
 r0 r1 r2 r3 Mem[sp]
 Mem[fp−8] Mem[fp−12] Mem[fp−16] Mem[fp−20] Mem[fp+8]
void int32_t f (int32_t n, int32_t *t, int *min, int *max, int *somme) {
 int32_t s; // Mem[fp − 4]
 register int i; // r7
 ...

 s = plus (s,3);
 ...
 t[i]=5;
 ...
}

 str fp,[sp,#−8]
 str lr,[sp,#−4]
 sub fp,sp,#8
 sub sp,sp,#TAILLE_LOCAUX
 @ Mem[fp−4] : var locale s
 str r0,[fp,#−8] @ r0 : n
 str r1,[fp,#−12] @ r1 : t
@ str r2,[fp,#−16] @ r2 : min si autres appels à 4 args
@ str r3,[fp,#−20] @ r3 : max
 str ... @ au moins r6, r8, r9

 ldr r0,[fp,#−4] @ x_de_plus = s
 mov r1,#3
 bl plus
 str r0,[fp,#−4] @ s = plus (s,3)

 ldr r6,[fp,#−12] @ tmp_r6 = t (qui n’est plus dans r1)
 mov r8,r7,LSL #2 @ r8 = i*sizeof(int32_t)
 mov r9,#5
 str r9,[r6,r8] @ t[i] = 5

 ldr r0[fp,#−4] @ r0 = s
 ldr r8,[fp,#8] @ tmp_r8=somme
 str r0,[r8] @ *somme =s

 sub sp,sp,#TAILLE_LOCAUX @ restauration
 ldr ... [fp,#−...] @ des registres
 ldr fp,[sp,#−8]
 ldr lr,[sp,#−4] @ ou directement ldr pc,[sp,#−4]
 bx lr @ ou mov pc,lr

Appel dans main :

 mov r0,#4
 ldr r1,= tab
 ldr r2,= mini
 ldr r3,=maxi

 ldr r7,=sigma @ empiler somme=sigma
 sub sp,sp,#4
 str r7,[sp]
 bl f
 add sp,sp,#4 @ liberer place argument somme

nov. 13, 20 16:24 Page 1/1tab.txt

Printed by

vendredi novembre 13, 2020 1/1

