Printed by waille

oct. 13, 25 11:51 procedures_generales.8.latin.txt Page 1/4 oct. 13, 25 11:51 procedures_generales.8.latin.txt Page 2/4
Procédures (cas général) Récursion directe : une fonction s’appelle elle-méme a nouveau.
indirecte : £ > g > ... > f
I) Gestion des résultats
unsigned long facto (unsigned long n)
1.1) Retourner un seul résultat : fonction {
unsigned long f = n;
On ajoute un mot au bloc de paramétres passés. if (n <= 1)
f =1;
void £ (void) int g(int x) else
((f = £ * facto(n-1);
int y; return x+3; return f;
y = g9(3); } }
}
main —--->
x_de_g =3; —-—————— > resultat_de_g = x_de_g+3; facto (4)
y = resultat_de_g <-——-— f=4 —-—>
facto (3) —-—>
1.2) Paramétres valeur/résultat ou plusieurs résultats £f=3
facto(2)
Comment faire en sorte qu’on puisse passer en parametre une variable a £=2
modifier ? ——> facto (1)
<——-f=1
On utilise un/des paramétre(s) de type pointeur. <-—- f =2
Avec 1’adresse contenue dans le pointeur on peut lire ou modifier la <—— f =6
variable passée. <-—— f = 24
short int y; Une allocation DYNAMIQUE d’un bloc de mémoire (paramétres regus + locaux)
short int z; // z pourrait aussi é&tre une variable locale de £ par APPEL. Propriété LIFO : dernier alloué premier libéré.
// convention d’appel : paramétres dans regs : p = r0, m = rl, -—> on stocke des blocs dans un grand tableau appelé la pile.
// ip/rl2 = tmp non sauvegardé par 1’appelée. allocation lors de 1l’appel et libération lors du retour
void f (void) void pm (short int *p, short int *m) III) Allouer et empiler, libérer et dépiler
{ {
*p = *p + 1; registre sp (stack pointeur/sommet de pile) repére la limite alloué/libre.
pm(&z, &y); *m = *m - 1;
y ——; } Variantes de schéma de pile : fd, fa, ed, ea
} // y décrémentée deux fois au final. full descending, full ascending, empty desceding, empty ascending
-—> pile croit vers adresses hautes/basses
p_de_pm = &z_de_f£f; (1dr r0,= z) —-—> sommet de pile pointe derniére case pleine/premiére case vide
m_de_pm = &y; (ldr rl,=vy)
__________ > *p_de_pm = *p_de_pm + 1; ARM : fd (tres répandue)
(ldrsh r10, [r0], add rl1l0,r1l0,#1; strh rl0, [x0])
*m_de_pm = *m_de_pm - 1; Allouer(t) : sp = sp -t empiler (r) : sp = sp —4; Mem[sp] = r
(ldrsh r10, [rl], sub rl10,r10,#1; strh rl0, [rl]) Libérer(t) : sp = sp +t r=depiler() : r = Mem[sp]; sp = sp + 4
y——i <mmmmmm -
stmfd sp!, {r0,r3-r5} : empiler (r5) ;empiler(r4);empiler (r3);empiler (r0)
Et si la variable a modifier est un pointeur ? ldmfd sp!, {xr0,r3-r5} : depiler(r0);depiler (r3);depiler (r3);depiler(r5)
—-—> utiliser un parametre de type pointeur de pointeur ... | | ——————— > toutjours en ordre croissant
int x;
int *ptr;
void f (void) void g (int **p)
{ {
g (&ptr); *p o= &x;
} }
IT) Principe de gestion de la récursion
Exemple : 0! =1; n! = n * (n-1)!

lundi octobre 13, 2025 /tmp/procedures_generales.8.latin.txt 1/2

Printed by waille

oct. 13, 25 11:51 procedures_generales.8.latin.txt Page 3/4 oct. 13, 25 11:51 procedures_generales.8.latin.txt Page 4/4
III) Stockage des locaux et des parametres dans une pile @ restaurer tous les registres
@ --> rétablit au passage anciens fp et sp -—-> libération
Registre sommet de pile (sp) : repere limite plein/vide @ mv pc,lr
Registre pointeur de cadre (fp) : repére bloc précédent (appelante)
Remarque : on pourrait faire sans fp, mais la position relative a sp des locaux
~ appel de m appel de £ et parametres regus change a chaque allocation de bloc de paramétres.
moins 00 @é————————= > mmme >
allouer allouer Variante : on alloue au début une seule fois le plus grand bloc de paramétres
plus nécessaire parmi tous les appels de fonction dans le corps,
v retour de m retour de f et on libére une seule fois a la fin.
<——— <———
libérer libérer V) Optimisations
———————————— <-sp Pour économiser des acces a la pile, convention répandue :
variables ds f * n premiers arguments d’appels dans les registres (ARM : 4 dans r0 a r3)
tmp/sauvereg * résultat d’une fonction stocké a la place du premier argument
de f * adresse de retour
fp_f - ... + RISC : dans un registre (ARM :1r)/sauvée par appelée
———————————— <-sp fp—>|-————————- + CISC : empilée par instruction d’appel dans 1’appelante (jsr de 68000)
~ paramtres ds m ds £ parametres
|delta passés a f regus de m VI) Code standard de gnu/ARM
vparam sp.m + ... fp_ £ + ...
777777777777777777777777 Particularité : on fait fp <- sp - 4
~ variables variables Les registres sont sauvés par 1’appelée, excepté ip.
delta tmp/sauvereg tmp/sauvereg
loc de m de m Code standard du prologue
v fp_m -
———————————— <-sp fp—>|-————-—-—- ——————— prologue: mov ip, sp
parametres |ds gm ds m| parametres parametres stmfd sp!, {fp,ip, 1lr,pc}
passés a m regus de gm gm vers m sub fp,ip, #4
sp_gm +... fp.m + ... ici: sub sp, sp, #DELTA
———————————————————————————————————— str rx, [fp, #-Delta_sauve_rx]
variables variables variables .
tmp/sauvereg tmp/sauvereg tmp/sauvereg str rz, [fp, #-Delta_sauve_rz]
de gm de gm de gm
fp_gm - ... -16 sauve reg r...
777777777777 <-fp ——————————— —————————— e
ds gm -12 ancien fp
Remarque : réutilisation de 1’espace mémoire. -8 ancien sp = ——————-—
-4 adresse retour (lr)
a appelle b puis a appelle c : zone allouée par b réallouée 2 c. | | | -————————————————————
fp ————>| ici (info de debug)
IV) Squelette de codage
parametre 4 <———————— sp avant prologue
fonction: @ prologue
Q@ sauvegarder fp (en sp -) Code standard de 1’épilogue
Q@ fp = sp 1ldr rz, [fp, #-Delta_sauve_rz]
@ sauvegarder autres registres (en fp -) ..
@ sp = sp - delta_loc 1ldr rx, [fp, #-Delta_sauve_rx]
@ ceci réalise 1l’allocation de mémoire des locaux ldmea fp, {fp, sp,pc}
@ restaure anciens fp et sp, restaure lr dans pc (fait mov pc,lr)
Q@ corps
@ acces aux locaux en fp - ..., paramétres regus en fp + ... A noter : lors d’un appel, penser a sauver r0 a r3 qui contenaient les
@ appel de g paramétres regus et contiendront les paramétres passés.
@ allocation des paramétres : sp = sp — delta_param
Q@ écrire parametres de g en sp +
Q@ bl g
@ libérer : sp = sp + delta_param
Q@ épilogue

lundi octobre 13, 2025 /tmp/procedures_generales.8.latin.txt 2/2

