
Cours numéro 2 : notion d’instruction, d’interprète et de langage machine

I) Interprétation des instructions

 Les programmes, écrits dans un langage, sont des suites d’instructions
exécutées par un interprète.

 Algorithme d’interprétation = une boucle sans fin :
 * lire l’instruction courante en mémoire
 * décoder l’instruction : de quelle instruction s’agit−il ?
 * exécuter les actions spécifiées par l’instruction
 * passer à l’instruction suivante.

 Pour exécuter un programme écrit dans un langage L1, il faut soit :
 * traduire une seule fois tout le programme en langage L2 : compilation.
 chaque instruction L1 est décodée et traduite en L2 une seule fois.
 * écrire en langage L2 un programme interprète de langage L1 (algo
ci−dessus) : interprétation
 chaque instruction L1 est décodée autant de fois qu’elle est exécutée

 Compilation : + efficace pour exécutions répétées/boucles
 Interprétation : + souple mise au point

 Comment exécuter un programme compilé ou un interprète écrit en
 L2 : compiler du L2 en L3 ou écrire en L3 un interprète de L2
 L3 : compiler du L3 en L4 ou écrire en L4 un interprète de L3
 ...
 Lj : compiler du Lj en LM ou écrire en LM un interprète de Lj

==> LM : langage machine binaire dont l’algo d’interprétation est câblé
 dans un circuit séquentiel : le processeur

 Pincipaux cas de figure :

 * Compilation C −> asm/machine X
+ interprétation directe matérielle par X (C −> SPARC ou AMD64)

 + interprète programmé langage machine X exécuté sur processeur Y <> X
 code 68000 exécuté sur PowerPC,
 code ARM ou POWERPC exécuté sur AMD64 ...

 * Interprétation directe (BASIC)
 * Compilation en XX−code (d’une machine virtuelle portable) interprété.

==> P−code de PASCAL, bytecode de JAVA
 * compilation LL vers C + compilation C vers machine
 (cas de C++ à ses débuts).

II) Modèle hérité de Von Neumann, compteur ordinal, vitesse, démarrage

 Instrutions executées en séquence dans l’ordre du programme stocké en memoire.
 Instruction machine courante pointée par registre compteur ordinal
ou compteur programme : PC (program counter) du processeur.
 Déplacé sur instruction suivante après chaque instruction.

 Rien ne distingue données et instructions en mémoire.
 Contenu interprété comme instruction quand pointé par PC du processeur,
 comme donnée sinon.

 Cadencé par horloge périodique.
 1 ou plusieurs cycles / instruction
 Mhertz (MHz) = Million /sec => 1 us (10^−6).
 Mhertz (GHz) = Milliard/sec => 1 ns (10^−9).

sept. 19, 22 14:28 Page 1/3langage_machine.1.latin.txt
 Démarrage : signal "Reset" a la mise sous tension
 PC <− adresse (no emplacement) 1ère instruction du programme (ex: PC <− 0)
 Boucle sans fin jusqu’a coupure courant.
 lire instruction dans Mem[PC]
 décoder instruction et effectuer actions associées
 PC ++ ; passer à l’instruction suivante

III) Notion de langage machine et d’assemblage

Instruction/langage machine processeur : format binaire, seul compris par le
processeur.

Langage d’assemblage : idem mais sous forme lisible (textuelle)

L’assembleur est le programmme traducteur texte −> binaire
Abus de langage : programmer "en assembleur" au lieu de "en langage
d’assemblage". (Presque) tout ce que permet le langage machine peut être
décrit en langage d’assemblage.

Gros inconvenient : fastidieux (opérations élémentaires) et non portable
Chaque famille de processeurs a son propre langage machine et
un plusieurs langages d’assemblage.

==> langage de programmation portable + traduction

Cas simple : 1 instruction ADA,C,PASCAL... simple =
 1 instruction processeur ~= 1 cycle d’horloge

 −−−−−−−−− processeur ARM (PDA, applis embarquées)
C Assemblage Binaire machine

r1 = r2 − r3 sub r1,r2,r3 11100000010000100001000000000011
 <2 ><1 > <3 >
 0xE0421003
 ^^ ^
Cas − simple : il faut une séquence de plusieurs instructions machine pour
 faire l’equivalent d’une instruction ADA

r3 = r1 + r2/4 + 7 add r3, r1, r2, lsr #2
add r3, r3, #7

IV) Objectifs

A quoi ca sert de savoir programmer en

Lge machine bin/hexa : * comprendre le déroulement d’une instruction dans le
 processeur, écrire un assembleur (traducteur)

Langage d’assemblage : * nécessité de manipuler des ressources spécifiques
 du processeur (registres spéciaux) dans le noyau
 d’un système d’exploitation
 * écriture de bibliothèques, de compilateurs

 * mieux comprendre ce qu’on manipule en C (pointeurs)
 * observer le résultat d’un compilateur optimisant et

des erreurs éventuelles
 * optimisation fine du code généré (1 procedure)

IV) Notion de jeu d’instructions

Ce qui est connu du programmeur/compris par le processeur

sept. 19, 22 14:28 Page 2/3langage_machine.1.latin.txt

Printed by waille

lundi septembre 19, 2022 1/2langage_machine.1.latin.txt

Ensemble de registres généraux / état<ZNCV> / PC

Instructions :

arithmétiques et logiques : addition / soustractions/ décalages etc

accès mémoire :

 load (chargement/lecture)
 <−−−−−−−−−−−−−−−−−−−−−−−−

ldr reg, [ad]
 registre Mem[ad]

str reg, [ad]
 −−−−−−−−−−−−−−−−−−−−−−−−>
 store (rangement/écriture)

controle et divers: sauts/branchements

sept. 19, 22 14:28 Page 3/3langage_machine.1.latin.txt

Printed by waille

lundi septembre 19, 2022 2/2langage_machine.1.latin.txt

