
Stockage des variables

 Pour commencer, on ne s’intéresse qu’aux variables globales (externes aux
procédures).

I) Notations * et & du langage C

L’opérateur C unaire &yy signifie "adr_de" (premier octet de) yy.
L’opérateur unaire *aa représente Mem[aa] : contenant mémoire d’adresse aa.

Comment désigner le type C "pointeur de T" ?
(référence à/adresse d’une entité de type T")

Notation utilisée en C++ pour les références aux objets :
 & T ptr; /* ptr est du type obtenu par application de */
 /* l’opérateur référence (&) à une variable de type T */

Notation utilisée en C pour les pointeurs :
 (T *) ptr; /* ou encore */
 T *ptr; /* ptr est d’un type tel que l’application de l’opérateur */
 /* d’indirection * dessus retourne quelquechose de type T */

Aucune variable ou fonction ne peut avoir pour adresse NULL.
La constante NULL ne repère rien. Elle correspond en général à l’adresse 0.

II) Déclaration et stockage (réservation de place)

1.1) Dans registres du processeur

Rapide (identifiant court dans instruction, pas d’accès Mem),
mais nombre limité, un registre a un numéro mais pas d’adresse.

 ______ n’utiliser que dans le cadre LM pour spéficier type de stockage
 | ne pas utiliser en programmation ordinaire
 v
register unsigned long a,b,c; /* choix arbitraire : a:r7 b:r8 c:r9 */

2.1) en mémoire (sections data ou bss)

 plus lent (accès mémoire, identifiant sur 32/64 bits),
 nombre "illimité", autorise pointeurs sur variables

int x = 3;
int y = 6;
int z;

Traduction des déclarations en asm :

Chaque etiquette etc_var représente une adresse notée &var en C.
(etc_ pour & du C).

data : valeurs initiales quelconques
 (fichier exécutable contient valeur initiale de chaque octet)

bss : valeurs initiales des variables obligatoirement 0
 (fichier exécutable ne précise que la taille de bss)

bss et data équivalents à optimisation de taille du fichier exécutable près

 .bss @ implicite : valeurs initiales toujours à 0

sept. 23, 25 15:17 Page 1/4stockage_variables.3.latin.txt
etc_z: .skip 4 @ réserve 4 octets, valinit implicite = 0

 .data @ valeur initiales quelconques
 @ contenues dans le fichier exécutable
etc_x: .word 3 @ réserve 1 mot de 4 octets avec valinit 3
etc_y: .word 6 @ idem valinit 6
 ^ ^
 | |
Adresses/def Contenu initial
Etiquettes

Si lors d’une exécution data et bss débutent en 0x2000 et 0x3000, alors

&x en C et etc_x en asm synonymes de la constante adresse 0x00002000
&y en C et etc_y en asm synonymes de la constante adresse 0x00002004
&z en C et etc_z en asm synonymes de la constante adresse 0x00003000

Au début de l’exécution du programme
Mem[0x00002000] contient 3 sur 4 octets
Mem[0x00002004] contient 6 sur 4 octets
Mem[0x00003000] contient 0 sur 4 octets

En langage C :
 y signifie en réalité *&y (emplacement mémoire dont l’adresse est
 &y, autrement dit Mem[0x2004])
 z signifie en réalité *&z (emplacement mémoire dont l’adresse est
 &z, autrement dit Mem[0x3000])

III) Signification d’une affectation

 var = expression (forme lvalue = rvalue)

 Les opérandes des opérateurs de l’expression à droite sont :
 * des constantes (qui seront incluses dans les instructions)
 * des contenants dont le contenu est consulté
 + registre (utilisables directement dans les instructions de calcul)
 + mémoire (lire : copier le contenu dans un registre avant calcul)

 A gauche, il y a un contenant auquel on affecte un nouveau contenu
 + registre (champ dest des instructions de calcul)
 + mémoire (déposer résultat dans registre, recopier en mémoire : écrire)

