantes.

7. Attention : les instructions de soustraction ou de comparaison de certains processeurs (dont le SPARC) stockent dans
C le complément de la retenue finale. Pour ces processeurs, C' = 1 indique toujours une erreur, que ce soit apres une
addition ou une soustraction.

8. L’initiale O n’a pas été retenue pour éviter une confusion avec zéro

n 27L
décimal | hexa | octal | binaire décimal hexa | commentaire
0 0 00 0000 1 1
1 1 01 0001 2 2
2 2 02 0010 4 4
3 3 03 0011 8 8
4 4 04 0100 16 10 | un quartet = un chiffre hexa
5 5 05 0101 32 20
6 6 06 0110 64 40
7 7 07 0111 128 80
8 8 10 1000 256 100 | un octet = deux chiffres hexa
9 9 11 1001 512 200
10 A 12 1010 1024 400 | 1K,
11 B 13 1011 2048 800 | 2K,
12 C 14 1100 4096 1000 | 4K,
13 D 15 1101 8192 2000 | 8K,
14 E 16 1110 16384 4000 | 16K,
15 F 17 1111 32768 8000 | 32K}
16 10 20 | 10000 65536 10000 | 64Ky
20 14 24 | 10100 1048576 100000 | 1M, = 1K§ = 5 chiffres
30| 1E| 36| 11110 | 71.07 x 107 | 40000000 | 1G}, = 1K}

