
I) Sous−multiples du mot et alignement

Réservation de place :

.short valeur ! réserve et initialise 2 octets −−> short

.byte valeur ! idem 1 octet . Note .byte ’a’ −−> char

.skip nb_octets ! réservation sans valeur initiale (0)
! seul autorise dans bss

Contraintes d’alignement

tout objet placé à une adresse multiple de sa taille
&x modulo sizeof(x) = 0

On laisse des trous (.skip) si besoin

Exemple : 4 * X 4*X + 1 4*X + 2 4*X + 3
−−−

x: .byte 0 | |/////////|/////////|/////////|
.skip 3 −−−

y: .word 6 | . . . |
−−−
 4 * (X+1) 4*(X+1)+1

Pour éviter de compter à la main :
.balign t ! génère le bon nombre de .skip

! t est la taille de l’objet stocké après

Pour éviter de perdre trop de place : ordonner par taille

II) Structures

2.1) Déclaration

Une structure se déclare comme une liste de variables correspondant à ses
champs, avec les précautions d’alignement.

struct _s { @ SIZEOF_STRUCT_S = 16
 int x; @ DELTA_STRUCT_S_X =0
 char cx; @ DELTA_STRUCT_S_CX =4
 int y; @ DELTA_STRUCT_S_Y =8
 char cy;}; @ DELTA_STRUCT_S_CY =12

struct _s s1 = {2, ’a’, 3, ’b’};
struct _s s2, s3;

.data .bss
s1: .word 2 s2: .skip 16

.byte ’a’ s3: .balign 4 @ redondant

.balign 4 .skip 16

.word 3

.byte ’b’

5.2) Accès

Comme pour une variable ordinaire, mais l’adresse des champs est déduite
de leur position par rapport au début de la structure.

 s2.y = 3 @ * &s2.y = 3
ldr r10,= s2
mov r9,#3

oct. 10, 24 15:42 Page 1/3donnees_pointeurs.5.latin.txt
str r9, [r10, #DELTA_STRUCT_S_Y]

III) Pointeurs (C) : déclaration

 Comme une variable ordinaire, un pointeur peut être stocké en mémoire
 ou dans un registre.

 On peut déclarer des pointeurs de n’importe quoi, y compris des pointeurs
 de fonctions et des pointeurs de pointeurs.

 La déclaration spécifie le type d’objet pointé pour :
 + vérification de cohérence de type :
 −−> interdit var_float = * ptr_char
 + savoir combien d’octets lire ou écrire (application de * sur le pointeur)
 + ne change pas la taille du pointeur

 Tous les pointeurs ont la même taille : celle d’une adresse mémoire.

char c = ’a’;
char c2 = ’c’;
unsigned short s,s2;
register unsigned short r1, r2;

register short *rps,*rp2; /* deux pointeurs stockés dans des registres */

char *pcarac; /* implicitement initialisé à NULL */
unsigned short *ps = &s; /* avec initialisation */

@ r1 : registre r1
@ r2 : registre r2
@ rps : registre r3 (choix arbitraire du registre)
@ rp2 : registre r4 (choix arbitraire du registre)
@ r9, r10 stockage temporaire

.data
c: .byte ’a’
c2: .byte 0x63 @ ASCII (c) = 0x63

.balign 4 @ ps qui suit est stocké sur 4 octets
ps: .word s

.bss

.balign 2
s: .skip 2 @ pas de valeur initiale dabs bss −−> skip
s2: .skip 2

.balign 4 @ pcarac qui suit est stocké sur 4 octets
pcarac: .skip 4

IV) Pointeurs : affectation

−−> appliquer la même méthode que pour une variable ordinaire

Stockage dans un registre

 r1 = 0x1234 ldr r1,= @x1234

 rps = &s ldr r3,=s

oct. 10, 24 15:42 Page 2/3donnees_pointeurs.5.latin.txt

Printed by

jeudi octobre 10, 2024 1/2donnees_pointeurs.5.latin.txt

Stockage en mémoire

 c = ’b’ mov r9, #’b’ @ *&c = ’b’
 ldr r10,= c

strb r9, [r10]

 ps = &s2 ldr r9,= s2
 ldr r10,= ps

str r9, [r10]

V) Pointeurs : utilisation ("déréférencement")

Pointeur stocké dans un registre

 r1 = *rps /* r1 = s puisque rps contient &s */ ldrh r1, [r3]
 rps = r1 / s = r1 / strh r1, [r3]

Pointeur stocké en mémoire

 r1 = *ps −−> r1 = * *&ps ldr r10,= ps @ r10 = &ps
 ldr r9, [r10] @ r9 = *&ps

ldrh r1, [r9] @ r1 = * *&ps

/* ldrh : type unsigned short * et ldrsh : type short */

 *ps = r1 −−> * *&ps = r1 ldr r10,=ps @ r10 = &ps
 ldr r9, [r10] @ r9 = *&ps

strh r1, [r9] @ * *&ps = r1

VI) Pointeur de structure

Acces à une structure via un pointeur : comme pour une variable ordinaire.

struct _s *ptstruct;

ptstruct = &s2;
(*ptstruct).cy=’u’; // réalise s2.cy = ’u’

La notation pointeur−>cy est un raccourci pratique pour
(*pointeur.cy) :

 ldr r0,=ptstruct // r0=&pstruct
 ldr r0,[r0] // r0=*&ptstruct (r0=ptstruct)
 mov r1,#’u’
 strb r1,[r0,#DELTA_STRUCT_S_CY] // *(*&ptstruct).cy = ’u’

oct. 10, 24 15:42 Page 3/3donnees_pointeurs.5.latin.txt

Printed by

jeudi octobre 10, 2024 2/2donnees_pointeurs.5.latin.txt

