Printed by waille

oct. 05, 22 11:02 branchements_algos.4.latin.txt Page 1/4

oct. 05, 22 11:02 branchements_algos.4.latin.txt Page 2/4

On aborde la traduction des constructeurs algorithmiques.
On privilégie la traduction mécanique (travail du compilateur).

I) Branchements
I.1) Définition

Un saut ou branchement est une affectation au compteur ordinal (PC).
Effet : passage a une autre instruction que celle qui suit en séquence.

I.2) Relatif versus absolu

Sauter n instructions
Pc <- PC + n*4 @ Saut relatif b ou bal (branch always)
Aller a l’instruction a 1’adresse A
PC <- A @ Saut absolu autres processeurs Jjmp (jump)
ARM : PC est accessible comme R15

ldr R15, =adresse
I.3) Effet du pipeline
Travail & la chaine écrire resultat i-2 // calculer i-1 // lire i
Lecture de PC comme rl5 pointe 2 instructions en avance (pour toute
utilisation de rl5 comme opérande des instructions de calcul et dans les
[] de 1ldr et str). La valeur de PC lue est adresse de instruction courante + 8.

I.4) Sens de branchement et boucles

Adresse de l1l’intruction > Adresse de 1l’instruction de branchement : avant
<= : arrieéere

Branchement relatif en arriére : n <= 0

Les branchements en arriere créent des boucles le processeur réexécute

les instructions qui précédent. Si branchement arriere inconditionnel : boucle

infinie.

Exemple :

Adresse Etiquette Instruction Signification

10000 debut : mov rl, #0 @ rl <- 0

10004 dest_rel: sub rl,rl,#1 Q@ r1 ——

10008 saut_abs: ldr rl5, =dest_abs @ pc <- dest_abs

1000C mov rl, #4 @ rl <- 4 (jamais executée)

10010 dest_abs: add rl,rl,rl @ rl =1rl1 * 2

10014 saut_rel: b dest_rel @ pc <- -6 instructions

10018 ~

1001cC v + 2 instructions @ depuis ici (PC + 8)
.ltorg

Ordre d’execution (derniers chiffres d’adresses)
00 04 08 10 14 04 08 10 14 04 08 10

Cas du ARM
tructions

déplacement de n instructions, n codé sur 24 bits : + ou - 8 Mi ins

I.6) Branchements conditionnels

Si condition = expr (Z,N,C,V) vraie alors PC <- PC + déplacement*4
sinon PC <- PC + 4
II) Si alors sinon

On introduit les goto et les etiquettes pour faire apparaitre les branchements.
On fait apparaitre la comparaison + on INVERSE la condition :

si condition fausse sauter au sinon.

Exemple

register int x,y; /* Entiers signes */

X == x =y not (x-y)==
if (x==y) | compar: if ((x — y) != 0) goto sinon
{ .
X = x + 2; . alors: X =x + 2;
y=y - 1; . y=y - 1;
} . goto fin_si;
else v
{
y =y - 3; . sinon: vy =y - 3;
b4 x + 5; . x =x + 5;
} v
X =x + Vy; ‘ fin_si: X =X + y;
Traduction ARM : x : rl y : r2
compar: cmp rl, r2 @ ZNCV = f (x-y)
bne sinon @ brancher si Z=0 (resultat != 0)
alors: add rl, rl, #2
sub r2, r2, #1
b fin_si @ supprimer pour si alors
sinon: sub r2, r2, #3 @ supprimer pour si alors
add rl, rl, #5 @ supprimer pour si alors
fin_si: add rl, rl, r2

L’ étiquette compar n’est pas nécessaire (lisibilité uniquement).
III) Si alors et remarques diverses

Dans les test <,<=,>,>=, tenir compte de la nature des entiers comparés.
Exemple : if (x<=y) goto etiquette

(bls etiquette)
(ble étiquette)

condition sur Z et C
condition sur Z et N ouex V

+ adresses ou entiers naturels
+ entiers relatifs

Le programmeur utilise une étiquette, 1’assembleur calcule le déplacement
entre 1’instruction de branchement et 1’étiquette destination du saut.

