
Révision de la manipulation des entiers en base 2 et 16

1 Ecriture des entiers naturels en base 2 et 16

1.1 Introduction

Les organes d’un ordinateur sont dimensionnés à un nombre fixe n de bits. Par exemple, les registres,
les unités de calcul, le bus d’accès à la mémoire d’un ARM7 sont tous dimensionnés à 32 bits. Tous les
calculs sont alors réalisés modulo 2n (environ quatre milliards pour n = 32 bits).

Un entier E peut être représenté par une suite de n chiffres (ou digits) ei, tous inférieurs à la base
utilisée (0 ≤ ei ≤ B− 1) et tels que E =

∑n−1
i=0 ei ∗Bi. Chaque chiffre ei représente le reste de la division

entière de E/Bi par B. La base B est éventuellement précisée en indice à droite du dernier chiffre ou
entre parenthèses. Par défaut, il s’agit de la base 10.

L’entier composé des k chiffres de poids faibles de E est E modulo 1 2k et celui composé des n-k chiffres
de poids forts de E est E / 2k. Exemple pour n=5 et k=2 :
2310 = 5 ∗ 4 + 3 = 101112. 23/4 = 5 = 1012. 23 modulo 4 = 3 = 112

La table en annexe donne les principales puissances de 2, ainsi que la valeur binaire et décimale de
chaque chiffre hexadécimal.

1012 = 1× 22 + 0× 21 + 1× 20 = 4 + 1 = 510
10110 = 1× 102 + 0× 101 + 1× 100 = 100 + 1 = 10110
10116 = 1× 162 + 0× 161 + 1× 160 = 256 + 1 = 25710
A416 = 10× 161 + 4× 160 = 10 ∗ 16 + 4 = 16410

Conversions entre bases 2, 10 et 16 :

1. 2 vers 16 : ajouter éventuellement des 0 à gauche pour avoir 4k bits, convertir les k quartets en k
chifffres hexadécimaux.

2. 16 vers 2 : convertir chaque chiffre hexdécimal en quartet de bits

3. 10 vers B=2 ou B=16 : diviser par B, le reste donne un chiffre (poids faible), recommencer avec
le quotient, etc : le dernier reste donne le chiffre de poids fort.

Exemples :
17810 = B216 : 178/16 quotient 11, reste 2 (poids faible), 11/16 : quotient 0 reste 11(B (poidsfort))

1110 = 10112 = 5 ∗ 2 + 1 (poids faible), 5 = 2 ∗ 2 + 1 , 2 = 1 ∗ 2 + 0 , 1 = 0 ∗ 2 + 1 (poids fort)
10011011012 → 0010 0110 1101→ 26B16

1.2 Propriété remarquable

n−1∑
i=0

ai =
an − 1

a− 1
et

n−1∑
i=0

2i = 2n − 1

En effet (an−1 + an−2 + . . .+ a1 + 1)(a− 1) = (an − an−1 + an−1 − an−2 . . .+ a− 1) = (an − 1))

L’entier dont la représentation est constituée de n bits à 1 est 2n − 1 : 111111112 = 28 − 1 = 25510

1. modulo = reste de la division entière

1

1.3 Compléments à 1 et à 2

Soit E =
∑n−1

i=0 ei ∗ 2i un entier naturel représenté sur n chiffres en base 2. . On appelle complément à
2n − 1 de E (on dit habituellement complément à 1 de E) l’entier E =

∑n
i=0 ei obtenu en remplaçant les

1 par des 0 et les 0 par des 1 (ei = 1− ei) dans la représentation en binaire de E. Il s’écrit ˜E en langage
C. On a E + E =

∑n
i=0 ei2

i +
∑n

i=0(1− ei)2i =
∑n−1

i=0 2i = 2n − 1, d’où E = 2n − 1− E.

On appelle complément à 2n (on dit habituellement complément à deux) de E l’entier naturel E

l’entier naturel 2n − E, noté E
2
. Par définition, E

2
= E + 1. Soit u la position du premier un 2 dans la

représentation en binaire de E . La représentation de E
2

est obtenue à partir de celle de E en inversant
les n− u bits de poids forts et en conservant les u bits de poids faibles.

