Printed by waille

sept. 23, 25 15:17 stockage_variables.3.latin.txt Page 1/4

sept. 23, 25 15:17 stockage_variables.3.latin.txt

Page 2/4

Stockage des variables

Pour commencer,
procédures) .

on ne s’intéresse qu’aux variables globales (externes aux

I) Notations * et & du langage C

L’ opérateur C unaire &yy signifie "adr_de"
L’ opérateur unaire *aa représente Mem[aa]

(premier octet de) yy.
contenant mémoire d’adresse aa.

Comment désigner le type C "pointeur de T" ?
(référence a/adresse d’une entité de type T")

Notation utilisée en C++ pour les références aux objets
& T ptr; /* ptr est du type obtenu par application de */
/* 1’ opérateur référence (&) a une variable de type T */

Notation utilisée en C pour les pointeurs
(T *) ptr; /* ou encore */
T *ptr; /* ptr est d’un type tel que 1l’application de 1’opérateur */
/* d’indirection * dessus retourne quelquechose de type T */

Aucune variable ou fonction ne peut avoir pour adresse NULL.
La constante NULL ne repére rien. Elle correspond en général a 1l’adresse 0.

ITI) Déclaration et stockage (réservation de place)
1.1) Dans registres du processeur

Rapide (identifiant court dans instruction,
mais nombre limité,

pas d’accés Mem),
un registre a un numéro mais pas d’adresse.

n’utiliser que dans le cadre LM pour spéficier type de stockage
| ne pas utiliser en programmation ordinaire
v
register unsigned long a,b,c;

/* choix arbitraire a:r7 b:r8 c:r9 */

2.1) en mémoire (sections data ou bss)
plus lent (accés mémoire, identifiant sur 32/64 bits),
nombre "illimité", autorise pointeurs sur variables
int x = 3;
int y = 6;
int z;

Traduction des déclarations en asm

Chaque etiquette etc_var représente une adresse notée &var en C.
(etc_ pour & du C).

data : valeurs initiales quelconques
(fichier exécutable contient valeur initiale de chaque octet)

bss : valeurs initiales des variables obligatoirement 0
(fichier exécutable ne précise que la taille de bss)

bss et data équivalents a optimisation de taille du fichier exécutable preés
.bss

@ implicite valeurs initiales toujours a 0

etc_z: .skip 4 @ réserve 4 octets, valinit implicite = 0
.data @ valeur initiales quelconques
@ contenues dans le fichier exécutable
etc_x: .word @ réserve 1 mot de 4 octets avec valinit 3
etc_y: .word @ idem valinit 6

— >0 W

Adresses/def Contenu initial
Etiquettes

Si lors d’une exécution data et bss débutent en 0x2000 et 0x3000,
0x00002000
0x00002004
0x00003000

&x en C et etc_x en asm synonymes de la constante adresse
&y en C et etc_y en asm synonymes de la constante adresse
&z en C et etc_z en asm synonymes de la constante adresse

Au début de 1’exécution du programme

Mem[0x00002000] contient 3 sur 4 octets
Mem[0x00002004] contient 6 sur 4 octets
Mem[0x00003000] contient 0 sur 4 octets

En langage C
y signifie en réalité *s&y
&y, autrement
z signifie en réalité *&z
&z, autrement

(emplacement mémoire dont 1’adresse est
dit Mem[0x2004])

(emplacement mémoire dont 1’adresse est
dit Mem[0x3000])

III) Signification d’une affectation

var = expression (forme lvalue = rvalue)
Les opérandes des opérateurs de 1l’expression a droite sont :
* des constantes (qui seront incluses dans les instructions)
* des contenants dont le contenu est consulté
+ registre
+ mémoire (lire
A gauche, il y a un contenant auquel on affecte un nouveau contenu
+ registre (champ dest des instructions de calcul)
+ mémoire (déposer résultat dans registre, recopier en mémoire

alors

(utilisables directement dans les instructions de calcul)
copier le contenu dans un registre avant calcul)