3.1) Cas simple : variables dans des registres

@ a : r7 b : r8
C Traduction asm
 Instr Dest opG opD
a = 4; mov r7, #4
a = a − b; sub r7, r7, r8
a = b − 5; sub r7, r8, #5

 r7 ppnc constante 4
 r7 ppnc contenu_actuel(r7) moins contenu_actuel(r8)
 r7 ppnc contenu_actuel(r8) moins constante 5
 −−−−−> prend pour nouveau contenu

: constante immédiate (immédiatement accessible dans le code de l’instruction)

3.2) Cas général : variables en mémoire

 z = y − c; s’écrit aussi *&z = *&y − c;

sept. 23, 25 15:17 Page 2/4stockage_variables.3.latin.txt

Printed by waille

mardi septembre 23, 2025 1/2/tmp/stockage_variables.3.latin.txt

 * &z = * &y − c
 Mem[&z] ppnc contenu de Mem[&y] − contenu de registre r9

 Lire contenu de Mm[0x2004] −−> copie dans un registre tampon
 Ajouter contenu de tampon et registre r9 dans un registre
 Ecrire résultat présent dans registre −−> Mem[0x3000]

 Première * à gauche d’une affectation : écriture
 Autres * : lecture

IV) Variables en mémoire et instructions RISC

 Contraintes RISC :
 * seules load et store accèdent à la mémoire
 * les adresses utilisées par load et store de forme reg+reg ou reg+#cte_8

 ldr r1,[r2] + synonyme de ldr r1,[r2,#0]
 + signifie r1 ppnc contenu de Mem[r2] (lecture en mémoire)
 + correspond à r1 = *r2 (C)

 str r1,[r2] + synonyme de str r1,[r2,#0]
 + signifie Mem[r2] ppnc contenu de r1 (écriture en mémoire)
 + correspond à *r2 = r1 (C)

 ==> on décompose en un programme C équivalent pour traduire
 ==> les adresses et les contenus des variables transitent par des
 registres servant de variables temporaires.

register int r1, r2; /* registres de type int pour les contenus */
register int *r4, *r5; /* registres de type (int *) pour les adresses */

Instructions

Rappel : ldr reg, =constante equivaut à peu pres à
 mov reg, #constante, mais accepte une constante 32bits

r4 = &y; ldr r4, =etc_y @ r4 = &y −−> r4 = 0x2004
r1 = *r4; ldr r1,[r4] @ r1 = *&y (r1 = y) −−> r1 = 6
r2 = r1 − c ; sub r2, r1, r9 @ r2 = y − c −−> r2 = 6−c
r5 = &z; ldr r5, =etc_z @ r5 = &z −−> r5 = 0x3000
*r5 = r2; str r2, [r5] @ *&z = r2 (z = y−c) −−> Mem[0x3000] = r2

 .ltorg @ zone de stockage
 @ des constantes 0x2004, 0x3000

5 cycles de lecture : mots représentant les instructions
3 cycles de lecture demandés par les ldr :
 ctes 00002004 et 00003000 dans ltorg,
 contenu de y dans data
1 cycle d’écriture demandé par le str : contenu de z dans bss

Notes :

1) On a besoin d’utiliser des registres comme temporaires

2) On aurait pu n’utiliser que 2 registres temporaires :
 ldr r1, =etc_y @ ldr r1, = etc_y
 ldr r1, [r1] @ ldr r1, [r1]
 sub r1, r1, r9
 ldr r2, =etc_z
 str r1, [r2]

sept. 23, 25 15:17 Page 3/4stockage_variables.3.latin.txt

3) Toutes les etiquettes seront de la forme etc_qqchose : on supprime le
 etc_ a l’avenir. Mais une etiquette x dans data correspond a &x en C.

sept. 23, 25 15:17 Page 4/4stockage_variables.3.latin.txt

Printed by waille

mardi septembre 23, 2025 2/2/tmp/stockage_variables.3.latin.txt