2 Addition

On rappelle le principe de calcul dans l’addition : colonne par colonne, de droite à gauche. Les re-
tenues, habituellement placées au dessus de l’opérande gauche, sont placées ici en dessous de l’opérande
droit. Dans chaque colonne, on fait la somme des chiffres du premier (ai) et du deuxième (bi) opérande,
ainsi que la retenue entrante (ci).

Le chiffre (resi) du résultat res est égal à :
— cette somme, la retenue 3 sortante (ci+1) étant 0, si somme < base,
— cette somme moins la base, la retenue sortante (C = ci+1) étant 1, si somme ≥ base.

a3 a2 a1 a0 opérande gauche ai
+base b3 b2 b1 b0 opérande droit bi
C = c4 c3 c2 c1 c0 retenues sortante ci+1 ci entrante

r3 r2 r1 r0 résultat apparent ri

3 6 4 3
+10 5 7 8 5

C = 0 1 1 0 0
9 4 2 8

3
5

C = 0 1
9 < 10 9

6
7

← 1 1
14 ≥ 10 4

4
8

← 1 0
12 ≥ 10 2

3
5

← 0 0
8 < 10 8

0 1 1 1
+2 0 1 1 0

C = 0 1 1 0 0
1 1 0 1

0
0

C = 0 1
1 < 2 1

1
1

← 1 1
3 ≥ 2 1

1
1

← 1 0
2 ≥ 2 0

1
0

← 0 0
1 < 2 1

Dans une addition normale, la retenue entrante initiale (c0, colonne de droite) est nulle. L’utilisation
d’une retenue initiale à 1 permet de calculer l’expression opgauche + opdroit + 1 (pour réaliser des sous-
tractions par addition du complément à deux).

1 1 0 1
+2 1 0 0 1

C = 1 0 0 1 1
0 1 1 1

1
1

C = 1 0
2 ≥ 2 0

1
0

← 0 0
1 < 2 1

0
0

← 0 1
1 < 2 1

1
1

← 1 1
3 ≥ 2 1

2. ∀i, ei = 1⇒ i ≥ u, (u=0 si E=0)
3. carry en anglais

2

0 1 0 0
+2 1 0 1 0

C = 0 0 0 0 1
1 1 1 1

0
1

C = 0 0
1 < 2 1

1
0

← 0 0
1 < 2 1

0
1

← 0 0
1 < 2 1

0
0

← 0 1
1 < 2 1

3 Conventions d’interprétation (entiers naturels et relatifs)

Soit e =
∑i=n−2

i=0 ei2
i. Sur n bits, on peut coder 2n valeurs différentes. Mais l’interprétation de ce

codage n’est pas unique. En pratique, l’entier écrit en−1 en−2 en−3 . . . e1 e0 en base deux représente la
valeur E = αen−12

n−1 + e.

Les règles de calcul pour l’addition et la soustraction sont les mêmes quel que soit α : seule l’in-
terprétation des valeurs des opérandes et du résultat change.

3.1 Pour entiers naturels (N) : α = 1 et E =
∑i=n−1

i=0 ei2
i.

En pratique, il n’est pas rare que les entiers manipulés dans la vie courante sortent de l’intervalle de
valeurs représentables dans les formats inférieurs à 64 bits. A titre d’exemple, les capitalisations boursières
des sociétés ne sont pas toutes représentables sur 32 bits.

Pour stocker une valeur entière toujours positive ou nulle 4, le programmeur peut décider d’utiliser
une variable entière en interprétant son contenu comme un entier naturel (attribut unsigned de type
entier en langage C) afin de maximiser l’intervalle de valeurs représentables : [0 . . . 2n − 1].

Le bit de poids fort n’a pas de signification particulière : il indique simplement si la valeur représentée
est supérieure à 2n−1 ou pas.

