Printed by

nov. 13, 20 16:24 tab.txt Page 1/1
r0 rl r2 r3 Mem [sp]
Mem[fp—-8] Mem[fp-12] Mem[fp-16] Mem[fp—-20] Mem[fp+8]
void int32_t f (int32_t n, int32_t *t, int *min, int *max, int *somme) {
int32_t s; // Mem[fp — 4]
register int i; // rl
s = plus (s,3);
t[1]=5;
}
str fp, [sp, #-8]
str 1lr, [sp, #-4]
sub fp, sp, #8
sub sp, sp, #TAILLE_LOCAUX
@ Mem[fp—-4] : var locale s
str r0, [fp, #-8] @ r0 : n
str rl, [fp,#-12] QR rl : t
@ str r2,[fp,#-16] @ r2 : min si autres appels a 4 args
@ str r3, [fp,#-20] @ r3 : max
str .. @ au moins r6, r8, r9
ldr 0, [fp, #-4] @ x_de_plus = s
mov rl,#3
bl plus
str 10, [fp, #-4] @ s = plus (s,3)
1ldr «r6, [fp,#-12] @ tmp_r6 = t (qui n’est plus dans rl)
mov r8,r7,LSL #2 @ r8 = i*sizeof (int32_t)
mov r9,#5
str r9, [r6,r8] @ t[i] = 5
1dr rO[fp, #-4] @ r0O = s
ldr 8, [fp, #8] @ tmp_r8=somme
str r0, [r8] @ *somme =s
sub sp, sp, #TAILLE_LOCAUX @ restauration
ldr ... [fp,#-...] @ des registres
ldr fpl [Spl #_8]
1dr 1r, [sp, #-4] @ ou directement 1ldr pc, [sp, #-4]
bx 1r @ ou mov pc,lr
Appel dans main
mov r0, #4
1ldr rl1,= tab
ldr r2,= mini
ldr r3,=maxi
ldr «r7,=sigma @ empiler somme=sigma
sub sp, sp, #4
str «r7, [spl]
bl £
add sp, sp, #4 @ liberer place argument somme
vendredi novembre 13, 2020 1/1




