
 On aborde la traduction des constructeurs algorithmiques.
 On privilégie la traduction mécanique (travail du compilateur).

I) Branchements

I.1) Définition

 Un saut ou branchement est une affectation au compteur ordinal (PC).
 Effet : passage à une autre instruction que celle qui suit en séquence.

I.2) Relatif versus absolu

 Sauter n instructions :
 Pc <− PC + n*4 @ Saut relatif b ou bal (branch always)

 Aller à l’instruction à l’adresse A :
 PC <− A @ Saut absolu autres processeurs jmp (jump)
 ARM : PC est accessible comme R15
 ldr R15, =adresse

I.3) Effet du pipeline

 Travail à la chaîne : écrire resultat i−2 // calculer i−1 // lire i

 Lecture de PC comme r15 : pointe 2 instructions en avance (pour toute
utilisation de r15 comme opérande des instructions de calcul et dans les
[] de ldr et str). La valeur de PC lue est adresse de instruction courante + 8.

I.4) Sens de branchement et boucles

 Adresse de l’intruction > Adresse de l’instruction de branchement : avant
 <= : arrière

 Branchement relatif en arrière : n <= 0

 Les branchements en arrière créent des boucles : le processeur réexécute
les instructions qui précèdent. Si branchement arrière inconditionnel : boucle
infinie.

Exemple :

Adresse Etiquette Instruction Signification

10000 debut: mov r1, #0 @ r1 <− 0
10004 dest_rel: sub r1,r1,#1 @ r1 −−
10008 saut_abs: ldr r15, =dest_abs @ pc <− dest_abs
1000C mov r1, #4 @ r1 <− 4 (jamais executée)
10010 dest_abs: add r1,r1,r1 @ r1 = r1 * 2
10014 saut_rel: b dest_rel @ pc <− −6 instructions
10018 ^
1001C v + 2 instructions @ depuis ici (PC + 8)
 .ltorg

Ordre d’execution (derniers chiffres d’adresses) :

00 04 08 10 14 04 08 10 14 04 08 10 ...

Cas du ARM : déplacement de n instructions, n codé sur 24 bits : + ou − 8 Mi ins
tructions

oct. 05, 22 11:02 Page 1/4branchements_algos.4.latin.txt
I.6) Branchements conditionnels

 Si condition = expr (Z,N,C,V) vraie alors PC <− PC + déplacement*4
 sinon PC <− PC + 4
II) Si alors sinon

On introduit les goto et les etiquettes pour faire apparaitre les branchements.
On fait apparaitre la comparaison + on INVERSE la condition :
si condition fausse sauter au sinon.

Exemple

register int x,y; /* Entiers signes */

 x == y x != y not (x−y)==0
if (x==y) | | compar: if ((x − y) != 0) goto sinon
 { | .
 x = x + 2; | . alors: x = x + 2;
 y = y − 1; | . y = y − 1;
 } | . goto fin_si;
else . v
 { . |
 y = y − 3; . | sinon: y = y − 3;
 x = x + 5; . | x = x + 5;
 } v |
x = x + y; | | fin_si: x = x + y;

Traduction ARM : x : r1 y : r2

compar: cmp r1, r2 @ ZNCV = f(x−y)
 bne sinon @ brancher si Z=0 (resultat != 0)
alors: add r1, r1, #2
 sub r2, r2, #1
 b fin_si @ supprimer pour si alors
sinon: sub r2, r2, #3 @ supprimer pour si alors
 add r1, r1, #5 @ supprimer pour si alors
fin_si: add r1, r1, r2

L’étiquette compar n’est pas nécessaire (lisibilité uniquement).

III) Si alors et remarques diverses

 Dans les test <,<=,>,>=, tenir compte de la nature des entiers comparés.
Exemple : if (x<=y) goto etiquette :

+ adresses ou entiers naturels : condition sur Z et C (bls etiquette)
+ entiers relatifs : condition sur Z et N ouex V (ble étiquette)

 Le programmeur utilise une étiquette, l’assembleur calcule le déplacement
entre l’instruction de branchement et l’étiquette destination du saut.