Dans le langage C, le type entier naturel est spécifié avec l’attribut unsigned, ou les types entier
naturel de taille précise uintxx t (x ∈ {8, 16, 32, 64}) définis dans stdint.h (révisions récentes du langage).

La figure en cercle 1 illustre les 24 = 16 codes binaires possibles sur 4 bits (incluses dans le cercle
intérieur) et (sur la couronne extérieure,en décimal) les valeurs d’entiers naturels représentées.

Chaque entier correspond à un angle de rotation depuis l’origine dans le sens trigonométrique 5. L’ad-
dition de 2 entiers peut être interprétée comme la sommation des angles de rotation des opérandes. A
partir d’un tour complet, il y a débordement (résultat apparent obtenu modulo 24 et C=1 qui indique
qu’il faudrait un bit de plus (à 1) pour représenter le vrai résultat).

3.2 Pour entiers relatifs (Z) : α = −1 et E = −en−12
n−1 +

∑i=n−2
i=0 ei2

i.

Le bit de poids fort représente maintenant le signe de l’entier et le principe consiste à retrancher 2n

à la valeur associée aux entiers dont le bit de poids fort est à 1. Cette convention représente les entiers
négatifs selon la technique du complément à deux 6 : l’entier relatif -x est représenté comme l’entier natu-
rel 2n−x. Dans les langages, cette convention d’interprétation est généralement utilisée par défaut (type

4. Les constantes adresse et les variables pointeurs entrent dans cette actégorie.
5. ou anti-horaire
6. La convention alternative ”signe (codé dans le bit de poids fort) et valeur absolue (codée sur les n-1 bits de poids faibles)

a l’inconvénient de définir deux zéros : +0 et -0. Rarement utilisée pour les entiers, elle peut s’appliquer à la représentation
les nombres à virgule flottante.

3

0000

0001

0010

01000011

0101

0110

0111

10001111

1110 1001

10101101

1100 1011

−1

−2

−3

−4 −5

−6

−7

−8

+7

+5

+6

+4+3

+2

+1

0

<0

>=0

9

10

0

1

2

3 4

5

6

7

8

1112

13

14

15

Figure 1 – Représentation d’entiers naturels et signés sur 4 bits

entier sans attribut unsigned ou type intxx t en langage C).

Un entier relatif E dont le bit de signe est 0 (≥ 0) appartient à l’intervalle [0 . . . 2n−1− 1] et sa valeur
associée est la même que dans la convention pour entier naturels.

Un entier E dont le bit de signe est 1 (< 0) appartient à l’intervalle [−2n−1,+2n−1 − 1] et sa valeur
associée est −e2 = −(2n − e).

— Pour calculer l’opposé d’un entier, il faut prendre le complément à deux de cet entier (et non
inverser simplement le bit de signe).

— Sur n bits, l’entier −2n−1 est son propre complément à deux et l’entier relatif +2n−1 n’est pas
représentable.

— L’ajout d’un bit à 0 en poids fort d’un entier relatif négatif inverse son signe et change sa valeur.

La couronne intérieure de la figure 1 illustre le codage des entiers relatifs sur 4 bits. A chaque entier
peut êre associé un angle de rotation dans le sens trigonométrique pour les entiers positifs ou nuls et dans
le sens horaire pour les entiers négatifs.

Le code 1001 peut représenter selon la convention d’interprétation soit l’entier naturel 9 soit l’entier
relatif -7. De même, 0101 est le code common aux entiers natruel 5 et relatif +5.

L’addition de deux entiers relatifs de même signe donne une erreur lorsque la somme des angles corres-
pondant aux entiers va au-delà d’une rotation d’un demi-tour, avec un résultat apparent de signe opposé
à celui des opérandes. Cette erreur vient du fait que le résultat attendu n’appartient pas à l’intervalle des
valeurs représentables sur le nombre de bits de codage utilisé.

