
I) Réservation de place

 En C, il n’y a pas de type tableau proprement dit, juste une définition de
nom (étiquette), une arithmétique sur les pointeurs et pas de contrôle
systématique de indice/taille. Si l’indice dépasse la dimension du tableau, on
va taper dans les variables suivantes !!

(cf programme C demo_debordement_tableau).

 Pour stocker les tableaux (déclarés statiquement), on réserve une zone
mémoire de taille

 nb_elements * sizeof(element)

et on met en étiquette le nom du tableau (= l’adresse du premier element).

 En indicant à partir de 0, le premier élément t[0] est stocké
à l’adresse de la zone mémoire réservée pour le tableau. L’élément de rang i
est stocké à cette même adresse + i* sizeof(type_du_tableau).

Déclaration avec ou sans initialisation :

int puissance2[5]; /* elements puissance[0] a puissance[4] */
int puissance2[5] = {1,2,4,8,16}; /* puissance2 [0] : 1 puissance2 [1] = 2 */
int puissance2[5]={1,2,4}; /* initialisation partielle */

 .bss
puissance2: .skip 20

.data
puissance2: .word 1
 .word 2
 .word 4
 .word 8
 .word 16

.data
puissance2: .word 1
 .word 2
 .word 4
 .skip 8

II) Operateur d’indexation

 Indicage à partir de 0.

 L’opérateur d’addition d’un entier à un pointeur n’a de sens que dans la
mesure où le pointeur contient l’adresse d’un élément de tableau.

 L’addition ou la soustraction d’un entier e à un pointeur consiste à
se déplacer de e éléments dans le tableau.

register long *pt;

 pt += 2; /* decrit registre += 8, soit 2*sizeof(long) */

Hors déclarations, l’opérateur d’indexation t[i] n’est qu’un raccourci
d’écriture pour * (t+i). Par definition t est égal à &t[0].

III) Exemple

oct. 06, 25 14:36 Page 1/3tableaux.6.latin.txt

long tab [5];
long *pt;
register int i;

i = 3;
tab [2] = 5;
pt = &(tab[i]); /* ou pt = tab+i */
pt = pt[1]; / tab [3] = tab [4] */

Expansion : sizeof (long) = 4

i = 3;
(tab + 2) = 5; / adresse = tab + 2 * 4 */
&pt = tab + i / adresse = tab + i * 4 */
**&pt = * (*&pt + 1) /* adresse gauche = reg_pt,

 droite = reg_pt + 1 * 4 */

Remarque : fois 2puissanceX = décalage gauche X bits

.bss
tab: .skip 20 @ 20 = 5 elements de 4 octets

.text

.global main
main:
@ i = 3

mov r1,#3 @ i : stockage dans r1
@ * (tab + 2) = 5

mov r0, #5
ldr r4, =tab @ tab est une etiquette
str r0,[r4,#8] @ Mem [r4 + 2 * 4] = r0

@ *&pt = tab + i
ldr r4, =tab
add r4, r4, r1, LSL #2 @ tab + i (* sizeof)
ldr r5, =pt @ r5 = &pt
str r4, [r5] @ *&pt = r4

@ **&pt = **&pt + 1
ldr r5, =pt
ldr r4, [r5] @ contenu de pt : adresse de l’entier pt[1]
ldr r0, [r4 , #4] @ r0 = *(pt+1) : +1 *sizeof donne +4
str r0, [r4] @ r4 contient deja *&pt −−> **&pt = r0
.ltorg

IV) Parcours de tableau

 Deux méthodes :

 Par indice (calcul à chaque tour de boucle)
 for (i=0; i<TAILLE;i++)

t[i] = ...;

 Par pointeur :
 for (pt = t; pt < t+TAILLE; pt++)

*pt = ...;

V) Elements de taille autre qu’une puissance de 2

 Note : sizeof (element) intègre l’espace perdu dû aux contraintes
d’alignement internes à l’objet et entre éléments juxtaposés dans un tableau.

 Exemple : une structure

oct. 06, 25 14:36 Page 2/3tableaux.6.latin.txt

Printed by waille

lundi octobre 06, 2025 1/2/tmp/tableaux.6.latin.txt

struct ascii_nombre {
 unsigned char ascii; /* Un caractere 0 a 9, A a F ou a a f */
 unsigned long int valeur; /* Valeur entre 0 et 15 inclus */
 }

 sizeof (unsigned long) : 4
 sizeof (unsigned char) : 1
 sizeof (ascii_nombre) : 8 /* on perd 3 octets d’alignement entre 2 */

VI) Les chaînes de caractères en C

Considérées comme des tableaux de char.

Taille de la chaîne non stockée : caractère null ’\0’ (code ASCII 0) marque
la fin de chaîne.

char ch[] = "abc"; /* signifie char ch[4] = {’a’,’b’,’c’,0} */

char nom[10] = "moi"; /* char nom[10] = {’m’,’o’,’i’,’\0’,0,0,0,0,0,0} */

strlen [moi] retourne 3 (le nombre de caractères sans le 0 de fin de chaîne)

Réservation de place :

ch: .byte ’a’ /* ou ch: .asciz "abc" */
.byte ’b’
.byte ’c’
.byte 0

nom: .byte ’m’ /* ou nom: .ascii "nom" */
.byte ’o’ .byte 0
.byte ’i’ .skip 6
.byte 0
.skip 6

oct. 06, 25 14:36 Page 3/3tableaux.6.latin.txt

Printed by waille

lundi octobre 06, 2025 2/2/tmp/tableaux.6.latin.txt

