
Procédures (cas général)

I) Gestion des résultats

1.1) Retourner un seul résultat : fonction

On ajoute un mot au bloc de paramètres passés.

void f (void) int g(int x)
{ {
int y; return x+3;
y = g(3); }
}

x_de_g =3; −−−−−−−> resultat_de_g = x_de_g+3;
y = resultat_de_g <−−−−

1.2) Paramètres valeur/résultat ou plusieurs résultats

Comment faire en sorte qu’on puisse passer en paramètre une variable à
modifier ?

On utilise un/des paramètre(s) de type pointeur.
Avec l’adresse contenue dans le pointeur on peut lire ou modifier la
variable passée.

short int y;
short int z; // z pourrait aussi être une variable locale de f

// convention d’appel : paramètres dans regs : p = r0, m = r1,
// ip/r12 = tmp non sauvegardé par l’appelée.

void f(void) void pm (short int *p, short int *m)
{ {
 *p = *p + 1;
pm(&z,&y); *m = *m − 1;
y −−; }
} // y décrémentée deux fois au final.

p_de_pm = &z_de_f; (ldr r0,= z)
m_de_pm = &y; (ldr r1,= y)
 −−−−−−−−−−> *p_de_pm = *p_de_pm + 1;
 (ldrsh r10,[r0], add r10,r10,#1; strh r10,[r0])
 *m_de_pm = *m_de_pm − 1;
 (ldrsh r10,[r1], sub r10,r10,#1; strh r10,[r1])
y−−; <−−−−−−−−−−

Et si la variable à modifier est un pointeur ?
−−> utiliser un paramètre de type pointeur de pointeur ...

int x;
int *ptr;

void f(void) void g (int **p)
{ {
g(&ptr); *p = &x;
} }

II) Principe de gestion de la récursion

Exemple : 0! = 1; n! = n * (n−1)!

oct. 13, 25 11:51 Page 1/4procedures_generales.8.latin.txt
Récursion directe : une fonction s’appelle elle−même à nouveau.
 indirecte : f −> g −> ... −> f

unsigned long facto (unsigned long n)
{
unsigned long f = n;
if (n <= 1)
 f = 1;
else
 f = f * facto(n−1);
return f;
}

main −−−>
 facto(4)
 f=4 −−>
 facto (3) −−>
 f=3
 facto(2)
 f=2
 −−> facto(1)
 <−− f = 1
 <−− f = 2
 <−− f = 6
 <−− f = 24

Une allocation DYNAMIQUE d’un bloc de mémoire (paramètres reçus + locaux)
par APPEL. Propriété LIFO : dernier alloué premier libéré.

−−> on stocke des blocs dans un grand tableau appelé la pile.
 allocation lors de l’appel et libération lors du retour

III) Allouer et empiler, libérer et dépiler

registre sp (stack pointeur/sommet de pile) repère la limite alloué/libre.

Variantes de schéma de pile : fd, fa, ed, ea
 full descending, full ascending, empty desceding, empty ascending
 −−> pile croit vers adresses hautes/basses
 −−> sommet de pile pointe dernière case pleine/première case vide

ARM : fd (très répandue)

Allouer(t) : sp = sp −t empiler(r) : sp = sp −4; Mem[sp] = r
Libérer(t) : sp = sp +t r=depiler() : r = Mem[sp]; sp = sp + 4

stmfd sp!,{r0,r3−r5} : empiler(r5);empiler(r4);empiler(r3);empiler(r0)
ldmfd sp!,{r0,r3−r5} : depiler(r0);depiler(r3);depiler(r3);depiler(r5)
 −−−−−−−> toutjours en ordre croissant

oct. 13, 25 11:51 Page 2/4procedures_generales.8.latin.txt

Printed by waille

lundi octobre 13, 2025 1/2/tmp/procedures_generales.8.latin.txt

III) Stockage des locaux et des paramètres dans une pile

Registre sommet de pile (sp) : repère limite plein/vide
Registre pointeur de cadre (fp) : repère bloc précédent (appelante)