4

3.3 Intervalles représentables

n Convention naturels Convention relatifs

n 0 à 2n − 1 −2n−1 à +2n−1 − 1

8 0 à 255 -128 à +127

16 0 à 65535 (64Kb-1) -32768 (-32Kb) à +32767 (32Kb-1)

32 0 à 4294967295 (4Gb-1) -2147483648 (-2Gb) à +2147483647 (2Gb-1)

64 0 à 1, 8× 1019(16Eb − 1) −9× 1018(−4Eb) à +9× 1018(+4Eb − 1)

Pour les bornes de l’intervalle sur 64 bits, le tableau mentionne l’ordre de grandeur (préfixé par) :
la valeur exacte représente une vingtaine de chiffres. Les préfixes Kb (kilo) et Mb (méga) représentent
210 = 102410 et 220 = 104857610, dont la valeur est proche de 1000 (1K) et 1000000 (1M). Même principe
pour Gb (giga : 230) et Eb (eta : 260).

4 Changement de format, manipulation booléenne des bits, décalages

4.1 Extension et réduction de format

Des conversions de taille sont nécessaires lors de la copie d’un entier entre 2 contenants de tailles
différentes, par exemple un registre de 32 bits et un emplacement mémoire de 8 ou 16 bits.

La réduction de format élimine les bits de poids forts excédentaires (opération modulo). La valeur
entière n’est pas modifiée si elle est représentable sur le contenant de plus petite taille.

En sens inverse, la représentation de l’entier doit être étendue en ajoutant des bits de poids forts selon
la nature de l’entier :

— ajout de bits à 0 pour un entier naturel
— duplication de l’ancien bit de poids fort (bit de signe) pour un entier relatif

Il existe ainsi 3 instructions ARM de transfert d’un entier entre un registre 32 bits regx et un
emplacement de 16 bits en mémoire mem[y]. L’instruction ldrh est destinée aux entiers naturels codés
sur 16 bits, et ldrsh aux entiers relatifs.

— strh : regx modulo 216 → mem[y]
— ldrh : regx extension en ajoutant 16 fois un bit 0

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
mem[y]

— ldrsh : regx extension en ajoutant 16 fois le bit de poids fort de
←−−−

mem[y]

4.2 Décalage et rotation

Le décalage logique à gauche de k bits (Logic Shift Left #k en langage d’assemblage ARM, � k en
C) d’un entier e ajoute d bits à 0 à droite, ce qui revient à multiplier e par 2d. Le format de représentation
restant inchangé, le décalage supprime les k bits de poids forts de e. Si l’un de ces bits éjectés n’est pas
0, le résultat de la multiplication n’est pas représentable sur le nombre de bits utilisé.

Remarque : l’entier 2k est l’entier 1 décalé de k bits à gauche (((uint32 t)1 � k) en C).

Une opération de rotation est un décalage dans lequel les bits ajoutés à une extrémité sont ceux qui
sont éjectés de l’autre extrémité de l’entier. Une rotation à gauche de k bits et une rotation à droite de

5

n− k bits ont le même effet.

Le décalage de k bits à droite correspond à la division par 2k : les k bits de poids faibles sont éjectés.

Le décalage logique de k bits à droite (Logic Shift Right #k en langage d’assemblage ARM, � k sur
une variable unsigned en C) est destiné aux entiers naturels : k bits à 0 sont ajoutés en poids forts et
l’entier est divisé par 2k.

Le décalage arihmétique à droite (Arithmetic Shift Right en langage d’assemblage ARM) est destiné
aux entiers relatifs : le bit de poids fort (signe) d’origine est recopié dans les bits ajoutés à gauche. L’entier
est divisé par 2k s’il en était un multiple au départ.

4.3 Opérations booléennnes bit à bit

Un chiffre de la base 2 (bit d’un entier) et un booléen ont la même écriture : 0 ou 1.
Les opérateurs bit à bit traitent un entier sur n bits comme une collection de n booléens : chaque bit

de rang j du résultat correspond à une opération booléenne sur les bits de rang j des opérandes.

La négation (un seul opérande) bit à bit (˜ en C) inverse tous les bits de l’entier : elle réalise le
complément à 1 de celui-ci.