écrire)

3.1) Cas simple variables dans des registres
@Qa:r7 b : r8
C Traduction asm
Instr Dest opG opD

a = 4; mov r7, #4
a=a - b; sub r7, r7, r8
a=>b - 5; sub r7, r8, #5

r7 ppnc constante 4

r7 ppnc contenu_actuel (r7) moins contenu_actuel (r8)

r7 ppnc contenu_actuel (r8) moins constante 5

————— > prend pour nouveau contenu
: constante immédiate (immédiatement accessible dans le code de 1’instruction)
3.2) Cas général variables en mémoire
z =y — c; s’'écrit aussi *&z = *&y - c;

mardi septembre 23, 2025

/tmp/stockage_variables.3.latin.txt

1/2

Printed by waille

sept. 23, 25 15:17 stockage_variables.3.latin.txt Page 3/4 sept. 23, 25 15:17 stockage_variables.3.latin.txt Page 4/4
* &z = * &y - c 3) Toutes les etiquettes seront de la forme etc_ggchose : on supprime le
Mem[&z] ppnc contenu de Mem[&y] - contenu de registre r9 etc_ a l’avenir. Mais une etiquette x dans data correspond a &x en C.
Lire contenu de Mm[0x2004] --> copie dans un registre tampon
Ajouter contenu de tampon et registre r9 dans un registre
Ecrire résultat présent dans registre —--> Mem[0x3000]

Premiére * a gauche d’une affectation écriture
Autres * lecture

IV) Variables en mémoire et instructions RISC

Contraintes RISC
* seules load et store accedent a la mémoire
* les adresses utilisées par load et store de forme reg+reg ou reg+#cte_8

1dr rl, [r2] + synonyme de 1ldr rl, [r2,#0]
+ signifie rl ppnc contenu de Mem[r2]
+ correspond a rl = *r2 (C)

(lecture en mémoire)

str rl, [r2] + synonyme de str rl, [r2,#0]
+ signifie Mem[r2] ppnc contenu de rl (écriture en mémoire)
+ correspond a *r2 = rl (C)

==> on décompose en un programme C équivalent pour traduire
==> les adresses et les contenus des variables transitent par des
registres servant de variables temporaires.

/* registres de type int pour les contenus */
/* registres de type (int *) pour les adresses */

register int rl, r2;
register int *r4, *r5;

Instructions
Rappel : 1dr reg, =constante equivaut a peu pres a

mov reg, #constante, mais accepte une constante 32bits
r4 = &y; ldr r4, =etc_y @ r4 = &y -=> r4 = 0x2004
rl = *r4; ldr «rl1, [r4] Q@ rl = *&y (rl = y) ——> rl =6
r2 =rl - c ; sub r2, rl, r9 Qr2 =y - c¢c -=> r2 = 6-C
r5 = &z; ldr 5, =etc_z Q@ r5 = &z --> r5 = 0x3000
*r5 = r2; str r2, [r5] Q@ *§z = r2 (z = y-c) ——> Mem[0x3000] = r2

.ltorg @ zone de stockage

@ des constantes 0x2004, 0x3000

5 cycles de lecture mots représentant les instructions
3 cycles de lecture demandés par les ldr

ctes 00002004 et 00003000 dans ltorg,
contenu de y dans data

1 cycle d’écriture demandé par le str contenu de z dans bss

Notes :
1) On a besoin d’utiliser des registres comme temporaires
2) On aurait pu n’utiliser que 2 registres temporaires :

ldr rl, =etc_y
ldr rl1, [rl]
sub rl, rl, r9
ldr 1r2, =etc_z
str rl, [r2]

@ 1dr rl, = etc_y
@ 1dr rl1l, [rl]

mardi septembre 23, 2025

/tmp/stockage_variables.3.latin.txt

22

