Printed by walille

aoAxt 24, 18 3:09 procedures_simples.7.latin.txt Page 1/3

aoAxt 24, 18 3:09 procedures_simples.7.latin.txt Page 2/3

Mécanisme d’appel de procédure (cas simple sans récursion)
I) Branchements aller et retour : un exemple

Procédures : méme traitement a plusieurs endroits dans programme
un seul exemplaire du code (corps de la procédure) + branchements

int y = 2;
int t;
void gm (void) void m (int x) void £ (int a, int b, int c)
{ { {
int z; int vloc; int y; /* différent de y global */
z = 3; int wv; y = a + b;
£ (3,4,5); £(x+2,y,3); t=y+c;
m (2); vlioc++; }
z++; }
£ (1,0,2*z);
z =z + 4;
}
gm appelante de m et de f
m appelante de f et appelée de gm
f appelée de gm et m
Séquence
z = 3;
a_de_f = 3;
b_de_f = 4;
c_de_f = 5;
________ l____________________________
x_de_m = 2; e ——
——3—————— > a_de_f = x_de_m + 2;
b_de f = y;
c_de_f = 3; v
—————— 4-————————->y de_f = a_de_f + c_de_f;
~ ot = y_de_f + c_de_f£;
vlioc ++ <———————— | —-= 5-——— 2——
z++ <——=== 6——————
a_de_f = 1;
b_de_f = 0; 8
c de f = 2%z; —J————m—m—m————— = |
z = z+4 <

A la fin d’une procédure, le branchement de retour ne va pas toujours a la
méme étiquette : 1’adresse de retour (prochaine instruction a exécuter au
retour de 1’appel) est un parametre de 1’appel.

Propriété LIFO : dernier appel - premier retour.
II) Contraintes et espaces de stockages

N’ importe quelle procédure est susceptible d’appeler n’importe quelle
autre dans n’importe quel programme (cf procédures de bibliothéque genre
printf) .

Une convention entre appelante et appelée doit préciser comment passer les
parametres d’appel explicites (pour f -> a,b,c : écrits par le programmeur) et

implicite (adresse de retour dans 1’appelante : m ou gm).

Les procédures sont écrites indépendamment les unes des autres. La seule

chose que deux procédures connaissent 1l’une de 1’autre est la convention
d’ appel.

Pour chaque procédure (exemple ici m), quatre zones de stockage
(——> traitées comme des structures)

* variables globales partagées (data/bss)

* paramétres (x et adresse de retour) regus de 1l’appelante (gm)
--> stockage partagé entre la procédure et ses appelantes

* variables et temporaires locaux (privés) de la procédure (vloc)
éventuellement de méme nom que var globales (cas de y de f) ou locales
d’ autres procédures

--> stockage privé, non partagé

* paramétres passés (a,b,c) a une autre procédure (f) -> stockage partagé
avec la procédure appelée.

Stockage a répartir entre registres et mémoire.

Principe (sans récursion) : allouer statiquement a chaque procédure
* Une structure regroupant les paramétres d’appels, que 1l’appelante

remplira. Simplification : un mot complet/élément, méme si 8 ou 16 bits.

Optimisation : passer les n (n=4 pour ARM) premiers paramétres dans
des registres, les autres dans la structure.
gcc ARM : repérée par registre sp/rl3.

* une structure privée regroupant les variables, temporaires et
sauvegarde de registres
gcc ARM : repérée par fp/rll

Conflits d’utilisation des registres
a) registre utilisé a la fois par appelante et par appelée.

b) registre utilisé a la fois pour parametre regu et paramétre passé

-—> sauvegarde avant modification/restauration aprés utilisation

"1’appelante retrouve les registres du processeur dans le méme état aprés appel"

Exemple : gm décide de stocker z dans r5
f décide de stocker y dans r5
sans sauvegarde/restauration : y = ... dans f change z dans gm.

Technique usuelle : procédure appelée sauvegarde (dans prologue)/restaure
(dans épilogue) contenu des registres qu’elle modifie.

—-—> variante +rare : appelante sauve avant/restaure aprés appel registres
dont le contenu ne doit pas étre perdu.

III) Instructions de branchement aller et retour

Convention ARM : adresse de retour stockée dans registre rl4/lr
"link register"

Branchement retour : pc = adresse de retour contenue dans lr
mov pc,lr

Banchement aller

mov 1r, pc - @ equivalent
b procedure | bl procedure
suite: add r0, r0, r0 <—- add r0, r0, r0

vendredi aoA»t 24, 2018 Iprocedures_simples.7.latin.txt

1/2

aoAxt 24, 18 3:09 procedures_simples.7.latin.txt Page 3/3

Pc étant en avance de 2 instr, lr pointe sur 1l’instruction qui
suit le branchement (ici le add).

Pb si oubli de sauvegarde de lr en case d’appels en cascade.
——> bl f dans m écrase adresse de retour de m vers gm.
-—> a la fin de m, mov pc,lr revient dans m aprés appel de f

IV) Propriété du passage de parametre par valeur
Les arguments de 1’appels (ou parametres réels) sont des expressions.

Chaque expression est évaluée par 1’appelante et (une copie de sa valeur)
est déposée dans l’emplacement de stockage du parametre formel.

arguments

valeur (parametre réel) déposée dans parametres formel
copie de valeur (x+2) —_—> a

copie de valeur (y) ———> b

copie de valeur (3) ———> c

Si l’expression est une variable de 1’appelante —> une copie de sa
valeur est affectée au parametre formel.

Une procédure peut-elle modifier la valeur de son parametre formel ?
oui, si elle n’a plus besoin de la valeur passée par 1l’appelante.

Si on ajoute b = b+l dans le corps de f, y est—-il modifié ?
NON --> seule la COPIE de la valeur de y stockée dans b est modifiée.
La valeur de y est inchangée.

vendredi aoA»t 24, 2018 Iprocedures_simples.7.latin.txt

Printed by walille

2/2