Ce branchement ne sert a rien (erreur de traduction ou simplification)

if (x < y) goto xinfy cmp r0,rl @ x rdans r0, y dans rl
blo xinfy @ saut totalement inutile
xinfy: y = y—-x; xinfy: sub rl,rl,r0
Condition x<y vraie sauter a sub rl,rl,r0 a 1l’étiquette xinfy
Condition x<y gfausse passer a l’instruction suivante : sub rl,rl,r0 aussi

mercredi octobre 05, 2022

branchements_algos.4.latin.txt 1/2

Printed by waille

oct. 05, 22 11:02 branchements_algos.4.latin.txt Page 3/4 oct. 05, 22 11:02 branchements_algos.4.latin.txt Page 4/4
Traduction du if sans else test: if condition_inversée goto fin
cas particulier de corps
if (x==y) { if (x==y) { if ((x-y)!=0) goto sinon goto test;
X= x+2; X=x+2; X=xX+2; fin: @ suite
y = y-1; y=y-1; y=y-1;
} } else { goto finsi while (x<y) { condw: if (x -y) >= 0) goto finw
/* sinon vide */ sinon: X=x+2; X = x+2;
4 y=y+1; y = y+l;
X = x+ty; X=x+y; finsi: =x=x+y; } goto condw
X=xX+Yy: finw: X = x+y
Etiquettes sinon et finsi synonymes : if ((x-y) != 0) goto finsi
X=xX+2; Version avec test avant semble plus naturelle, mais plus "piégeuse"
y=y-1;
goto finsi 1) Oublier d’inverser ou mal inverser la condition dans le test
finsi: x=x+y; ——> la condition inverse de x<y n’st pas x>y mais x >=y
Le goto finsi ne sert a rien 2) Oublier le branchement conditionnnel sur le test aprés le corps.
if (x==y) { if ((x-y) != 0) goto finsi cmp r0,rl VI) Parcourant/for
bne finsi
X=x+2; X=x=2; add r0,r0, #2 Syntaxe C for (initialisation;cond_continuation;mise_a_jour)
y=y-1; y=y-1; sub rl,rl, #1 {
} corps_du_for;
X=x+Yy; finsi: X=xX+Yy; finsi: add r0,r0,rl }
Exemple facto := 1;
IV) Répéter tant que (do while) Pour indice parcourant 1 .. n
facto = facto * indice;
Apres chaque exécution du corps, on teste la condition et on rebranche
au début du corps. Le corps est toujours exécuté au moins une fois. for (indice = 1; indice <= n; indice ++) {
facto = facto * indice;
do }
{
X =x + 2; corps: X = x + 2; <.. ==> transformation en while équivalent
y =y + 1; y =y + 1; cond vraie
} while (x < y); compar: if ((x-y) <0) goto corps; e indice = 1; /* initialisation */
X =x + y; fin_do: X = x + y; while (indice <= n) {
facto *= indice; /* corps du for */
V) Tant que indice ++; /* mise a jour */
}
Idem do, mais ajouter un saut au test pour vérifier la condition avant
la premiere exécution du corps. VII) Conditions composées : && (etpuis), || (oubien)
Avec test de la condition non inversée aprés le corps de boucle : /* Ne pas traiter si manque de temps */
un saut conditionnel (if goto) par tour de boucle Exemple
while (x < vy) { goto condwhile if((a == b) && (c>d)) { if (a-b) != 0) goto sinon;
X = x+2; corpswhile X = x+2; if (c<=d) goto sinon;
y = y+1; y = y+1; X = y; alors: X = y;
} condwhile: if (x-y) < 0) goto corpswhile } else { goto fin_si;
X = x+ty; x+x+y; y = X; sinon: y = X;
}
X++; fin_si: X++;
Variante avec test avant le corps de boucle et condition INVERSEE
Kk K ok Kk Kk Kk Kk if((a == Db) || (c>d)) { if (a-b) == 0) goto alors;
if (c<=d) goto sinon;
A chaque tour de boucle un branchement condtionnel INVERSE : X =y; alors: X =y;
if (!'cond) goto fin } else { goto fin_si;
et un branchement inconditionnel y = X; sinon: y = X;
goto corps) apres le corps. }
xX++; fin_si: xX++;
branchements_algos.4.latin.txt 2/2

mercredi octobre 05, 2022