 Ce branchement ne sert à rien (erreur de traduction ou simplification) :
 if (x < y) goto xinfy cmp r0,r1 @ x rdans r0, y dans r1
 blo xinfy @ saut totalement inutile
xinfy: y = y−x; xinfy: sub r1,r1,r0

 Condition x<y vraie : sauter à sub r1,r1,r0 à l’étiquette xinfy
 Condition x<y gfausse : passer à l’instruction suivante : sub r1,r1,r0 aussi

oct. 05, 22 11:02 Page 2/4branchements_algos.4.latin.txt

Printed by waille

mercredi octobre 05, 2022 1/2branchements_algos.4.latin.txt

 Traduction du if sans else :
 cas particulier de
if (x==y) { if (x==y) { if ((x−y)!=0) goto sinon
 x= x+2; x=x+2; x=x+2;
 y = y−1; y=y−1; y=y−1;
} } else { goto finsi
 /* sinon vide */ sinon:
 }
x = x+y; x=x+y; finsi: x=x+y;

Etiquettes sinon et finsi synonymes : if ((x−y) != 0) goto finsi
 x=x+2;
 y=y−1;
 goto finsi
 finsi: x=x+y;

Le goto finsi ne sert à rien

if (x==y) { if ((x−y) != 0) goto finsi cmp r0,r1
 bne finsi
 x=x+2; x=x=2; add r0,r0,#2
 y=y−1; y=y−1; sub r1,r1,#1
}
x=x+y; finsi: x=x+y; finsi: add r0,r0,r1

IV) Répéter tant que (do ... while)

Après chaque exécution du corps, on teste la condition et on rebranche
au début du corps. Le corps est toujours exécuté au moins une fois.

do
 { |
 x = x + 2; corps: x = x + 2; |<..
 y = y + 1; y = y + 1; | | cond vraie
} while (x < y); compar: if ((x−y) <0) goto corps; |...
x = x + y; fin_do: x = x + y; |

V) Tant que

Idem do, mais ajouter un saut au test pour vérifier la condition avant
la première exécution du corps.

Avec test de la condition non inversée après le corps de boucle :
un saut conditionnel (if .. goto) par tour de boucle

while (x < y) { goto condwhile
 x = x+2; corpswhile : x = x+2;
 y = y+1; y = y+1;
} condwhile: if (x−y) < 0) goto corpswhile
x = x+y; x+x+y;

Variante avec test avant le corps de boucle et condition INVERSEE

A chaque tour de boucle : un branchement condtionnel INVERSE :
 if (!cond) goto fin
et un branchement inconditionnel
 goto corps) après le corps.

oct. 05, 22 11:02 Page 3/4branchements_algos.4.latin.txt
 test: if condition_inversée goto fin
 corps

 goto test;
 fin: @ suite

while (x<y) { condw: if (x −y) >= 0) goto finw
 x=x+2; x = x+2;
 y=y+1; y = y+1;
} goto condw
x=x+y: finw: x = x+y

Version avec test avant semble plus naturelle, mais plus "piégeuse" :

1) Oublier d’inverser ou mal inverser la condition dans le test
 −−> la condition inverse de x<y n’st pas x>y mais x >= y

2) Oublier le branchement conditionnnel sur le test après le corps.

VI) Parcourant/for

Syntaxe C : for (initialisation;cond_continuation;mise_a_jour)
 {
 corps_du_for;
 }

Exemple : facto := 1;
 Pour indice parcourant 1 .. n
 facto = facto * indice;

 for (indice = 1; indice <= n; indice ++) {
 facto = facto * indice;
 }

==> transformation en while équivalent :

 indice = 1; /* initialisation */
 while (indice <= n) {
 facto *= indice; /* corps du for */
 indice ++; /* mise a jour */
 }

VII) Conditions composées : && (etpuis), || (oubien)

/* Ne pas traiter si manque de temps */
Exemple :

if((a == b) && (c>d)) { if (a−b) != 0) goto sinon;
 if (c<=d) goto sinon;
 x = y; alors: x = y;
 } else { goto fin_si;
 y = x; sinon: y = x;
 }
x++; fin_si: x++;

if((a == b) || (c>d)) { if (a−b) == 0) goto alors;
 if (c<=d) goto sinon;
 x = y; alors: x = y;
 } else { goto fin_si;
 y = x; sinon: y = x;
 }
x++; fin_si: x++;

oct. 05, 22 11:02 Page 4/4branchements_algos.4.latin.txt

Printed by waille

mercredi octobre 05, 2022 2/2branchements_algos.4.latin.txt