 ^ appel de m appel de f
 | moins −−−−−−−−−> −−−−−−−−−>
 | allouer allouer
 | plus
 V retour de m retour de f
 <−−−−−−−−−− <−−−−−−−−−−
 libérer libérer

 | | | | |−−−−−−−−−−−−|<−sp
 | | | | | variables | ds f
 | | | | |tmp/sauvereg| |
 | | | | | de f |
 | | | | | fp_f − ... |
 | | |−−−−−−−−−−−−|<−sp fp−>|−−−−−−−−−−−−|
 | | ^ | paramtres | ds m ds f | parametres |
 | | |delta | passés à f | | reçus de m |
 | | vparam | sp_m + ... | | fp_f + ... |
 | | |−−−−−−−−−−−−| |−−−−−−−−−−−−|
 | | ^ | variables | | variables |
 | | |delta |tmp/sauvereg| |tmp/sauvereg|
 | | |loc | de m | | de m |
 | | v | fp_m − ... | | |
 |−−−−−−−−−−−−|<−sp fp−>|−−−−−−−−−−−−| |−−−−−−−−−−−−|
 | paramètres |ds gm ds m| paramètres | | paramètres |
 | passés à m | | reçus de gm| | gm vers m |
 | sp_gm +... | | fp_m + ... | | |
 |−−−−−−−−−−−−| |−−−−−−−−−−−−| |−−−−−−−−−−−−|
 | variables | | variables | | variables |
 |tmp/sauvereg| |tmp/sauvereg| |tmp/sauvereg|
 | de gm | | de gm | | de gm |
 | fp_gm − ...| | | | |
 |−−−−−−−−−−−−|<−fp |−−−−−−−−−−−−| |−−−−−−−−−−−−|
 | |ds gm | | | |

Remarque : réutilisation de l’espace mémoire.

a appelle b puis a appelle c : zone allouée par b réallouée à c.

IV) Squelette de codage

fonction: @ prologue
 @ sauvegarder fp (en sp −)
 @ fp = sp
 @ sauvegarder autres registres (en fp −)
 @ sp = sp − delta_loc
 @ ceci réalise l’allocation de mémoire des locaux

 @ corps
 @ acces aux locaux en fp − ..., paramètres reçus en fp + ...
 @ appel de g
 @ allocation des paramètres : sp = sp − delta_param
 @ écrire paramètres de g en sp + ...
 @ bl g
 @ libérer : sp = sp + delta_param

 @ épilogue

oct. 13, 25 11:51 Page 3/4procedures_generales.8.latin.txt
 @ restaurer tous les registres
 @ −−> rétablit au passage anciens fp et sp −−> libération
 @ mv pc,lr

Remarque : on pourrait faire sans fp, mais la position relative à sp des locaux
 et paramètres reçus change à chaque allocation de bloc de paramètres.

Variante : on alloue au début une seule fois le plus grand bloc de paramètres
 nécessaire parmi tous les appels de fonction dans le corps,
 et on libère une seule fois à la fin.

V) Optimisations

Pour économiser des accès à la pile, convention répandue :
* n premiers arguments d’appels dans les registres (ARM : 4 dans r0 à r3)
* résultat d’une fonction stocké à la place du premier argument
* adresse de retour :
 + RISC : dans un registre (ARM :lr)/sauvée par appelée
 + CISC : empilée par instruction d’appel dans l’appelante (jsr de 68000)

VI) Code standard de gnu/ARM

 Particularité : on fait fp <− sp − 4
 Les registres sont sauvés par l’appelée, excepté ip.

 Code standard du prologue :

prologue: mov ip,sp
 stmfd sp!,{fp,ip,lr,pc}
 sub fp,ip,#4
ici: sub sp, sp, #DELTA
 str rx, [fp, #−Delta_sauve_rx]

 ...
 str rz, [fp, #−Delta_sauve_rz]

 −16 | sauve reg r... |
 |−−−−−−−−−−−−−−−−−−−−−|
 −12 | ancien fp |
 |−−−−−−−−−−−−−−−−−−−−−|
 −8 | ancien sp −−−−−−−
 |−−−−−−−−−−−−−−−−−−−−−| |
 −4 | adresse retour (lr) | |
 |−−−−−−−−−−−−−−−−−−−−−| |
fp −−−−>| ici (info de debug) | |
 |=====================| |
 | paramètre 4 |<−−−−−−−−− sp avant prologue

 Code standard de l’épilogue
 ldr rz, [fp, #−Delta_sauve_rz]

 ...
 ldr rx, [fp, #−Delta_sauve_rx]

 ldmea fp, {fp, sp,pc}
 @ restaure anciens fp et sp, restaure lr dans pc (fait mov pc,lr)

 A noter : lors d’un appel, penser à sauver r0 à r3 qui contenaient les
 paramètres reçus et contiendront les paramètres passés.

oct. 13, 25 11:51 Page 4/4procedures_generales.8.latin.txt

Printed by waille

lundi octobre 13, 2025 2/2/tmp/procedures_generales.8.latin.txt