Les autres opérations booléennes classiques à 2 deux opérandes existent aussi en version bit à bit :
— Et bit à bit (& en C)
— Ou bit à bit (— en C)
— Ou exclusif bit à bit (ˆ en C, remarquer que ce n’est pas l’opérateur d’élévation à la puissance)

Noter la différence avec les opérateurs booléens classiques du C :
— 11 && 13 donne 1 (11 6= 0) : vrai, 13 6= 0 : vrai, vrai et vrai : vrai → 1
— 11 & 13 donne 9 : seuls les bits 0 et 3 sont à 1 dans les deux entiers.

5 Soutraction

Dans chaque colonne, on fait la somme du chiffre du deuxième (bi) opérande et de l’emprunt entrant
(ei) et l’emprunt entrant initial e0 est nul. Le chiffre (ri) du résultat est égal :

— au chiffre du premier opérande (ai) moins cette somme, l’emprunt sortant (ei+1) étant 0, si
somme ≤ ai,

— au chiffre du premier opérande (ai) plus la base moins cette somme, l’emprunt sortant (ei+1) étant
1, si somme > ai,

a3 a2 a1 a0 opérande gauche ai
+base b3 b2 b1 b0 opérande droit bi
E = e4 e3 e2 e1 e0 emprunts sortant ei+1 ei entrant

r3 r2 r1 r0 résultat apparent ri

8 6 4 8
−10 5 7 9 5

E = 0 1 1 0 0
2 8 5 3

8
5

E = 0 1
6 ≤ 8 2

6
7

← 1 1
8 > 6 8

4
9

← 1 0
9 > 4 5

8
5

← 0 0
5 ≤ 8 3

6

1 1 0 1
−2 0 1 1 0

E = 0 1 1 0 0
0 1 1 1

1
0

E = 0 1
0 ≤ 1 0

1
1

← 1 1
2 > 1 1

0
1

← 1 0
1 > 0 1

1
0

← 0 0
0 ≤ 1 1

0 1 0 0
−2 0 1 0 1

E = 1 1 1 1 0
1 1 1 1

0
0

E = 1 1
1 > 0 0

1
1

← 1 1
2 > 1 1

0
0

← 1 1
1 > 0 1

0
1

← 1 0
1 > 0 1

6 Soustraction par addition du complément à deux

En pratique, toutes les soustractions sont réalisées par addition du complément à 2. On exploite la
propriété suivante (calculs sur n bits) : x+ y2 = x+ 2n − y.

Les résultats étant obtenus modulo 2n, on peut calculer l’expression x− y en effectuant une addition
comme suit :

— Premier opérande : x
— Deuxième opérande : y
— Retenue initiale : 1 (pour faire x+ y + 1)
— On observe que la ligne des retenues dans cette addition de y est le complément de la ligne des

emprunts dans la soustraction normale.

Le calcul de 13 − 6 (réalisable) et 4 − 5 (impossible pour des entiers naturels) est illustré par les
deux derniers exemples des paragraphes 5 (soustraction normale) et 2 (soustraction par addition du
complément à deux).

7 Indicateurs et débordements

Lors d’une opération (addition ou soustraction) sur les entiers, l’unité de calcul d’un processeur
synthétise quatre indicateurs booléens à partir desquels il est possible de prendre des décisions.

7.1 Nullité et indicateur : Z

L’indicateur Z (Zéro) et vrai si et seulement tous les bits du résultat apparent sont à 0, ce qui signifie
que ce dernier est nul.

7.2 Signe du résultat apparent : N

L’indicateur N est égal au bit de poids fort du résultat apparent. Si ce dernier est interprété comme
un entier relatif, N=1 signifie que le résultat apparent est négatif.

7.3 Débordement en convention d’entiers naturels : C

L’indicateur C (Carry) est la dernière retenue sortante de l’addition. Il n’a de sens que dans une
interprétation de l’opération sur des entiers naturels.

Après une addition, C = 1 indique un débordement : le résultat de l’opération est trop grand pour
être représentable sur n bits. Le résultat apparent est alors faux : il correspond au vrai résultat à 2n près.

7

E est le dernier emprunt sortant d’une soustraction. E = 1 indique que la soustraction est impossible
parce que le deuxième opérande est supérieur au premier. Les soustractions sont en pratique réalisées
par addition du complément à deux. C correspond alors à E. Après une soustraction par addition du
complément à deux, C = 0 indique que la soustraction est impossible, C = 1 que l’opération est correcte 7.

7.4 Débordement en convention d’entiers relatifs : V

Pour les entiers, la soustraction est toujours réalisée par addition de l’opposé du deuxième opérande.

La valeur absolue de la somme de deux entiers relatifs de signes opposés est inférieure ou égale à la
la plus grande des valeurs absolues des opérandes et le résultat est toujours représentable sur n bits. La
somme de deux entiers relatifs de même signe peut ne pas être représentable sur n bits, auquel cas le
résultat apparent sera faux :

— Sa valeur n’est égale à celle du vrai résultat de l’opération qu’à 2n près.
— Son bit de signe (bit de poids fort) est également faux : la somme de deux entiers positifs donnera

un résultat apparent négatif et la somme de deux entiers négatifs donnera un résultat apparent
positif ou nul.

L’indicateur V (oVerflow 8) est l’indicateur de débordement destiné à la convention d’interprétation
pour entiers relatifs. V = 1 indique un débordement, auquel cas les deux dernières retenues sont de
valeurs différentes.

0 0 1 1 +3
+2 1 0 1 1 -5

V=0 0 = 0 1 1 0
1 1 1 0 -2

0 1 1 0 +6
+2 0 1 0 0 +4

V=1 0 6= 1 0 0 0
1 0 1 0 -6

1 0 1 0 -6
+2 1 1 0 0 -4

V=1 1 6= 0 0 0 0
0 1 1 0 +6

Le signe du vrai résultat (sans erreur) de l’opération s’écrit : V ⊕N = V .N + V.N . Ainsi, le signe du
résultat de l’opération sans erreur est N signe du résultat apparent s’il n’y a pas de débordement (V),
ou le signe opposé N de celui du résultat apparent en cas de débordement (V).

7.5 Expressions des conditions avec les indicateurs ZNCV

Après synthèse des indicateurs lors du calcul de x− y, il est possible de tester diverses conditions.

Par exemple ,l’expression de la condition ”strictement inférieur” (x < y) est :
— C si x et y sont considérés comme des entiers naturels (la soustraction est impossible)
— V ⊕N si x et y sont considérés comme des entiers relatifs (le vrai résultat est négatif).

8 Table des puissances de 2, cercle des entiers codés sur 4 bits

Le tableau suivant récapitule les principales puissances de 2 utiles, avec leur représentation en hexadécimal
et les puissances de 10 approchées correspondantes.

7. Attention : les instructions de soustraction ou de comparaison de certains processeurs (dont le SPARC) stockent dans
C le complément de la retenue finale. Pour ces processeurs, C = 1 indique toujours une erreur, que ce soit après une
addition ou une soustraction.

8. L’initiale O n’a pas été retenue pour éviter une confusion avec zéro

8

n 2n

décimal hexa octal binaire décimal hexa commentaire

0 0 00 0000 1 1

1 1 01 0001 2 2

2 2 02 0010 4 4

3 3 03 0011 8 8

4 4 04 0100 16 10 un quartet = un chiffre hexa

5 5 05 0101 32 20

6 6 06 0110 64 40

7 7 07 0111 128 80

8 8 10 1000 256 100 un octet = deux chiffres hexa

9 9 11 1001 512 200

10 A 12 1010 1024 400 1Kb

11 B 13 1011 2048 800 2Kb

12 C 14 1100 4096 1000 4Kb

13 D 15 1101 8192 2000 8Kb

14 E 16 1110 16384 4000 16Kb

15 F 17 1111 32768 8000 32Kb

16 10 20 10000 65536 10000 64Kb

20 14 24 10100 1048576 100000 1Mb = 1K2
b = 5 chiffres

30 1E 36 11110 ˜1.07× 109 40000000 1Gb = 1K3
b

9

